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Abstract 
This paper examines the effect of treatment of Dengue fever disease. A non linear mathematical 
model for the problem is proposed and analysed quantitatively using the stability theory of the 
differential equations. The results show that the disease-free equilibrium point is locally andglo-
bally asymptotically stable if the reproduction number ( )R0  is less than unity. The additive 
compound matrices approach is used to show that the dengue fever model’s endemic equilibrium 
point is locally asymptotically stable when trace, determinant and determinant of second additive 
compound matrix of the Jacobian matrix are all negative. However, treatment will have a control 
of dengue fever disease. Numerical simulation of the model is implemented to investigate the sen-
sitivity of certain key parameters on the dengue fever disease with treatment. 
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1. Introduction 
Dengue is a vector borne disease transmitted to humans by the bite of an infected female Aedes mosquito [1]. 
Dengue fever (DF) also known as break-born fever is a mosquito born infection that causes a severe flu-like ill-
ness, caused by any one of the four closed related dengue viruses transmitted by female mosquitoes, i.e. DEN-1, 
DEN-2, DEN-3 and DEN-4. The first recognized Dengue epidemics occurred almost simultaneously in Asia, 
Africa, and North America in the 1780s, shortly after the identification and naming of the disease in 1779. It has 
spread especially in the tropical and sub tropical regions around the world, and nowadays is a disease widely 
found in urban and semi-urban areas, ([2]). Mathematical modelling is the interesting tool for understanding ep-
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idemiological diseases and for proposing effective strategies to fight them ([3]). The mathematical model of 
dengue transmission is a multi-population model that captures the transmission dynamics between host (human) 
and vector (mosquito) taking into account the four strains of dengue virus and the cross infections. Various 
models have been proposed to study factors on the transmission dynamics and control the spread of dengue fev-
er disease ([2]-[10], studied a dengue model by evaluating and analysing the sensitivity indices of the reproduc-
tion number 0R  in order to determine the relative importance of the model parameters in the disease transmis-
sion. So far no one considered a dynamical system that incorporates the effects of treatment in dengue fever 
disease model. In this paper, it is therefore intended to analyse a model which will include treatment. Thus, we 
study and analyse a non linear mathematical model showing the effect of treatment on the transmission of den-
gue fever disease in the population. 

2. Model Formulation 
A non linear mathematical model is formulated and analysed showing the effect of treatment of Dengue fever 
disease. The basic reproduction number and stability of equilibrium points are analysed qualitatively. Sensitivity 
analysis of parameters and numerical simulations are performed. The total human population at any time t will 
be denoted by ( ).hN t  The total population is subdivided into four sub-populations namely; Susceptibles hS , 
Infectives hI , Treated hT  and Resistant hR . 

Thus 

( ) ( ) ( ) ( ) ( ).h h h h hN t S t I t T t R t= + + +  

where h —represent human population. 
There are three other state variables, related to the female mosquitoes, indexed by m : 

mA —Aquatic phase (that includes the egg, larva and pupa stages); 
mS —Susceptibles (mosquitoes that are able to contract the disease); 
mI —Infectives (mosquitoes capable of transmitting the disease to human). 

In formulating the model, the following assumptions are considered: 

i) Total human population ( )hN  is constant at any time t, i.e. d d d d d
0

d d d d d
h h h h hN S I T R

t t t t t
= + + + = , 

ii) The population is homogeneous, which means that every individual of a compartment is homogeneously 
mixed with the other individuals,  

iii) Immigration and emigration are not considered,  
iv) Each vector has an equal probability to bite any host,  
v) Humans and mosquitoes are assumed to be born susceptible i.e. there is no natural protection,  
vi) The coefficient of transmission of the disease is fixed and does not vary seasonally,  
vii) For the mosquito there is no resistant phase, due to its short lifetime, ([10]). 
Considering the above assumptions, we then have the following 
Schematic model flow diagram for dengue fever disease with treatment: 
From Figure 1 flow diagram, the model will be governed by the following equations: 

( )

( )

( ) ( )

d d
,

d d
d d

,
d d

d
1

d

d
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d

A
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h h mh h h mh h h h h

h h

h h
h h h h h h h h h
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m h
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m h
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= − + 
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where 
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Figure 1. Model flow diagram for dengue fever disease with treatment.

  
( )0 0hS > , ( )0 0hI ≥ , ( )0 0hT ≥ , ( )0 0hR ≥ , ( )0 0mA ≥ , ( )0 0mS > , ( )0 0mI ≥ , for all 0t ≥ . 

3. Model Analysis 
The model system of Equation (1) will be analysed qualitatively to get a better understanding of the effects of 
treatment of Dengue fever disease. The basic Reproduction number 0R  which governs elimination or persis-
tence of Dengue fever disease will be determined and studied. 

3.1. Disease Free Equilibrium (DFE) 
For the disease free equilibrium, it is assumed that there is no infection for both populations of human and mos-
quitoes i.e. ( ) 0hI t =  and ( ) 0mI t = , denoted by “ 0E ”. Thus 0E  of the model system (1) is obtained as 

( ) ( ) ( )( )0 ,0,0,0, , ,0 ,0,0,0, , ,0
A

h h
h m m h

m

kN kN
E S t A t S t N

π π
ϕη ϕµ

 
= =   

 
                   (2) 

3.2. The Basic Reproduction Number, “R0” 
The basic reproduction number, denoted by 0R , is defined as the average number of secondary infections that 
occurs when one infective individual is introduced into a completely susceptible population ([11]). 

The basic reproduction number of the model (1) 0R  is calculated by using the next generation matrix of an 
ODE ([11]). Using the approach of ([11]). 0R  is obtaining by taking the largest (dominant) eigenvalue (spec-
tral radius) of 

( ) ( )
1

0 0 ,i i

j j

F E V E
X X

−
   ∂ ∂
   

∂ ∂      
 

where, iF  is the rate of appearance of new infection in compartment i , iV +  is the transfer of individuals out 
of the compartment i  by all other means and 0E  is the disease free equilibrium. 

1

2

mh m h

h
i

hm h m

h

B I S
NF

F B I S
N

β

β

 
    = =    
 
 

F  

Using the linearization method, the associated matrix at DFE is given by 
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( ) ( )

( ) ( )

1 1
0 0

2 2
0 0

.h m

h m

дF дFE E
дI дI
дF дFE E
дI дI

 
 
 =
 
 
 

F  

This implies that 

0
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0

mh h

h

hm m

h

B S
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B S
N

β

β

 
 
 =
 
 
 

F  

With h hS N= , h
m
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S

π
ϕµ

=  we have 
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0

mh h
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h

B N
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kNB
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π
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 =
 
 
 
 

F  

or 

0
.

0

mh

hm
m

B
kB

β
πβ

ϕµ

 
 =  
 
 

F  

The transfer of individuals out of the compartment i  is given by 

1

2

h h h h
i

m m

V I I
IV

µ η
µ
+   

= =   
  

V  

Using the linearization method, the associated matrix at DFE is given by 

( ) ( )

( ) ( )

1 1
0 0

2 2
0 0

.h m

h m

дV дVE E
дI дI
дV дVE E
дI дI
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V  
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0

0
h h

m

µ η
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=  
 

V  with 
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FV            (3)  
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The eigenvalues of the Equation (3) are given by 

( )
( )

–1

0
det det .

0

mh

m

hm

h h m

B

B k

β
λ

µ
λ

β π
λ

µ η ϕµ

 − 
 − =
 

−  + 

FV I  

This gives 

( )
2

1 2
hm mh

m h h

B kβ β π
λ

ϕµ µ η
=

+
 

( )
2

2 2
hm mh

m h h

B kβ β π
λ

ϕµ µ η
= −

+
 

It follows that the Reproductive number which is given by the largest eigenvalue for model system (1) with 
treatment denoted by 0R  is given by 

( )
2

0 2
hm mh

m h h

B k
R

β β π
ϕµ µ η

=
+

                                 (4) 

where ( )( )A A m Aπ η µ µ ϕη= − + + . 

If 0 1R < , the disease cannot invade the population and the infection will die out over a period of time, and 
also, if 0 1R > , then an invasion is possible and infection can spread through the population. Generally, the 
larger the value of 0R , the more severe, and possibly widespread the epidemic will be, ([10]). 

3.3. Sensitivity Analysis of Model Parameters 
In order to determine how best human mortality due to dengue fever is reduced, we calculate the sensitivity in-
dices of the reproduction number 0R  to each parameter in the model using the approach of ([11]). These in-
dices tell us which parameters have high impact on 0R  and should be targeted by intervention strategies. Also 
Sensitivity indices allow us to measure the relative change in a variable when a parameter changes. The norma-
lized forward sensitivity index of a variable with respect to a parameter is the ratio of the relative change in the 
variable to the relative change in the parameter. When the variable is a differentiable function of the parameter, 
the sensitivity index may be alternatively be defined using partial derivatives. 

Definition 1: The normalized forward sensitivity index of “ p ”, that depends differentiable on a parameter  
“ q ”, is defined as ([12])  

.p
q

p qX
q p
∂

= ×
∂

                                      (5)  

As we have an explicit formula for 0R  in the Equation (5), we derive an analytical expression for the sensi-

tivity of 0R  as 0 0

0

R
q

R qX
q R

∂
= ×
∂

 to each of parameters involved in 0R . For example, using the set of esti-

mated parameter values given as 0.9B = , 1
11mµ = , 3k = , 0.375hmβ = , 0.4mhβ = , 0.1Aη = , 1

8Aµ = , 

1
78 365hµ =
×

, 1
3hη = , 5ϕ =  the sensitivity indices of 0R  with respect to B  and mµ  are given by

0 0

0

1.000002246R
B

R BX
B R

∂
= × = +
∂

 and 0 0

0

1.021327442
m

R m

m

R
X

Rµ
µ

µ
∂

= × = −
∂

 respectively. Otherindices 0
A

RXη , 

0
h

RX µ , 0
h

RXη , 0
hm

RX β , 0
mh

RX β , 0R
kX , 0

A

RX µ  and 0RXϕ  are obtained following the same method and tabulated as 
follows: 

The parameters are ordered from most sensitive to the least. 
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Interpretation of Sensitivity Indices 
From Table 1 generally it shows that the parameters B , Aη , hmβ , k , mhβ  and ϕ  each increases keeping 
other parameters constant they increase the value of 0R  implying that they increase the endemicity of the dis-
ease as they have positive indices. While the parameters hµ , Aµ , hη  and mµ  when each increases while 
keeping the other parameters constant they decrease the value of 0R  implying that they decrease the endemic-
ity of the disease as they have negative indices. 

But individually, the most sensitive parameter is the average daily biting (per day) B , followed by matura-
tion rate from larvae to adult (per day) Aη , transmission probability from hI  (per bite) hmβ , number of lar-
vae per human k , transmission probability from mI  (per bite) mhβ , number of eggs at each deposit per capi-
ta (per day) ϕ , then average lifespan of humans (per day) hµ , natural mortality of larvae (per day) Aµ , mean 
viremic period (per day) hη , and finally the least sensitive parameter is the average lifespan of adult mosquitoes 
(per day) mµ . 

3.4. Local Stability of Disease Free Equilibrium Point 
To determine the local stability of the disease free equilibrium, the variation matrix 

0EJ  of the model system 
(1) corresponding to the disease free 0E  is obtained as 

( )
( )

( )
0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

h mh

h h mh

h h h

h h

A AE
m A A

hm
A m

m

hm
m

m

B
B

B k

B k

µ β
µ η β
η µ δ

δ µ
π π πη µ ϕ ϕ
µ η η

β π
η µ

ϕµ
β π

µ
ϕµ

− − 
 − + 
 − +
 

− 
 −

− + − −=  
 
 −
 −
 
 
 −
  

J             (6) 

where ( )( ).A A m Aπ η µ µ ϕη= − + +  

Therefore the stability of the disease free equilibrium point can be clarified by studying the behaviour of 
0EJ  

in which for local stability of DFE we seek for its all eigenvalues to have negative real parts. It follows that, the 
characteristic function of the matrix (6) with λ  being the eigenvalues of the Jacobian matrix, by using Mathe- 
matica software the Jacobian matrix has the following eigenvalues: 
 
Table 1. Sensitivity Indices of model parameters to 0R .                                                            

 Parameter symbol Sensitivity index 

1 B  1.000002246 

2 Aη  0.511849685 

3 hmβ  0.500000701 

4 k  0.50000028 

5 mhβ  0.5000001122 

6 ϕ  0.021327046 

7 hµ  −0.00005268151704 

8 Aµ  −0.011848351 

9 hη  −0.499947596 

10 mµ  −1.021327442 
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1 ,hλ µ= −  

( ) ( )( )22

2

4
.

2

m h h m m hm mh h h m m

m

B kϕµ η µ µ ϕµ πβ β ϕ η µ µ µ
λ

ϕµ

− + + + + + −
=  

when ( )( )224m hm mh h h m mB kϕµ πβ β ϕ η µ µ µ+ + −  is not a real number. 

The other eigenvalues are given as 

3 ,h hλ δ µ= − −   

4 ,hλ µ= −  

( ) ( )( ) ( )( )22

5

4 2
.

2
m A A m m A A A m m A A m

m

π µ η µ µ µ π ϕη η µ µ π µ η µ µ
λ

µ

+ + + + − − + + + + + +
= −  

when ( )( ) ( )( )224 2m A A A m m A A mµ π ϕη η µ µ π µ η µ µ− − + + + + + +  is not a real number,  

( ) ( )( ) ( )( )22

6

4 2

2
m A A m m A A A m m A A m

m

π µ η µ µ µ π ϕη η µ µ π µ η µ µ
λ

µ

+ + + − − − + + + + + +
= −  

when ( )( ) ( )( )224 2m A A A m m A A mµ π ϕη η µ µ π µ η µ µ− − + + + + + +  is not a real number,  

and finally 

( ) ( )( )22

7

4

2

m h h m m hm mh h h m m

m

B kϕµ η µ µ ϕµ πβ β ϕ η µ µ µ
λ

ϕµ

+ + + + + −
= −  

when ( )( )224m hm mh h h m mB kϕµ πβ β ϕ η µ µ µ+ + −  is not a real number. 

Hence under certain conditions the system is stable since all the seven eigenvalues are negative. These imply 
that at 0 1R <  the Disease Free Equilibrium point is locally asymptotically stable, i.e. Dengue infection can be 
eliminated from the population. 

3.5. Global Stability of Disease Free Equilibrium Point 
In this subsection, we analyse the global behaviour of the equilibria for system (1). The following theorem pro-
vides the global property of the disease free equilibrium 0E  of the system. The results are obtained by means 
of Lyapunov function. In choosing the Lyapunov function the idea of [13] is used. 

Theorem 1: If 0 1R ≤ , then the infection-free equilibrium is globally asymptotically stable in the interior of
Ω . 

Proof: 
To establish the global stability of the disease-free equilibrium, we construct the following Lyapunov func-

tion: 

( ) ( ) ( ) ( )
1
2

h hm mh
h m

mh h h

N k
L t I t I t

β β π
β ϕ µ η

 
= +  + 

                         (7) 

Calculating the time derivative of L  along (7), we obtain 

( ) ( ) ( ) ( )
1
2

h hm mh
h m

mh h h

N k
L t I t I t

β β π
β ϕ µ η

 
′ ′ ′= +  + 
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Then substituting ( )hI t′  and ( )mI t′  from system (1), we get 

( ) ( ) ( )
1
2

h

hm mh h m
mh h h h h

h h mh h

hm m m m
h

k N I
L t B S I

N

I
B S I

N

β β π
β µ η

ϕ µ η β

β µ

   
′ = − +    +   

 
+ − 
 

 

where 

1 and 1 .h h m mS I S I= − = −  

It follows that 

( ) ( ) ( ) ( )

( )

1
2

1

1h

hm mh h m
mh h h h h

h h mh h

hm m m m
h

k N I
L t B I I

N

I
B I I

N

β β π
β µ η

ϕ µ η β

β µ

   
′ = − − +    +   

 
+ − − 
 

 

or 

( ) ( ) ( )

( ) ( )

1 1
2 2

1
2

h h

hm mh h m hm mh h m
mh mh h

h h mh h h h mh h

hm mh h
h h h hm hm m m m

h h mh h h

k N I k N I
L t B B I

N N

I Ik N
I B B I I

N N

β β π β β π
β β

ϕ µ η β ϕ µ η β

β β π
µ η β β µ

ϕ µ η β

   
′ = −      + +   

 
− + + − −  + 

 

which is equivalent to 

( ) ( ) ( )

( ) ( )

1 1
2 2

1
2

h h

hm mh hm mh
m m m h m

h h h h

hm mh h
h h h hm hm m

h h mh h h

k k
L t BI I BI I

I Ik N
I B B I

N N

β β π β β π
µ

ϕ µ η ϕ µ η

β β π
µ η β β

ϕ µ η β

   
′ = − −      + +   

 
− + + −  + 

 

( ) ( ) ( )

( ) ( ) ( )

1 1
2 2

1
2

1

1h

hm mh hm mh
m m h m

h h m h h

hm mh h
h h h hm m

h h mh h

k kBL t I BI I

Ik N
I B I

N

β β π β β π
µ

ϕ µ η µ ϕ µ η

β β π
µ η β

ϕ µ η β

 
    ′ = − −       + +    
 

 
− + − −  + 

 

But 
( )

2

0 2
hm mh

m h h

B k
R

β β π
ϕµ µ η

=
+

 

or 

( )

1
2

0
hm mh

h h m

k BR
β β π
ϕ µ η µ
 

=   + 
                               (9) 

Substituting (9) into (8) yields 
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( ) ( ) ( )

( ) ( ) ( )

1
2

0

1
2

1

1h

hm mh
m m h m

h h

hm mh h
h h h hm m

h h mh h

k
L t I R BI I

Ik N
I B I

N

β β π
µ

ϕ µ η

β β π
µ η β

ϕ µ η β

 
′ = − −   + 

 
− + − −  + 

 

Therefore 

( ) ( ) ( )

( ) ( ) ( )

1
2

0

1
2

1

1h

hm mh
m m h m

h h

hm mh h
h h h hm m

h h mh h

k
L t I R BI I

Ik N
I B I

N

β β π
µ

ϕ µ η

β β π
µ η β

ϕ µ η β

 
′ = − − −   + 

 
− + − −  + 

 

Thus, ( )L' t  is negative if 0 1R ≤ , and 0L′ =  if and only if 0h mI I= =  is reduced to the disease-free 
equilibrium. Consequently, the largest compact invariant set in ( ){ }, , , , , , , 0h h h h m m mS I T R A S I L′∈Ω =  when 

0 1R ≤  is the singleton { }0E . Hence, by LaSalle’s invariance principle it implies that “ 0E ” is globally asymp-
totically stable in Ω  ([14]).This completes the proof. 

3.6. Existence and Local Asymptotic Stability of Endemic Equilibrium 
Since we are dealing with presence of dengue fever disease in human population, we can reduce system (1) to a 
3-dimensional system by eliminating hT , hR , mA  and mS  respectively, in the feasible region Ω . The val-
ues of mS  can be determined by setting m h mS mN I= −  to obtain 

( )

( )

d
d

d
d
d
d

h m
h h mh h h

h

h m
mh h h h h

h

m h
hm h m m m

h

S I
N B S

t N
I I

B S I
t N
I I

B mN I I
t N

µ β µ

β µ η

β µ

 
= − + 

 

= − +

= − −

                             (10) 

The endemic equilibrium of the system (10) is given by ( )* * * *, ,h h mE S I I= . It is obtained by setting the right 
hand side of each equation of the system (10) equal to zero which exist for 0 1R > . Thus, we have 

*
* 0m

h h mh h h
h

I
N B S

N
µ β µ

 
− + = 
 

                              (11) 

( )
*

* * 0m
mh h h h h

h

I
B S I

N
β µ η− + =                                (12) 

( )
*

* * 0h
hm h m m m

h

I
B mN I I

N
β µ− − =                              (13) 

3.6.1. Existence of Endemic Equilibrium 
For the existence and uniqueness of endemic equilibrium ( )* * * *, ,h h mE S I I= , the conditions * 0hI ≠  or *

mI ≠ 0

i.e. * 0hS >  or * 0hI >  or * 0mI > , must be satisfied by using the idea of ([15]). 
Adding Equations (11)-(13) above, we have 

( ) ( )
* * *

* * * * * 0m m h
h h mh h h mh h h h h hm h m m m

h h h

I I I
N B S B S I B mN I I

N N N
µ β µ β µ η β µ

 
− + + − + + − − = 
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or 

( ) ( )
*

* * * * 0h
h h h h h h h hm h m m m

h

I
N S I B mN I I

N
µ µ µ η β µ− − + + − − =  

But from (13) above 

( )
*

* * 0.h
hm h m m m

h

I
B mN I I

N
β µ− − =  

It follows that 

( )* * 0h h h h h h hN S Iµ µ µ η− − + =  

or 

( )* * * 0.h h h h h h hN S I Iµ µ η− + − =  

Consequently 

( )* * * .h h h h h h hS I I Nµ η µ+ + =  

Then 
* 0.h hIη >  

This imply that 
*0 and 0h hIη > >   

and 

( )* * 0.h h hS Iµ + >  

meaning that 
* * 0 and 0.h h hS I µ+ > >  

Thus, the endemicity of the disease exists since * 0hS > , * 0hI > , 0hµ >  and 0hη > . 

3.6.2. Local Stability of the Endemic Equilibrium 
In order to analyse the stability of the endemic equilibrium, the additive compound matrices approach is used, 
using the idea of ([16]). 

If 0 1,R >  then the host-vector model Equations (11)-(13) has a unique endemic equilibrium given by 
( )* * * *, ,h h mE S I I=  in Ω , with 

( )( )
( )

* h hhm

hm mh

h h m
h

h

N B
s

B Bm
β µ η µ µ

β β µ

+ +

+
=                             (14)  
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1 1
2 2

0 0
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2
0 0

1 1
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m m
h h

h
h h

h h m hm h
hm mh

m mk R R
k k

i
m R k R

k

N ϕµ ϕµ
µ π

π π

ϕ η µ
ϕ η µ µ πβ µ

πβ β


   
   


 
  + −      
  =

+
+ +

                    (15)  

( )

( )( )

1 1
2 2

0 0

*

1 1m
h h h h m

m
h h h m

m

mh hm

i
B

m mR

B

N R
k k

ϕµ ϕµ
π π

µ η µ µ

β β µ η µ µ

  
     + −          


+

+ +
 =                  (16)  
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Local stability of the endemic equilibrium point is determined by the variational matrix ( )E∗J  of the 
nonlinear system (9) corresponding to *E  as 

( ) ( )

( )

* *

* *
*

* *
*

0

0

m h
mh h mh

h h

m h
mh h h mh

h h

h h
hm h m hm m

h h

I S
B B

N N

I S
E B B

N N

I I
B mN I B

N N

β µ β

β µ η β

β β µ

  
− + −  
  

 
 = − +
 
 
 − − − 
 

J             (17) 

The following lemma was stated and proved by [17], to demonstrate the local stability of endemic equilibrium 
point *E . 

Lemma 1: Let ( )*EJ  be the variational matrix corresponding to *E . If ( )( )tr E∗J , ( )( )det E∗J  and 

[ ] ( )( )2 *EJ  are all negative, then all eigenvalues of ( )*EJ  have negative real parts. 

Using the above Lemma, we will study the stability of the endemic equilibrium. 
Theorem 2: If 0 1,R >  the endemic equilibrium *E  of the model (10) is locally asymptotically stable in 

Ω . 
Proof: 
From the Jacobian matrix ( )*EJ  in (17), we have 

( )( ) ( )
* *

tr 0m h
mh h h h hm m

h h

I I
E B B

N N
β µ µ η β µ∗  

= − + − + − − < 
 

J  

Thus, ( )( ) ( )

( )

* *

* *
*

* *
*

0

det

0

m h
mh h mh

h h

m h
mh h h mh

h h

h h
hm h m hm m

h h

I S
B B

N N

I S
E B B

N N

I I
B mN I B

N N

β µ β

β µ η β

β β µ

 
− + − 
 

= − +

− − −

J  

Using Mathematica software, we get 

( )( ) ( ) ( )( )( )( )
2

2

det 0.
hm mh

* * *
m h h h h h m h h h h m

h

mh hmB i mN s B N N
E

i i

N

Bβ β µ η µ β µ β µ
∗

+ + +− −
= <

+
J  

Hence trace and determinant of the Jacobian matrix ( )E∗J  are all negative. 
The second additive compound matrix is obtained from the following lemma. 
Lemma 2: Let P  and Q  be subset of { }1,2,3 . The ( ),P Q  entry of ( )( )ijN E∗J  is the coefficient of C  

in the expansion of the determinant of the sub matrix of ( )E CI∗ +J  indexed by row in P  and column in Q . 
Proof: 
The sub matrix of ( )E CI∗ +J  is given as 

( )

( )

* *

* *

* *
*

0

0

m h
mh h mh

h h

m h
mh h h mh

h h

h h
hm h m hm m

h h

I S
B C B

N N

I S
B C B

N N

I I
B mN I B C

N N

β µ β

β µ η β

β β µ

  
− + + −  
  

 
 − + +
 
 
 − − − + 
 

 



L. N. Massawe et al. 
 

 
32 

The sub matrix of ( )E CI∗ +J  indexed by rows and columns in { }1,2  is given by 

( )

*

*

0m
mh h

h

m
mh h h

h

I
B C

N

I
B C

N

β µ

β µ η

  
− + +  
  

 
 − + +
  

 

The coefficient of C  in the determinant of this matrix is 
*

2m
mh h h

h

I
B

N
β µ η− − −  and thus the ( )1,1  entry of

( )( )ijN E∗J  is 
*

2m
mh h h

h

I
B

N
β µ η− − − . 

Other entries were done following the same method and to obtain 
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Thus 
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Using Mathematica software, we get 
[ ] ( )( ) ( ) ( )( ) ( )((

( )( ) ( )( )))
2 3 2 2

3

det

2

* * * * * *
m m h h h h h h m mhm mh mh hm mhh h
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m h h h h m hmh hm m hh h m

J B i i mN s Bi B i mN s

Bi N Bi Bi N N

E β Nβ β η µ µ β β
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Therefore [ ] ( )( )2det 0MJ E∗ < . 

Thus, from the lemma 1, the endemic equilibrium *E  of the model system (10) is locally asymptotically 
stable in Ω . 

4. Numerical Simulations 
Here, we illustrate the analytical results of the study by carrying out numerical simulations of the model system 
(1) using the set of estimated parameter values given as shown below. 

10.9, , 3, 0.375, 0.4, 0.1,
11

1 1 1, , , 5 and 0.013
8 78 365 3

m hm mh A

A h h h

B kµ β β η

µ µ η ϕ δ

= = = = = =

= = = = =
×

              (18)  

Figure 2 shows that the proportion of Dengue fever disease infectives, treated and recovery proportion of 
Dengue fever disease all plotted against the proportion of susceptible population. This shows the dynamic beha-
viour of the endemic equilibrium of the model system (1) using the parameter values in (18) for different initial  
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Figure 2. Variation of proportion of Dengue fever disease infective population, treated population and recovery population 
of Dengue fever disease against proportion of susceptibles population.                                                 
 
starting values in three cases as shown below [12]. 

( ) ( ) ( ) ( )
( ) ( ) ( )

1. 0 0.05, 0 0.03, 0 0.012, 0 0.007,

0 0.005, 0 0.002 and 0 0.001.
h h h h

m m m

S I T R

A S I

= = = =

= = =
 

( ) ( ) ( ) ( )
( ) ( ) ( )

2. 0 0.06, 0 0.01, 0 0.008, 0 0.006,

0 0.004 , 0 0.003 and 0 0.002.
h h h h

m m m

S I T R

A S I

= = = =

= = =
 

   
( ) ( ) ( ) ( )
( ) ( ) ( )

3. 0 0.063, 0 0.05, 0 0.0126, 0 0.0008,

0 0.0006, 0 0.0003 and 0 0.0002.
h h h h

m m m

S I T R

A S I

= = = =

= = =
 

The equilibrium point of the endemic equilibrium E∗  was obtained as 
* *

* *

0.001015, 0.0772,

0.05692 and 0.0003641
h h

h h

S I

T R

= =

= =
 

It is observed from Figure 2 that for any starting initial value, the solution curves tend to the equilibrium E∗ . 
Therefore we conclude that the model system (1) is globally stable about this endemic equilibrium point E∗  
for the parameters displayed in (18).  

Figures 3(a)-(d) show the variation of population in different classes, human susceptibles, treated human in-
fective, dengue fever patient for different values of B  (average daily biting (per day)). 

From Figure 3(a), it is observed that proportion of susceptible human population decreases in time slightly 
before reaching its equilibrium position due to treatment. Therefore, infection becomes less endemic in the pop- 
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(a)                                                     (b) 

   
(c)                                                     (d) 

Figure 3. Distribution of population with time in all classes of human and mosquito, Variation of proportion of dengue fever 
disease infected population ,treated human population and Dengue Fever Patient for different values of (b) (average daily 
biting (per day)).                                                                                            
 
ulation. The proportion of Dengue fever disease infectives decreases in time then reaches equilibrium due to the 
increase in the number of population getting treatment. Moreover treated infectives increase and then decrease 
due to infected population moving to other classes, and then also recovery population increases in time as more 
population are treated. Furthermore infected mosquitoes decrease when the recovery population increases. 
Mosquito susceptible and aquatics increase with time and reaches its equilibrium point due to its short life span. 

From Figure 3(b), it is observed that there is increase in population of dengue fever disease infectives as the 
value of B  increased. If no treatment, large population will die within a very short period of time. 

From Figure 3(c), it is seen that when biting rate increases, the proportional of treated infectives increases 
and reaches its equilibrium point. 

From Figure 3(d), it is observed that when biting rate increase, the proportion of Dengue fever disease in-
creases with time. Therefore protective measures should be taken on board. 

Figure 4(a) and Figure 4(b) shows the variation of proportion of dengue fever treated population and recov-
ery population for different values of hδ  (Rate at which dengue fever infected individuals progress for treat-
ment). 

From Figure 4(a), it is observed that when treatment is increased, the treated proportion decreases due to 
treated individuals leaving the class. Moreover when there is no treatment, treated infectives increase and reach-
es equilibrium due to the decrease of population implying that death rate is high due to lack of treatment. 

From Figure 4(b), it is observed that when there is no treatment, i.e. 0hδ = , the dengue fever population 
decreases. This implies that, death rate increases since there is no treatment. However, when treatment is in pro-
gress, a significant increase in the dengue fever recovery (patients) is observed. This also implies that  
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(a)                                                     (b) 

Figure 4. Variation of proportion of dengue fever treated population and recovery population for different values of hδ  
(Rate at which dengue fever infected individuals progress for treatment).                                              
 
patients get treatment which prolongs their lives. 

5. Discussion and Conclusion 
5.1. Discussion 
A nonlinear mathematical model has been analysed to study the effect of treatment on the dengue fever disease. 
The analysis of the model shows that the disease-free equilibrium is locally asymptotically stable by next gener-
ation method, which involves the computation of basic reproduction number ( )0R  less than unity and unstable 
at reproduction number greater than unity. Then also by using Lyapunov method the disease-free equilibrium 
point is globally asymptotically stable when 0 1R <  and unstablewhen 0 1R > . Furthermore there exists en- 

demic equilibrium point, that is locally asymptotically stable when ( )( )tr E∗J , ( )( )det E∗J  and [ ] ( )( )2 *J E  

are all negative, then all eigenvalues of ( )E∗J  have negative real parts, where ( )E∗J  is the variational ma-
trix corresponding to E∗ . 

Numerical results are provided to illustrate the analytical results. Sensitivity analysis shows that the average 
daily biting (per day) B  is the most sensitive parameter on 0R  and the least sensitive is the average lifespan 
of adult mosquitoes (per day) mµ . 

In numerical simulation it is observed that the increase of average daily biting (per day), tends to increase the 
number of infectious individual in the population. But the absence of average daily biting (per day), the infec-
tious population is lowered and the disease can be eradicated. Moreover the increase of treatment will result the 
reduction of infected proportion as infected proportion population will move to other class, on the other hand 
when treatment is applied majority of infectious will be observed, as treatment will prolong the life of individual, 
but with no treatment infectious will be reduced because majority will die and will reach at equilibrium point. 
From this indicate that there is much work to be done to eradicate the disease by driving reproduction number to 
be less than unity. Thus the best thing to do is spraying pesticides to kill mosquitoes or sterile male mosquitoes 
as biological control. 

5.2. Conclusion 
A compartmental model for Dengue fever disease was presented, a model based on two populations, humans 
and mosquitoes with treatment. Simulation shows that on the application of treatment, the number of death is 
reduced. It has been proved algebraically that, if a constant minimum level of a treatment is applied, it is possi-
ble to maintain the basic reproduction number below unity, and the infected humans were smaller. 
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