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Abstract 
In spite of tremendous progress in experimental high-energy physics such as the apparent dis-
covery of the Higgs boson at CERN, there exist a number of inconsistencies in theoretical physics 
which continue to go either unnoticed or unstated. These include the Higgs mechanism itself as 
well as recent discussions of problems with inflationary cosmology. The subject will be addressed 
in the context of this author’s recent paper [1] on the requirement for compatible asymptotic 
states in the study of the cosmological constant problem (CCP). Inconsistency in the Higgs me-
chanism is eliminated by using scalar-tensor gravity where the scalar field is a gravitational field 
with zero spin that represents the spontaneous symmetry breaking potential. 
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1. Introduction 
In recent comments regarding inflation and misinterpretations of BICEP2 [2] data in cosmology, Steinhardt [3] 
pointed out the claim in [2] that the effects of gravitational waves (generated in the first moments after the Big 
Bang) had been discovered was not supported by the data and was in fact false. He continued by stating that the 
incident revealed a serious truth about inflationary theory in cosmology, concluding that the inflationary para-
digm is so flexible that it is immune to experimental and observational verification. He further maintained that if 
inflation is not verifiable, it is therefore scientifically meaningless. 

Inconsistencies arise when authors fail to state what they are assuming or do not understand. These arise 
throughout theoretical physics and go far beyond inflation. In particular, those in particle physics likewise go 
unnoticed. 

One involves the prominent Higgs mechanism [4]-[6]. It was introduced 50 years ago to explain how particles 
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acquire their mass, but at a time when particle physicists assumed that gravity is so weak it can be neglected. 
However, there is a problem here. Higgs (and colleagues) assumed there was no gravity in order to generate par-
ticle mass using spontaneous symmetry breaking (SSB) in the flat Minkowski space of particle physics. But 
mass is the origin of gravity (curved spacetime in Einstein gravity). The conclusion contradicts the unstated as-
sumption. This is mass without gravity. It is a serious inconsistency, and averting that will be the subject of this 
discussion. 

2. How to Remove the Inconsistency: Introduce Higgs as a Scalar Field in a 
Scalar-Tensor Theory of Gravity 

2.1. This Has Already Been Done 
In the afore-mentioned paper [1] on the cosmological constant problem [CCP], this author demonstrated that the 
cosmological term in Einstein gravity (EG) as a scalar is therefore a potential term—a characteristic of EG that 
has been noted elsewhere [7]. It was also pointed out in [1] that Brans-Dicke theory is known to have been 
eliminated experimentally as a scalar-tensor alternative to EG. It was then demonstrated how to construct a con-
sistent scalar-tensor theory in hadron physics to account for the two known values of the vacuum energy density 
(VED) Vρ , one inside the hadron as a bag in quantum chromodynamics (QCD), for particle and nuclear phys-
ics, and one for the de Sitter phase gravitational background recently observed as an accelerating Universe in 
Friedman-Lemaitre-Robertson-Walker (FLRW) cosmology [8]-[10]. The two VED states are a consequence of 
SSB using a Higgs-type mechanism for a hadron potential in a de Sitter space background where the cosmolog-
ical constant λ is not zero ( )0λ ≠ . Such de Sitter spacetimes where 0λ ≠  are referred to as cosmological 
gravity (CG). 

It is true that the Higgs has been introduced as the scalar in scalar-tensor gravity in the literature, but not for 
reasons addressed here. These exceptions are therefore quite by accident. Examples include studies of the Higgs 
particle in the very early Universe and what role it may have played in inflationary models [11]. 

Only this current paper and [1] address the inconsistency in particle physics of comparing energy calculations 
between incompatible asymptotic spacetimes. It is also argued that de Sitter space or CG is the mandatory back-
ground in order to solve the CCP in the observed accelerating Universe where 0λ ≠  [8]-[10]. 

2.2. Cross-Comparison of Killing Charges in Curved Spacetimes: Consistency of 
Asymptotic States 

The Abbott-Deser (AD) method [12] for identifying mass and energy and their Killing-charge successors was 
shown to be the only consistent means for identifying them as the unique quantities associated with the asymp-
totic geometry at spatial infinity of de Sitter spacetime [1]. Hence a consistent definition and usage of global 
energy (Killing charge) in asymptotic spacetime must be adopted in theoretical (particle) physics. Currently, it is 
ignored; hence, there exists the CCP and other curved background problems. 

When one attempts to compare and draw conclusions by cross-comparison of incompatible asymptotic states 
(with differing Killing charges), infinities arise and the results are an exercise in futility. They also disregard and 
contradict the known results of the AD method. Such comparisons for typical metrics will be addressed in Sec-
tion 3 below, illustrating how this process is carried out. 

2.3. Doing Quantum Field Theory (QFT) and Particle Physics on Curved Spacetime 
Stated differently, there has been a great deal of theoretical work on the unification of gravity with QFT on 
curved backgrounds, quantum gravity (QG), zero-point energy fluctuations, and our understanding of VED Vρ  
in particle physics as well as cosmology. Furthermore, the difficulties of quantum gravity or performing QFT on 
curved backgrounds are well-known. 

Yet the new requirement in Section 2.2 above follows using an obvious example commonly done in particle 
physics. Relativistic QFT has pursued VED physics in flat Minkowski space, resulting in the remarkable SSB 
mechanism used by Higgs et al. Even though EG is nonrenormalizable, its gravitational field gµν  couples mi-
nimally and universally to all of the fields of QFT’s renormalizable standard model [13]. To turn on gravity one 
simply introduces EG along with covariant derivatives in QFT that represent the transition from flat to curved 
background metrics. This ties everything nicely together except for the gravitational versus flat-space VED 



T. L. Wilson 
 

 
216 

problem seen in the CCP. It is inconsistent to compare flat Minkowski space terms, whose metric is not even a 
solution of EG, with results based upon the metric in CG where 0λ ≠ . This is now discussed in Section 3. 

3. De Sitter Space and Particle Physics 
Einstein discovered VED in 1917 when he added the cosmological term to his theory of gravitation [14], and it is 
possibly his greatest contribution to physics. Only later was it identified as a VED [15]-[17]. Subsequently, it has 
played a significant role in particle physics, except that EG and 0λ ≠  are considered too small to be relevant. 
Instead, particle physics has become physics without gravity. 

This section, culled from [1], will review several of the well-established metrics in CG and relate them to the 
AD formalism for asymptotic de Sitter spacetimes (where 0λ ≠ ). 

3.1. Asymptotic de Sitter Space and the ADT Formalism 
The Schwarzschild-de-Sitter metric (SdS) [18] is 

( ) ( )2 2 1 2 2 2d d d ds c r t c r r r−= − + + Ω ,                         (1) 

where 

( ) 221
3

mc r r
r

λ
= − − .                               (2) 

This curved background represents important global properties that relate to the definition of energy and 
energy conservation in Einstein gravity. In (1) and (2), we have 2m GM c=  with ( )2 2 2d d sin dθ θ ϕΩ = +  
a unit 2-sphere metric, and M the Schwarzschild mass1. The SdS metric (1) becomes Schwarzschild for 0λ =  
and de Sitter for 0m = . 

A canonical formulation of EG as a Hamiltonian system for the simple Schwarzschild case ( )0λ =  in (2) 
was first derived by Arnowitt, Deser, and Misner (ADM) [19]. They determined the ADM energy, momentum, 
and mass defined by the asymptotic symmetries of (1) and (2) at spatial infinity. Conserved charge (mass, ener-
gy, etc.) is associated with a conserved Noether current which is determined by reducing the stress tensor densi-
ty conservation law 0T µν

µ∇ =  in EG to a conserved vector current law using Killing vectors µξ . The ADM 
mass results and is equivalent to the Schwarzschild mass M, ADMM M=  in (2). 

For the case of (1) and (2) with 0λ = , one obtains the Schwarzschild metric which is asymptotically flat as 
r →∞ . Assuming further that 0M =  and 0λ =  results in flat Minkowski space. Accordingly, the energy of 
Minkowski space is zero as expected. 

Circumstances change significantly, however, when 0λ ≠  is re-instated in (2). The full SdS metric (1) is not 
asymptotically flat and becomes an asymptotic de Sitter space. It is forever distinguished from Minkowski space 
as r →∞ . With 0λ ≠ , flat Minkowski space is no longer a relevant background for particle physics because it 
is not a solution of the Einstein equations [12], and it is not an asymptotically flat de Sitter space. 

The ADM approach used above was extended by Abbott and Deser (AD) [12] [20] who proceeded from the 
ADM results used in the Schwarzschild case and defined the AD Killing charges for the full SdS metric when it 
asymptotically becomes de Sitter space (dS), in contrast to the asymptotic flat case above. Because of their re-
levance to CG and the CCP, these AD charges have become very important. That work was later extended by 
Deser and Tekin (ADT) [21]-[24] who added Weyl and Gauss-Bonnet quadratic curvature terms (scaled by α  
and β  respectively) to the Einstein-Hilbert Lagrangian [21] [22], and found the generalized AD mass to be 

( )1 1
GB EG8 4 dSE M M Vλ κ α β κ λ− −= + + + ,                         (3) 

where the term dSV  is the volume of the dS spacetime and has been added to account for the asymptotically 
pure de Sitter (APdS) case with 0M =  in (2) and (3). Creating an energy density by dividing (3) by dSV , this 
same term has been found by Padmanabhan [25] using different methods. 

The total gravitational energy E of spacetime (3) is well-defined using ADM and ADT methods, provided it is 
being compared with a metric that has the same asymptotic structure. However, comparison of energies between 

 

 

1In general, natural units ħ = c = 1, metric signature (−, +, +, +), and a 4-dimensional spacetime are assumed. 
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asymptotically flat Minkowski and asymptotically de Sitter metrics is a misguided exercise. The concepts of 
global energy and energy conservation become ill-defined when compared to a non-existent solution (Minkows-
ki space) in EG. There is no Einstein gravitational metric gµν  for a Minkowski metric because the latter has no 
gravity. One must use asymptotic de Sitter spaces to obtain any nonzero E in (3) at all [23]. 

At this point, one can see from (3) that flat Minkowski space has no asymptotic structure. 

3.2. FLRW Cosmological Metric and Asymptotic de Sitter Space 
FLRW cosmology is the accepted model for current observations of an accelerating Universe [8]-[10]. Its metric 
is 

( )22 2 2d d d Ks t a t= − + Ω ,                                (4) 

where α  is the scale factor and 

( )
( )

2
2 2 2

2

d
d d

1K

r
r

Kr
Ω = + Ω

−
,                               (5) 

whose Gaussian curvature 0K =  [26]-[28]. Metric (4) is asymptotically an accelerating de Sitter space in 
its late stages, determined by the cosmological parameter 2q aa a=    as derived from the Einstein-Friedmann 
equations [28]. 

The global energy of any cosmology, in particular the FLRW case (4), is determined by the ADT charges for 
APdS spacetime with 0M =  in (1), (2), and (3) (no ADM or Schwarzschild mass). 

4. Spontaneous Symmetry Breaking in Scalar-Tensor Theories of Gravity 
SSB per se is not due to Higgs et al. [29] [30]. In fact, one of the first examples of the introduction of an SSB 
potential as a scalar into EG was that of Zee [29] in 1979 (with 0λ = ). The basic procedure for such scalar- 
tensor theories with SSB will be reiterated here following that presented in [1] which involves additional terms 
to include hadron physics in the discussion of the CCP. By setting 0λ = , the hadron physics disappears in this 
procedure but consistency is maintained throughout. It is particle physics with gravity. 

The Einstein-Hilbert action2 is ( )1 4
-

1– d 2
2E HS x g Rκ λ−= − −∫  which gives the original Einstein field  

equations 

1   
2

R g R g Tµν µν µν µνλ κ− + = − ,                             (6) 

with 0λ ≠ . Since the focus here is on the scalar field φ  contribution in curved backgrounds, such as the sca-
lar SSB potential ( )U φ , we can begin by discussing a generic Lagrangian using three simple scalar densities: 

gR− , Çg− , and g−  where Ç  represents any of the Lorentz scalar interactions allowable under the 
inhomogeneous group, although many of these can be introduced by simply re-defining the covariant derivative 

µ∇  in the sense of gauge invariance. Noting that there must also be a kinematic term for the gradient of the 
scalar field φ , an example of such a general Lagrangian in four dimensions is as follows 

( ) ( ) ( ) ( )1 2 3£ Çg f R f f µ
µφ φ φ φ φ λ φ = − + + ∇ ∇ −                      (7) 

recognizing that ( ) gλ φ −  is the cosmological term and is a function of the scalar field φ  which has zero 
spin (Spin-0). It actually is a scalar potential function ( ) ( )Uλ φ φ=  which determines the VED or VEDs. 
Since Lagrangians £ T U= −  are kinetic energy ( )T  minus potential energy ( )U , (7) can also be written 

 

 

2R is the scalar curvature, Rµν  is the Ricci tensor, gµν  is the spacetime metric, Tµν  is the energy-momentum tensor, and 48πG cκ =

with 2cκ κ=  where G is Newton’s gravitation constant, c is the speed of light, and ( ),x t= x . Also detg gµν= , and the slash in £ means 

that 1g− ≠  (i.e., it is not flat Minkowski spacetime). Typically in particle physics spacetime is flat, 1g− → , and Lagrangians are 
represented as L. 
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( ) ( ) ( ) ( )1 2 3£ g f R f B f Uµ
µφ φ φ φ φ φ = − + + ∇ ∇ −  .                   (8) 

To the right-hand-side must be added the source term for matter matter£  that produces MTµν  as the matter 
contribution to Tµν  in (6). 

4.1. Symmetry-Breaking Potentials ( )U φ  

There are many examples of symmetry breaking potentials ( )U φ . These include the well-known quartic 
Higgs potential for the Higgs complex doublet φ →Φ  

( ) ( ) ( )22U µ ςΦ = − Φ Φ + Φ Φ† † ,                            (9) 

where 2 0µ >  and 0ζ > . (9) has minimum potential energy for ( )T
min 0, 2νΦ =  with 2ν µ ς= .  

Treated as a quantum field, Φ  has the vacuum expectation value minΦ = Φ . Following SSB, one finds  

( )( )T
min 0, 2xν ηΦ = + , indicating the appearance of the Higgs particle η . In order to determine the mass of  

η  one expands (9) about the minimum minΦ  and obtains 

( ) 2 2 3 41
4oU Uη µ η ςνη ςη= + + + ,                          (10) 

where 2 21
4oU µ ν= −  is negative definite and η  acquires the Higgs mass ( )22mη µ= . 

Another example is the more general self-interacting quartic case 

( ) 2 2 3 41
2 4!o

cU U mφ κφ φ ςνφ φ= + + + + ,                       (11) 

investigated by [31] [32] to examine the ground states of nonminimally coupled, fundamental quantized scalar 
fields φ  in curved spacetimes (1) or (4), that will be pursued in Section 4.2 below. (11) is based upon the earli-
er work of T.D. Lee et al. [33]-[36] and Wilets [37] [38] for modelling the quantum behavior of hadrons. 

oU  is arbitrary and represents a cosmological term in all cases, and all are unrelated except that they 
represent the VED or VEDs of the associated scalar field. The terms in ( )U φ  have a mass-dimension of four 
as required for renormalizability. In the case of (9)-(10), it is the addition of the Higgs scalar η  that makes the 
standard electroweak theory a renormalizable gauge theory. Also, the electroweak bosons acquire the mass mη  
as a result of their interaction with the Higgs field η  if it is present in the vacuum. 

A variation of (11) was used in [1] to address hadrons, which exhibit two VEDs (Figure 1 in [1]), by estab-
lishing the direct relationship between Einstein’s λ and the hadron theory of Friedburg, Lee, and Wilets (FLW) 
where (11) becomes ( )U σ∗  

( ) 2 3 4

2 2 3! 4!o
d a b cU U Tσ σ σ σ σ∗ ∗= + + + + ,                      (12) 

with φ σ→  representing a self-interacting hadron scalar σ -field whose scaling coefficients are to be deter-
mined. 

4.2. Consistency Follows upon Definition of the Energy-Momentum Tensor for Matter 
The task now is to complete the scalar-tensor picture beginning with (6). The total Lagrangian £ T U= −  for 
the action involved must merge gravity with matter as Gravity Matter ,G MS S S S= + +  being the sum of gravity, matter, 
and their interaction term ,G MS . At this point, the Einstein-Hilbert action giving rise to (6) is extended to in-
clude the scalar field φ σ→  used in (12) with 0λ ≠  and λ encompassed into ( )U σ  as 1

BagoU B κ λ−= =  
where B is the well-known VED in QCD, Yang-Mills, and FLW hadron theory. This is accomplished by intro-
ducing the scalar-tensor action of Jordan-Fierz-Brans-Dicke (JFBD) [39]-[41] 
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( )JFBD matter
1£ 8π£
2

g R Uµ
λ µσ σ σ σ

σ
∗Ω = − − + ∇ ∇ − +  

,                 (13) 

where ( )λ σ  is a function of the σ -field, and κ  in (6) is likewise as ( )κ σ . For purposes here, the original 
JFBD ansatz 1κ σ −=  is adopted although there are others. Note that special care must be given throughout to 
gµν  which has five degrees of freedom (DOFs) with Spin-0, Spin-1, and Spin-2 states of spin, discussed in [1] 
App. A-4, in addition to the scalar Spin-0 σ -field. 

The field Equations (6) are now transformed, with the energy momentum tensor Tµν  begin represented by a 
matter and a potential contribution, where ( )λ λ σ=  contributes to the σ -field tensor Tσ

µν . The matter tensor 
is the original tensor MT Tµν µν=  in (6), and their sum Tµν

∗  is conserved by the Bianchi identities: 

1
2

R g R Tµν µν µνκ ∗− = − ,                               (14) 

MT T Tσ
µν µν µν
∗ = + ,                                  (15) 

Bag Bλ κ= .                                    (16) 

(16) resolves the mass dimensionality of λ  and B in that both sides of the equation have mass dimension 
two. 

Recalling that the Lagrangian for the FLW hadron model FLW£  is that for QCD (quarks £q  pluscolor £C ) 
supplemented by the nonlinear σ -field £σ

∗  and a quark-σ  mixing term -£q σ , we have 

FLW -£ £ £ £ £ .q q Cσ σ
∗= + + +                              (17) 

The £σ
∗  term will become the σ -field interaction term with scalar-tensor gravity ,£ £Gσ σ

∗ =  in the total 
Lagrangian that includes a nonminimally coupled Einstein-Hilbert term JFBD£λ  in (13) as 

Total JFBD -£ £ £ £ £ £q q Cλ σ σ
∗= + + + + ,                         (18) 

with 

( ) ,
1£ £
2 GUµ

σ µ σσ σ σ∗ ∗= ∇ ∇ − = .                          (19) 

The σ -field, again, is the scalar field of the scalar-tensor gravity presented here, giving a scalar field that 
couples to QCD in the FLW hadron model. Lee [42] has noted that QCD has no scalar field except for gluon and 
color condensates arising from nonlinear interactions of the color fields £C . Regardless of its origin and com-
position, this scalar is the basis for the scalar-tensor model under discussion3. 

The terms in (17) appearing in (18) involve quarks ψ , scalar σ , and colored gluons C , which are defined 
as 

( )£q i D mµ
µψ γ ψ= − ,                                    (20) 

q-£ fσ ψσψ= − ,                                        (21) 

( )1 1£
4 2

c
C s cg Aµν µ

µνε σ ψλ ψ= − −F F ,                        (22) 

with counter terms not shown. f  is the σ -quark coupling constant, sg  the strong coupling, µνF  the non- 
Abelian gauge field tensor, m  the quark flavor mass matrix, Dµ  the gauge-covariant derivative, and µ∇  the 
gravitation-covariant derivative (also in µνF ) with the spin connection derivable upon solution of (14) above, 
defining the geodesics. ( )ε σ  is the phenomenological dielectric function introduced by Lee et al. [34], where 

 

 

3To recover the pure Higgs mechanism with gμν, set 0λ =  and use (9) rather than (11) or (12). This is for pedagogical purposes only be-
cause λ actually has two VED states, one for cosmology and one for hadrons and QCD. Hence, the procedure has no physical basis. Λ  
cannot be ignored in particle physics. 
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( )0 1ε =  and ( )vac 0ε σ =  in order to guarantee color confinement. The SU3 Gell-Mann matrices and structure 
factors are cλ  and abcf . 

Using (18)-(21), variation of (17) which neglects gravity in (18), gives the FLW equations of motion for σ and 
ψ , 

( )U fσ σ ψψ∗′= + ,                                (23) 

( ) 0i D m fµ
µγ σ ψ− − = ,                              (24) 

when one neglects the gluonic contribution (21). 
  is the curved-space Laplace-Beltrami operator, and 

d dU U σ∗ ∗′ =  is 

2 3

4 2 3!
d b cU T aσ σ σ∗ ∗′ = + + + .                           (25) 

Now we can turn to the energy-momentum tensor Tµν  in (15). It is comprised of two terms. The first is the 
usual matter contribution MTµν  which includes all matter fields in the Universe except gravitation, 

( ) ( )
( )

2 M MM
gL gL

T
gg g

α
µν µν α µν

 ∂ − ∂ −
 = − ∂
 ∂− ∂ ∂
 

,                      (26) 

and is independent of the gravitational σ -field4. The second term in (15) £T gσ
µν µ ν µν σσ σ ∗= ∇ ∇ −  is new and 

must include the effects of ,£G σ  in (19). Introducing a superscript “R” for renormalizable and consolidating all 
of the σ  terms, we have in short-hand derivative notation 

( ); ; ; ;
1
2

RT g g Uσ α
µν µ ν µν α µνσ σ σ σ σ= − + .                       (27) 

Based upon (26) and (27), variation of (13) will now give the final equations of motion. In order not to sacri-
fice the success of the principle of equivalence in Einstein’s theory [13], a Brans-Dicke assumption must also be 
made. Only gµν  and not σ  enters the equations of motion for matter (consisting of particles and photons). 
The interchange of energy between matter and gravitation thus must follow geodesics as assumed by Einstein 
[43]. The energy-momentum tensor for matter is hence assumed to be conserved in the standard fashion, 

; 0MT µ
µν = . 

The derivation of Tσ
µν  is a textbook problem ( )0λ =  [43] with specific details given in [1] where 0λ ≠  

since that is the case here. Also, the potential ( )U σ∗  is present with its renormalization restrictions in (12) be-
ing unique to this more thorough case. 

The most general symmetric tensor of the form (27) which can be built up from terms each of which involves 
two derivatives of one or two scalar σ -fields, and σ  itself, is 

( ) ( ) ( ) ( ) ( ) ( );
; ; ; ; ;T A B C D E g Uσ α

µν µ ν µν α µ ν µν µνσ σ σ σ δ σ σ σ σ σ δ σ σ σ∗= + + + +          (28) 

where the coefficients A, B, C, D, and E are to be found. Taking the covariant divergence of (27), recalling 
the ansatz 1σ κ −

 , taking the trace of (14) and (15) for MR T Tσκ κ= + , modifying (22) to include the gravi-
tational coupling with σ  (still assuming 0f = ) to produce the trace for MT , and obtaining the remaining 
trace Tσ  from (38), the desired energy-momentum tensor for the σ -field follows as 

( );
; ; ; ; ;2

1 1 1
2

T g g g Uσ α
µν µ ν µν α µ ν µν µνκ σ σ σ σ σ σ σ σ

σ σσ
∗Ω     = − − − −     

 ,             (29) 

with ( )1
1 3 2κ −Ω = −  and ( )1 2 3 2κ = + Ω . 

Inserting (29) into (14) and (15) gives the full field equations 

 

 

4In (26), matter£ML → . 
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( );
; ; ; ; ;2

1 8π 1 1 1
2 2

MR g R T g g g Uα
µν µν µν µ ν µν α µ ν µν µνσ σ σ σ σ σ σ σ

σ σ σσ
∗Ω      − = − − − − − −         

 ,    (30) 

while putting (29) into the trace ( )1
12MT Uκ σ σ− ∗ ′= +
 
  yields the scalar wave equation (with 0f = ) for 

the σ -field 

( )8π
3 2

T Uσ σ∗ ∗′= +
+ Ω

 ,                                (31) 

where 1κ  is the source of σ -coupling to the traditional trace MT  in JFBD theory. There is now coupling to 
the trace T ∗  in (31) compared to (23). If 3 2Ω = − , (30) is a conformally mapped set of Einstein field equa-
tions. 

From the SSB potential ( )U σ∗  in (12), we see that a has mass-dimension two or 2m . By taking the deriva-
tive ( ) d dU Uσ σ∗ ∗′ = . 

2 3

4 2 3!
d b cU T aσ σ σ∗ ∗′ = + + + ,                               (32) 

along with (31), the σ -field has acquired mass 

m aσ = .                                        (33) 

Therefore it is a short-range field with only short-range interaction. (31) can be re-written 

( ) ( )2 8π
3 2

Mm U T fσ σ δ σ ψψ∗′− = + +
+ Ω

 .                           (34) 

After moving the aσ  term to the left-hand side, Uδ ∗′  is the remainder of (32) and a wave equation results. 
Hence a static solution for the σ -field must have a Yukawa cutoff ( )~ e rµσ −  where ~ mσµ . 

4.3. Interpretations of the Scalar Field 
The interpretation of the scalar field arising from the well-known quartic Higgs potential for the Higgs com-
plex doublet φ →Φ  in (9) is legendary, having made the standard model of particle physics renormalizable. 
Its possible discovery at CERN is significant for particle physics without gravity. 

The discussion here, however, has shown such a treatment to be inconsistent and certainly incomplete in spite 
of years of speculation in the literature about “Higgs gravity”. Nevertheless, one feature of discussions regarding 
the Higgs boson addresses its quality of giving some particles their mass (not all of them, just those in the stan-
dard electroweak model). Figuratively speaking, these particles acquire their mass by interacting with the uni-
versal background Higgs field Φ  in (9). 

In the discussion here, the cosmological de Sitter background with a cosmological constant 0λ ≠  acts to 
give particles and photons an effective “mass” in the sense that they must follow geodesics in the curved space-
time of de Sitter space rather than flat trajectories in Minkowski space. The interaction is with the curved CG 
background, and the metaphors are related. 

Furthermore, there exist two Spin-0 degrees of freedom in a scalar-tensor theory of gravity. As mentioned in 
Section 4.2, special care must address these DOFs in order to guarantee that the combined Spin-0, Spin-1, and 
Spin-2 states of spin do not create negative energy modes and instabilities, as discussed in [1] App. A-4. 

There is an additional problem, involving the fact that the SSB mechanisms addressed in the scalar (Spin-0) 
potentials (9)-(12) are different mechanisms. Future work is necessary to explain why there would be two dif-
ferent SSB events in the vacuum such as (9) and (12). That subject lies far beyond the point of the present dis-
cussion. One naïve resolution to this quandary is simply to set the σ -field mass mσ  in (34) to the value 
measured at CERN, 125 GeVmσ =  [44]-[47]. 

5. Conclusions 
The point of this analysis has been to demonstrate the procedure for introducing SSB mechanisms for scalar 
Spin-0 fields into scalar-tensor theories of gravity in a consistent fashion. This procedure has been careful to 
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treat particle physics on an asymptotic FLRW cosmology representing an accelerating Universe [8]-[10] with 
cosmological constant 0λ ≠  using scalar-tensor gravity coupled to FLW hadron physics. That includes quarks 
and gluons in particle physics, as well as known VED states for the scalar field. Furthermore, it complies with 
the compatibility of asymptotic spacetime structure implied by the ADT formalism presented in Section 3. 

The Higgs et al. mechanism [4]-[6] accomplishes none of this. It is particle physics without gravity in flat 
Minkowski space, and cannot be reconciled with Einstein gravity except through some procedure as that pro-
posed here. The statements by Damour [13] to the effect that all one has to do is “turn on” gµν  using the Eins-
tein-Hilbert action (mentioned in Section 2.3) is incorrect because that common misperception does not neces-
sarily comply with the requirement for compatibility of asymptotic spacetime structure in Section 3. The gravi-
tational background must asymptotically be a de Sitter space as in FLRW cosmology due to the physical mea-
surement of an accelerating Universe where 0λ ≠  [8]-[10]. This was also argued with respect to solving the 
CCP in [1]. 

Based upon the arguments presented here, the Higgs mechanism at best is incomplete. Its popularity has be-
come folklore, but folklore is scientifically meaningless. Much in physics today is actually metaphysics5, exam-
ples of which are principles and assumptions such as the principle of relativity, the Pauli exclusion principle, or 
multiverses. These cannot be measured or proven experimentally. The first two are articles of faith that always 
seem to work. They are beyond physics yet they are used every day. The third is not observable. 

On the other hand, inconsistencies that persist often become folklore and are also scientific meaningless. These 
are an artifact of misunderstanding some portion of physics, or they are based upon commonplace human error. 

As long as particle physics has little or no respect for the asymptotic structure of curved spacetime discussed 
in Section 3, the inconsistency problem addressed here will go unresolved as will the CCP. A consistent treat-
ment of VED in both cosmological gravity and particle physics is necessary. The scalar-tensor theory presented 
here may certainly be incomplete, but it is not inconsistent. 
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