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ABSTRACT 
 
A Mobile Ad Hoc Network (MANET) is a collection of mobile nodes that can communicate directly over 
wireless media, without the need for a pre-configured infrastructure. Several approaches have been suggested 
to improve Quality of Service (QoS) in IEEE 802.11-based MANETs through modifying some of the IEEE 
802.11 Medium Access Control (MAC) algorithms, such as the backoff algorithm that is used to control the 
packets collision aftermath. In this work, an adaptive IEEE 802.11 backoff algorithm to improve QoS is de-
veloped and tested in simulations as well as in testbed implementation. While the Binary Exponential Backoff 
(BEB) algorithm deployed by IEEE 802.11 reacts based on individual packet transmit trials, the new algo-
rithm takes the history of successive packet transmit trials into account to provide a better QoS performance. 

The new algorithm has been tested against the legacy IEEE 802.11 through simulations using QualNet and 
a Linux-based testbed comprising a number of stations. The performed tests have shown significant im-
provements in performance, with up to 33.51% improvement in delay and 7.36% improvement in packet de-
livery fraction compared to the original IEEE 802.11. 
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1.  Introduction 
 
A MANET is a collection of mobile nodes that are con-
nected without any infrastructure or base station [1]. In 
such networks, nodes are free to enter, leave the network, 
move and organize themselves; thus, the topology of the 
network can change unpredictably. Since the wireless 
medium is shared by all transmitting nodes in range, 
there should be a mechanism to control medium access 
among contending stations so as to minimize the effect 
of collisions on the performance of the network. The 
famous IEEE 802.11, for instance, adopts a binary ex-
ponential backoff (BEB) algorithm that exponentially 
increases a station’s waiting time if the medium is found 
busy, and resets to a minimum value right after a suc-
cessful transmission. The BEB algorithm is considered 
“memory-less” since it resets the Contention Window 
(CW) value to the minimum right after a successful 
transmission without taking into consideration the net-
work conditions. 

Many researchers were motivated to enhance the per-
formance of the IEEE 802.11 through modifying the 

BEB algorithm [1–12]. Most of the prior work in this 
area have changed or modified the BEB algorithm such 
that it provides relative priority among two or more traf-
fic classes [1–5]. This solves the intra-class contention 
problem since the class with the least specified CW value 
would access the channel first. However, it does not 
solve the inter-class contention problem since a number 
of stations wishing to send packets of the same priority 
class may still contend and collide (in case their backoff 
timers expire simultaneously). The latter problem is 
solved by determining what to do until a successful 
transmission takes place, or simply how to increment the 
value of the contention window in the case of a busy 
channel. The suggested backoff algorithms were mostly 
slight variations or scales of the BEB algorithm for each 
traffic class. However, the way how to decrement the 
CW was unaddressed explicitly and hence assumed to 
remain the same as the original BEB algorithm (the CW 
would reset to CWmin upon a successful transmission). 

It can be said that the above works solved the conten-
tion problem from a priority point of view through de-
termining which class should access the medium first. 
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But that is not enough since the sudden CW reset to 
CWmin may cause several collisions, which requires 
addressing the contention problem from a congestion 
point of view. More specifically, when a station succeeds 
in transmitting a packet at a given CW, that doesn’t mean 
a decrease in congestion, but it means arriving at a con-
venient CW value [6]. 

This finding inspired some researchers to adopt a dif-
ferent approach of looking at the backoff algorithm, 
which is what to do after a successful transmission takes 
place, or simply how to decrement the CW. Several 
works on slowly decreasing the CW value were proposed 
[6–12]. [7] and [8] suggested an exponential decrease in 
the CW value upon a successful transmission instead of 
resetting to CWmin, but they assumed a fixed scale of 
decrease without taking the network conditions into ac-
count. That might result in underutilizing the channel if it 
was idle or returning to a congestion state if the network 
had not yet relieved from a previous congestion. 

While [6] and [9] suggested slow decrease backoff al-
gorithms to adapt to the network load, there was another 
proposal to assume a p-persistent MAC protocol in 
which the station would transmit with a probability p and 
refrain form transmitting with a probability 1-p [10,11]. 
That p-value was calculated in runtime and updated after 
each transmission to reflect the current number of active 
stations in [10] or the average time the channel is idle or 
busy in [11] among other conditions that affect the net-
work load. In both the slow decrease and p-persistent 
cases, complex computations were needed to update the 
p-value and to estimate the network load, respectively. 
Complex computations also mean high power consump-
tion, which is in many cases considered unaffordable in 
the wireless ad hoc networks context. 

This work has modified the IEEE 802.11’s main 
mechanism for managing access to the shared wireless 
medium, which is the Binary Exponential Backoff (BEB) 
algorithm; it is replaced with a History-Based Adaptive 
Backoff (HBAB) algorithm that updates the value of the 
BEB’s Contention Window (CW) according to the net-
work conditions with a suitable prediction. The algo-
rithm proposes a novel approach to slowly increase and 
decrease the CW value based on the busyness of the 
channel, i.e. MAC layer transmission retrials. In a previ-
ous work by the same authors [13] a similar backoff al-
gorithm was introduced under the same name, but it used 
a different technique to update CW. Besides developing 
HBAB in theory and testing it in simulation, this work 
has built a Linux-based MANET to act as a testbed for 
implementing HBAB. The constructed testbed, which 
integrates a number of ready-made and customized 
hardware and software components, implements HBAB 
as well as the original IEEE 802.11 protocols in real-time. 
Both simulation and testbed results show significant im-
provements in QoS related performance measures, espe-

cially in delay, when using HBAB over the original 
IEEE 802.11. 

The paper is organized as follows. Section 2 reviews 
the IEEE 802.11 MAC protocol backoff algorithm and 
QoS in MANETs. Section 3 presents the HBAB algo-
rithm. Sections 4 and 5 discuss performance evaluation 
of the proposed HBAB against the standard BEB IEEE 
802.11 in simulation and Linux testbed, respectively. 
Section 6 concludes the paper and provides directions for 
future work. 
 
2.  IEEE 802.11 and Binary Exponential 

Backoff 
 
The IEEE 802.11 family of standards defines the speci-
fications of both the physical (PHY) and medium access 
control (MAC) layers to construct a WLAN [14]. While 
the 802.11 PHY layer defines the signaling and modula-
tion properties of the protocol, the 802.11 MAC layer 
controls access to the shared wireless medium. In order 
to accomplish that, the 802.11 MAC defines two medium 
access functions: a mandatory distributed coordination 
function (DCF) and an optional point coordination func-
tion (PCF) [3]. The DSF function uses BEB to manage 
access to the medium in the case of packet collisions. 

The DCF function uses a carrier sense multiple access 
with collision avoidance (CSMA/CA) mechanism to 
control access to the shared wireless medium. This 
mechanism features the exchange of control packets (Re-
quest-To-Send (RTS) and Clear-To-Send (CTS)) before 
data transmission to minimize the chances of collisions. 
Furthermore, before initiating that type of RTS/CTS ex-
change, each STA is required to sense the medium for a 
time interval consisting of the DCF Interframe Space 
(DIFS) and the current value of the backoff timer [3]. 
The value of the backoff timer is randomly picked in the 
range of the current Contention Window (CW) of the 
station. CW value is updated by a Binary Exponential 
Backoff (BEB) algorithm that exponentially increases a 
station’s waiting time if the medium is found busy, and 
resets to a minimum value right after a successful trans-
mission. A positive Acknowledgment (ACK) is used to 
notify the sender that the frame has been successfully 
received. If an ACK is not received within a time period 
of ACKTimeout, the sender assumes that there is a colli-
sion and schedules a retransmission by entering the 
backoff process again until the maximum retransmission 
limit is reached [3]. A maximum of 7 retransmissions (4 
retransmissions) for short frames (long frames) are al-
lowed before the frame is dropped. The basic access 
procedure is shown in Figure 1. 

The BEB algorithm is used by the IEEE 802.11 to 
control access to the shared wireless medium among 
contending stations. This is done through adjusting the 
contention window size based on the current medium 
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status. When a station has some data to send, it senses 
the channel to determine whether it is idle. If the medium 
remains idle for a time interval equal to DIFS, the station 
is allowed to transmit. If the medium is busy, the trans-
mission is postponed until the ongoing transmission con-
cludes. Meanwhile, a slotted binary exponential backoff 
procedure takes place: each slot is equal to DIFS, and the 
number of such slots is determined by a random value 
uniformly chosen in [0, CW -1], where CW is the current 
contention window size. 

That random value is used to initialize the backoff 
timer, which keeps running as long as the channel is 
sensed idle, paused when data transmission (initiated by 
other stations) is in progress, and resumed when the 
channel is sensed idle again for more than DIFS. The 
time immediately following an idle DIFS is slotted, with 
each slot equal to the time needed for any station to de-

tect the transmission of a frame (in the IEEE 802.11 term, 
MAC Service Data Unit (MSDU)) from any other station. 
When the backoff timer expires, the station attempts to 
transmit a data frame at the beginning of next slot. 

Finally, if the data frame is successfully received, the 
receiver transmits an acknowledgment frame after a 
specified interval, called the short inter-frame space 
(SIFS), that is less than DIFS. If an acknowledgment is 
not received, the data frame is presumed to be lost, and a 
retransmission is scheduled. The value of CW is set to 
CWmin in the first transmission attempt, and is doubled at 
each retransmission up to a pre-determined value CWmax. 
Retransmissions for the same data frame can be made up 
to a pre-determined retry limit, L, times. Beyond that, the 
pending frame will be dropped [3]. The contention win-
dow update can be summarized as follows: 

current
new

min

2 CW  ,  transmission failure- up to max value
CW   

CW , transmission success


 


 

 
The metrics used in comparing protocol performance are 
1) the Packet Delivery Fraction (PDF), which represents 
the ratio of the number of the successfully delivered data 
packets to their destinations versus the number of all data 
packets being sent; 2) the average end to end delay, 
which measures the average required time in seconds to 
receive a packet; and 3) the throughput, which is the 
amount of data successfully transferred through the 
channel in a given time period. It is measured in kilo bits 
per second (kbps) [15]. 
 
3.  History Based Adaptive Backoff (HBAB) 

Algorithm 

 
This paper proposes a novel backoff algorithm, the His-
tory Based Adaptive Backoff (HBAB) algorithm, in 
which the history of the past trials for transmission is 

taken into account. In short, HBAB modifies BEB in 
such a way that the history of the past trials of trans-
mission is taken into account. In order to do that, 
HBAB defines three variables: the contention window 
size (CW), which holds the current contention window 
size, the multiplicative factor, α, which is used to 
update CW and the ChannelState, which captures a 
snapshot of the medium (or channel) representing its 
most recent busy/free states. The first variable is 
common with BEB whereas the latter two variables are 
HBAB-specific. 

The parameter α is a multiplicative factor used to up-
date CW value. A similar multiplicative factor is implic-
itly defined in the original IEEE 802.11 BEB to have the 
value of two since CW is doubled upon each transmis-
sion failure, i.e. the current CW is multiplied by two to 
get the new CW. However, α is different from that im-
plicit definition in two aspects: 

 

Figure 1. IEEE 802.11 DCF operation.       
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- Value: theoretically, any positive value greater than 1 

-
EB uses the multiplica-

I
Cha history of 
th

ium trying 
to

When HBAB begins, the three variables, CW, α and 
ChannelState

where CWmin is th
sen value for the 

current value of CW multiplied by the 
m

 the 
cu

he possible update schemes: 

can be assigned to α while the multiplicative factor 
of the original algorithm is fixed at two. The value of 
α can be either assigned statically, i.e. before runtime 
and remains constant during runtime or dynamically, 
i.e. to change according to certain parameters that 
are sampled during runtime. In this work, only static 
assignment is implemented. 

 Usage: α is used to update CW upon both transmis-
sion failures and successes. B
tive factor only in transmission failure updates since 
it resets CW upon a transmission success. 

n addition to α, HBAB defines another parameter, 
nnelState, which reflects the most recent 

e medium in terms of its busy/free states. That is, 
ChannelState stores the most recent N states of the me-
dium sensed upon each transmission trial. A free channel 
state means that the channel is available and no stations 
are currently transmitting; it is represented by 1. A busy 
channel state means that there is at least one stations 
currently transmitting; it is represented by 0. Hence, if 
N=2 (which is the case in this work), a ChannelState of 
01 means that the medium had been busy then becomes 
free. N indicates the depth of this history; the greater N, 
the deeper captured history of the channel. An obvious 
tradeoff will be the depth of the channel history versus 
the available memory to store the states. 

The ChannelState is updated upon each transmission 
trial, i.e. each time the station senses the med

 transmit a packet. To make room and store the new 
channel state, the oldest channel state is removed and the 
remaining stored states are shifted to the left. 

, are initialized as follows: 

CW = CWmin                  (1) 

α = f, f >1                   (2) 

ChannelState = 11             (3) 

e minimum value of CW, f is the cho-
multiplicative factor α and Channel-

State is expressed in binary representation. f could be 
theoretically any positive value greater than one to 
assure the multiplicative impact on CW; in the special 
case of f is exactly one, no updates will take place as 
the process of updating CW involves multiplication or 
division as will be shown later in this section. If f is a 
positive value less than one, then the multiplicative 
impact is reversed: multiplying by α decreases the 
multiplicand whereas dividing by α increases it. Nega-
tive values of f are meaningless since α is used to up-
date a counter. 

If the current transmission trial has failed, CW is up-
dated to be the 

ultiplicative factor α. Thus, the station would wait for a 
number of time slots equal to the new value of CW be-
fore attempting transmission again. If, however, the cur-
rent transmission trial has succeeded, further checks need 
to be done in order to calculate the updated, namely: 

1) If the value of the ChannelState represents two con-
secutive busy states, the new value of CW would be

rrent CW divided by α. 
2) Otherwise, CW is reset to CWmin. 
Equation (4) illustrates t

CW ,

CW  CWmin, transmission success, ChannelState  00

CW
,  transmission success, ChannelState  00

transmission failure




 


 

 


                        (4) 

 

here ChannelState is expressed in binary representa-
ion. 

heck (0 indicates a busy channel and 1 indicates a 
fr

BEB doubles the value of CW upon a 
tra

cates a congested medium), CW is divided by α instead 
of resetting to CW . In other words, a slow decrease in 

w
t

Table 1 shows the suggested CW updating method per 
state c

ee channel): 
Compared to BEB adopts a similar incrementing ap-

proach. While 
nsmission failure, HBAB multiplies the value of CW 

by α. As for the decrementing approach, it is somehow 
different. Instead of resetting CW to CWmin all the time as 
in BEB, HBAB first checks the value of the Channel-
State is not busy for two consecutive times provided that 
the current channel state is free (the latter condition is 
indicated by the transmission success). In case the chan-
nel state is busy for two consecutive times (which indi-

min

 
Table 1. Possible CW update values based on HBAB opera-
tion. 

urrent state State CW value C

00(busy, busy) 
01 (busy, free) 
10 (free, busy) 

y) 

11 (free, free) 

CW = CW *() 0 (bus

11 (free, free) 
01 (busy, free) 
10 (free, busy) 

CW = CWmin 
1 (free) 

00(busy, busy) CW = CW / () 
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CW is preferred in t  congested medium 
(for at least stat to b  sin-
gle s

As for the overh s w g 

for memory, the extra storage space is 
ne

ection shows the performance of HBAB-based 
EE 802.11 against the BEB-based IEEE 802.11 under 

 simulation is carried out in 
ualNet network simulator version 4.0 [17]. Each point 

ion modelled a network of 50 mobile nodes 
laced randomly within a 1000 × 1000 meters area. Ra-

 is 250 meters and 
hannel capacity is 2 Mbits/sec. As for node mobility, 

 lasts until the end of the simula-
tio

his case since a
 two 

uccess. 
es) is unlikely e free upon a

ead that come ith implementin
HBAB, it is due to two factors: extra memory space for 
new variables and extra computations for additional op-
erations. As 

eded for the new variables: ChannelState and eight 
other utility variables. As for computations, five addi-
tional operations are needed to determine the next value 
of CW, which are multiplication, shifting, ‘if’ condi-
tional statement, memory read and memory write opera-
tions (to update the hardware registers). An implicit 
power overhead is associated with the additional opera-
tions. 
 
4.  Simulation Results 
 
This s
IE
different network loads. The
Q
on every graph represents the average of 10 trials using 
different SEED values to minimize the effect of outliers. 
The SEED value is used to initialize the random number 
generator, which is used for node placement and mobility 
among other usages. Each SEED was used twice: once 
for an IEEE 802.11 simulation run and the other for the 
corresponding HBAB simulation run under the same 
parameters. That ensures the testing has been conducted 
under the exact conditions, including any random-based 
parameter. 
 
4.1.  Simulation Environment 
 
Our simulat
p
dio propagation range for each node
c
the random waypoint model is used. In this model, a 
node chooses a random point in the network, and moves 
towards that point at a constant speed. The speeds are 
uniformly chosen between the minimum and maximum 
speeds set to 0 m/s and 10 m/s, respectively. When the 
node reaches its destination, it stays there for a certain 
pause time (fixed to be 20 seconds in this paper), after 
which it chooses another random destination point and 
repeats the process. 

All simulations last for 600 seconds. The data traf-
fic is generated by Constant Bit Rate (CBR) sessions 
initiated between random source and destination 
pairs. Each session

n. Table 2 shows the common simulation parame-
ters. 

Table 2. Simulation parameters. 

Parameter Value 
Area 1000×1000m 
Number of n
Simulation t
Packet s 512 bytes 

 rate (per connection) 

dom waypoint with max 
of 10m/s and pause 

 

 rate (CBR) 

CW , CW  

odes 50 
ime 600s 

ize 

Packet 4 packets/s 

Mobility pattern 
Ran
speed 
time of 20s

Traffic type Constant bit

min max 31, 1023 

 
Simulation results are show  and Figures 2 

th ble 3 shows a de ove-
ment of HBAB averaged for ections loads per 
alues of α (compared to IEEE 802.11). Figures (2)–(4) 

sh

wed a different be-
ha

n in Table 3
rough 4. Ta tailed percentage impr

 all conn
v

ow the individual PDF, throughput and average delay 
comparisons between HBAB (for selected values of α) 
and IEEE 802.11. It was noted that for all values of α and 
under most of the tested networks loads, HBAB had out-
performed IEEE 802.11 for all of the three performance 
metrics. The only exception was the lowest network load 
(the ten connections) for higher values of α. In general, 
performance improvement tended to be higher for smaller 
values of α; in other words, as the value of α increases, 
the percentage improvement in HBAB performance 
compared to IEEE 802.11 decreases. 

As for each of the performance metrics, the PDF 
maintained a descending pattern of improvement as the 
value of α increased (with the highest improvement at α 
= 1.1), while the average delay sho

vior; it reached the peak at α = 1.2 and recorded an-
other increase at α = 1.4. Throughput showed similar 
behavior to PDF. Overall, the best performance im-
provement was obtained for α = 1.2 (with 33.51% im-
provement in delay and 7.36% improvement in PDF 
compared to IEEE 802.11). 

 
Table 3. Performance improvement of HBAB. 

 value Improvement (compared to IEEE802.11) 

 PDF Average delay Throughput

1  .1 8.60% 12.13% 8.56%

1.2 7.36% 33.51% 7.40% 

1  

1.4 

-16.39% 

.3 7.70% 

5.73% 

14.43% 

17.48% 

7.57% 

5.71% 

1.5 5.33% 9.28% 5.32% 

1.6 5.04% 6.95% 4.93% 

1.7 5.69% 3.38% 5.68% 

1.8 5.87% 0.89% 5.89% 

1.9 5.36% 1.33% 5.46% 

2 3.59% 6.46%    
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5.  L x Te Resul
 
The testbed that was used to BAB for real time 

erfor nce co  4 L d station sk-
ork in the ad-hoc mode. 
 loaded on an Atheros- 

inu stbed ts 

 test H

based wireless adapter [18] running the Madwifi driver 
[19]. All of the four stations ran Fedora 7 distribution [20] 
and the Linux kernel version 2.6.21. Although Atheros 
chipset and Madwifi driver offer a level of coding flexi- 
bility not present in other chipsets, implementing the 
backoff algorithm fully was not possible because packet 

p ma mprises inux-base s: 3 de
tops and 1 laptop configured to w

he backoff algorithm itself wasT
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(e) 

Figure 1. PDF of HBAB (α= 1.1, 1.3, 1.5, 1.7 and 1.9) vs BEB-simulation.  
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transmission trial handling is done per-packet, not per 
transmission. That is, a packet success in Madwifi means 
that a packet has been delivered to the destination re-
gardless the number of retransmissions it had encoun-
tered. Similarly, a packet failure means that the packet 

had failed all the possible transmission trials (until 
hit-ting the maximum retry limit). Not being able to access 
the packets per retransmission means that implementing a 
backoff algorithm per transmission is not possible. Alter-
natively, a per-packet variant of HBAB has been pro- 
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Figure 2. PDF of HBAB (α = 1.2, 1.4, 1.6, 1.8 and 2) vs BEB-simulation.    
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posed to demonstrate the new backoff algorithm. Table 4 
shows the wireless adapters used in this work along with 
their specifications. 

A number of Linux-compatible software tools were 
used to implement and evaluate HBAB. The network 
load traffic was generated using the Multi-Generator 

(MGEN) tool, which is open source software that pro-
vides the ability to perform IP network performance tests 
and measurements using UDP/IP traffic [21]. The TRace 
Plot Real-time (TRPR) software tool was used to analyze 
the output files generated by MGEN and calculate the 
performance metrics used in this work [22]. In order to 
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Figure 3A. Throughput of HBAB (α = 1.1, 1.3, 1.5, 1.7 and 1.9) vs BEB-simulation. 
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monitor the network and capture live packets as experi-
ments were conduct
lyzer was used [23]. Forming a MANET needed a suit-
able routing protocol, which was the DSR routing proto-
col in this work (DSR-UU implementation) [24]. 

In order to evaluate HBAB real-time performance, a 
number of testing scenarios were conducted in both 
simulation and Linux testbed environments. In all testing 
scenarios, the main connection that was used to evaluate 
HBAB performance, i.e. to generate the fore ground traf-
fic, was established between Station 2 (source; HBAB- 
loaded) and Station 4 (destination). The packet genera-
tion rate was changed per testing scen rio. Other connec-
tions were establis
as Stations 2 and 4 to g

acket generation rate also varied per testing scenario. 
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all connections loads per values of α (compared to IEEE
 the individual 

PDF, throughput and average delay comparisons be-
tween HBAB (for selected values of α) and IEEE 802.11. 
Since HBAB implementation in the Linux testbed was 
a bit different from simulation, performance results 
were different as well. In general, there was no consis-
tent performance improvement pattern in the testbed 
experiment results as illustrated in simulation. HBAB 
outperformed IEEE 802.11 for almost all values of α 
(except α = 1.1) with respect to the average delay, and 
for half of the val es of α with respect to the PDF and 

. Over ll, the best performance improve-
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ed, Wireshark network protocol ana- 802.11), whereas Figures (6)–(8) show
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The performance measures (average delay, loss fraction 
and throughput) were extracted from the log files pro-
duced at Station 4 after each testing scenario. Traffic 
generation rate was changed from 100 to 200 packets/s 
per station in steps of 20. All testbed scenario

nducted using the special per-packet variant of HBAB 
(with varying the multiplicative factor α from 1.1 to 2.0 
in steps of 0.1). Table 5 further shows the parameters of 
the testing scenarios. 

The results of the Linux testbed experiments are 
shown in Table 6 and Figures (5)–(7). Table 6 shows a 
detailed percentage improvement of HBAB averaged for 

 
6.  Conclusions 
 

A MANET is an infrastructure-less network connecting a 
number of mobile nodes via wireless media. The special 
characteristics of MANETs, such as mobility and ab-
sence of centralized control, have made the provisioning 
of end-to-end QoS guarantees a very challenging prob-
lem. 

In this work, an adaptive backoff algorithm was de-
veloped based on the IEEE 802.11 MAC to provide bet-
ter QoS performance (especially delay) in MANETs. In 
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Figure 3B.  Throughput of HBAB (α = 1.2, 1.4, 1.6 and 1.8) vs BEB-simulation. 
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Figure 4A. Average delay of HBAB (α = 1.1, 1.3, 1.5, 1.7 and 1.9) vs BEB-simulation. 

 
particular, the IEEE 802.11’s Binary Exponential Back 
off (BEB) algorithm was replaced with a History-Based 
Adaptive Backoff (HBAB) algorithm that updated the 
value of the BEB’s Contention Window (CW) according 
to the channel state over a period of time. In addition to 
the channel state, HBAB utilized a multiplicative factor, 

α, to increase or decrease CW value. 
HBAB was tested by simulation (using QualNet 

simulation package) and implemented in a Linux-based 
testbed. The simulation environment featured fifty nodes 
moving in random way-point fashion within 1000 square 
meters area, whereas the Linux testbed comprises four  
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Figure 4B. Average delay of HBAB (α = 1.2, 1.4, 1.6, 1.8 and 2) vs BEB-simulation. 
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Table 4. Wireless cards specifications. 

Make and model Dlink DWL-122 Netgear WPN-511 Dlink DWA-110 

Chipset Intersil Prism II Atheros AR5002 (AR5212) Ralink RT2501U 

Network standards 802.11 b 802.11 b and g 802.11 b and g 

Host interface USB PCMCIA USB 

Wireless adapter driver Linux-wlan-ng 0.2.8 Madwifi 0.9.3.1 rt73 1.1.0.0 

 
Table 5. Testbed parameters. 

Parameter Value 

Area 4×4m 

Number of stations 

Testing scenario duration 

Packet size (foreground and background traffic) 512 bytes 

Packet rate (foreground and background traffic) 100, 120, 140, 160, 180, 200 packets/s (per station) 

Background traffic type UDP Constant Bit Rate (CBR) 

4 

Average of 2 trials, each of 60 s 

 
Table 6. HBAB performance improvement (compared to IEEE 802.11) for the hardware testbed experiments. 

Improvement (compared to IEEE 802.11) 
 value 

PDF Average delay Throughput 

1.1 1.50% -0.51% 1.50% 

1.2 -1.49% 6.10% -1.49% 

1.3 0.74% 1.11% 0.74% 

1.4 0.72% 13.11% 0.73% 

1.5 0.33% 14.75% 0.32% 

1.6 -2.47% 

1.7 1.40% 

1.8 0.29% 0.29% 

-1.37% 

-3.75% 

10.95% -2.48% 

34.30% 1.40% 

13.37% 

1.9 -1.37% 17.57% 

2 -3.75% 4.35% 
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3 . The Linux-based testbed results 
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 revealed as a decre erage de-
F and throug overhead 

 implementing HBAB is due to two fac-
emory space for nine new variables and ex-
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There are a number  issues for future develop-

t. For instance, HBAB can be applied to different 
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n be implemented in such a 
at it can be dynamically modified according to the 
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Figure 5A. PDF of HBAB (α = 1.1, 1.3, 1.5, 1.7 and 1.9) vs BEB-Linux implementation.  
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Figure 5B. PDF of HBAB (α = 1.2, 1.4, 1.6, 1.8 and 2) vs BEB-Linux implementation. 
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Figure 6A. Average delay of HBAB (α = 1.1, 1.3, 1.5, 1.7 and 1.9) vs BEB-Linux implementation. 
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Figure 6B. Average delay of HBAB (α = 1.2, 1.4, 1.6, 1.8 and 2) vs BEB-Linux implementation. 
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Figure 7A. Throughput of HBAB (α = 1.1, 1.3, 1.5, 1.7 and 1.9) vs BEB-Linux implementation. 
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Figure 7B. Throughput of HBAB ( and) vs BEB-Linux implementation. 
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