
Int. J. Communications, Network and System Sciences, 2009, 4, 249-324
doi:10.4236/ijcns.2009.24033 Published Online July 2009 (http://www.SciRP.org/journal/ijcns/).

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 4, 249-324

Adaptive Backoff Algorithm for IEEE 802.11 MAC Protocol

Maali ALBALT1, Qassim NASIR2
Department of Electrical and Computer Engineering, College of Engineering, University of Sharjah, Sharjah, UAE

Email: {1maali, 2nasir}@sharjah.ac.ae
Received October 4, 2008; revised December 28, 2008; accepted March 3, 2009

ABSTRACT

A Mobile Ad Hoc Network (MANET) is a collection of mobile nodes that can communicate directly over
wireless media, without the need for a pre-configured infrastructure. Several approaches have been suggested
to improve Quality of Service (QoS) in IEEE 802.11-based MANETs through modifying some of the IEEE
802.11 Medium Access Control (MAC) algorithms, such as the backoff algorithm that is used to control the
packets collision aftermath. In this work, an adaptive IEEE 802.11 backoff algorithm to improve QoS is de-
veloped and tested in simulations as well as in testbed implementation. While the Binary Exponential Backoff
(BEB) algorithm deployed by IEEE 802.11 reacts based on individual packet transmit trials, the new algo-
rithm takes the history of successive packet transmit trials into account to provide a better QoS performance.

The new algorithm has been tested against the legacy IEEE 802.11 through simulations using QualNet and
a Linux-based testbed comprising a number of stations. The performed tests have shown significant im-
provements in performance, with up to 33.51% improvement in delay and 7.36% improvement in packet de-
livery fraction compared to the original IEEE 802.11.

Keywords: MANETs, Ad-Hoc Networks, Quality of Service, Backoff Algorithm, IEEE 802.11

1. Introduction

A MANET is a collection of mobile nodes that are con-
nected without any infrastructure or base station [1]. In
such networks, nodes are free to enter, leave the network,
move and organize themselves; thus, the topology of the
network can change unpredictably. Since the wireless
medium is shared by all transmitting nodes in range,
there should be a mechanism to control medium access
among contending stations so as to minimize the effect
of collisions on the performance of the network. The
famous IEEE 802.11, for instance, adopts a binary ex-
ponential backoff (BEB) algorithm that exponentially
increases a station’s waiting time if the medium is found
busy, and resets to a minimum value right after a suc-
cessful transmission. The BEB algorithm is considered
“memory-less” since it resets the Contention Window
(CW) value to the minimum right after a successful
transmission without taking into consideration the net-
work conditions.

Many researchers were motivated to enhance the per-
formance of the IEEE 802.11 through modifying the

BEB algorithm [1–12]. Most of the prior work in this
area have changed or modified the BEB algorithm such
that it provides relative priority among two or more traf-
fic classes [1–5]. This solves the intra-class contention
problem since the class with the least specified CW value
would access the channel first. However, it does not
solve the inter-class contention problem since a number
of stations wishing to send packets of the same priority
class may still contend and collide (in case their backoff
timers expire simultaneously). The latter problem is
solved by determining what to do until a successful
transmission takes place, or simply how to increment the
value of the contention window in the case of a busy
channel. The suggested backoff algorithms were mostly
slight variations or scales of the BEB algorithm for each
traffic class. However, the way how to decrement the
CW was unaddressed explicitly and hence assumed to
remain the same as the original BEB algorithm (the CW
would reset to CWmin upon a successful transmission).

It can be said that the above works solved the conten-
tion problem from a priority point of view through de-
termining which class should access the medium first.

 ADAPTIVE BACKOFF ALGORITHM FOR IEEE 802.11 MAC PROTOCOL 301

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 4, 249-324

But that is not enough since the sudden CW reset to
CWmin may cause several collisions, which requires
addressing the contention problem from a congestion
point of view. More specifically, when a station succeeds
in transmitting a packet at a given CW, that doesn’t mean
a decrease in congestion, but it means arriving at a con-
venient CW value [6].

This finding inspired some researchers to adopt a dif-
ferent approach of looking at the backoff algorithm,
which is what to do after a successful transmission takes
place, or simply how to decrement the CW. Several
works on slowly decreasing the CW value were proposed
[6–12]. [7] and [8] suggested an exponential decrease in
the CW value upon a successful transmission instead of
resetting to CWmin, but they assumed a fixed scale of
decrease without taking the network conditions into ac-
count. That might result in underutilizing the channel if it
was idle or returning to a congestion state if the network
had not yet relieved from a previous congestion.

While [6] and [9] suggested slow decrease backoff al-
gorithms to adapt to the network load, there was another
proposal to assume a p-persistent MAC protocol in
which the station would transmit with a probability p and
refrain form transmitting with a probability 1-p [10,11].
That p-value was calculated in runtime and updated after
each transmission to reflect the current number of active
stations in [10] or the average time the channel is idle or
busy in [11] among other conditions that affect the net-
work load. In both the slow decrease and p-persistent
cases, complex computations were needed to update the
p-value and to estimate the network load, respectively.
Complex computations also mean high power consump-
tion, which is in many cases considered unaffordable in
the wireless ad hoc networks context.

This work has modified the IEEE 802.11’s main
mechanism for managing access to the shared wireless
medium, which is the Binary Exponential Backoff (BEB)
algorithm; it is replaced with a History-Based Adaptive
Backoff (HBAB) algorithm that updates the value of the
BEB’s Contention Window (CW) according to the net-
work conditions with a suitable prediction. The algo-
rithm proposes a novel approach to slowly increase and
decrease the CW value based on the busyness of the
channel, i.e. MAC layer transmission retrials. In a previ-
ous work by the same authors [13] a similar backoff al-
gorithm was introduced under the same name, but it used
a different technique to update CW. Besides developing
HBAB in theory and testing it in simulation, this work
has built a Linux-based MANET to act as a testbed for
implementing HBAB. The constructed testbed, which
integrates a number of ready-made and customized
hardware and software components, implements HBAB
as well as the original IEEE 802.11 protocols in real-time.
Both simulation and testbed results show significant im-
provements in QoS related performance measures, espe-

cially in delay, when using HBAB over the original
IEEE 802.11.

The paper is organized as follows. Section 2 reviews
the IEEE 802.11 MAC protocol backoff algorithm and
QoS in MANETs. Section 3 presents the HBAB algo-
rithm. Sections 4 and 5 discuss performance evaluation
of the proposed HBAB against the standard BEB IEEE
802.11 in simulation and Linux testbed, respectively.
Section 6 concludes the paper and provides directions for
future work.

2. IEEE 802.11 and Binary Exponential

Backoff

The IEEE 802.11 family of standards defines the speci-
fications of both the physical (PHY) and medium access
control (MAC) layers to construct a WLAN [14]. While
the 802.11 PHY layer defines the signaling and modula-
tion properties of the protocol, the 802.11 MAC layer
controls access to the shared wireless medium. In order
to accomplish that, the 802.11 MAC defines two medium
access functions: a mandatory distributed coordination
function (DCF) and an optional point coordination func-
tion (PCF) [3]. The DSF function uses BEB to manage
access to the medium in the case of packet collisions.

The DCF function uses a carrier sense multiple access
with collision avoidance (CSMA/CA) mechanism to
control access to the shared wireless medium. This
mechanism features the exchange of control packets (Re-
quest-To-Send (RTS) and Clear-To-Send (CTS)) before
data transmission to minimize the chances of collisions.
Furthermore, before initiating that type of RTS/CTS ex-
change, each STA is required to sense the medium for a
time interval consisting of the DCF Interframe Space
(DIFS) and the current value of the backoff timer [3].
The value of the backoff timer is randomly picked in the
range of the current Contention Window (CW) of the
station. CW value is updated by a Binary Exponential
Backoff (BEB) algorithm that exponentially increases a
station’s waiting time if the medium is found busy, and
resets to a minimum value right after a successful trans-
mission. A positive Acknowledgment (ACK) is used to
notify the sender that the frame has been successfully
received. If an ACK is not received within a time period
of ACKTimeout, the sender assumes that there is a colli-
sion and schedules a retransmission by entering the
backoff process again until the maximum retransmission
limit is reached [3]. A maximum of 7 retransmissions (4
retransmissions) for short frames (long frames) are al-
lowed before the frame is dropped. The basic access
procedure is shown in Figure 1.

The BEB algorithm is used by the IEEE 802.11 to
control access to the shared wireless medium among
contending stations. This is done through adjusting the
contention window size based on the current medium

302 M. ALBALT ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 4, 249-324

status. When a station has some data to send, it senses
the channel to determine whether it is idle. If the medium
remains idle for a time interval equal to DIFS, the station
is allowed to transmit. If the medium is busy, the trans-
mission is postponed until the ongoing transmission con-
cludes. Meanwhile, a slotted binary exponential backoff
procedure takes place: each slot is equal to DIFS, and the
number of such slots is determined by a random value
uniformly chosen in [0, CW -1], where CW is the current
contention window size.

That random value is used to initialize the backoff
timer, which keeps running as long as the channel is
sensed idle, paused when data transmission (initiated by
other stations) is in progress, and resumed when the
channel is sensed idle again for more than DIFS. The
time immediately following an idle DIFS is slotted, with
each slot equal to the time needed for any station to de-

tect the transmission of a frame (in the IEEE 802.11 term,
MAC Service Data Unit (MSDU)) from any other station.
When the backoff timer expires, the station attempts to
transmit a data frame at the beginning of next slot.

Finally, if the data frame is successfully received, the
receiver transmits an acknowledgment frame after a
specified interval, called the short inter-frame space
(SIFS), that is less than DIFS. If an acknowledgment is
not received, the data frame is presumed to be lost, and a
retransmission is scheduled. The value of CW is set to
CWmin in the first transmission attempt, and is doubled at
each retransmission up to a pre-determined value CWmax.
Retransmissions for the same data frame can be made up
to a pre-determined retry limit, L, times. Beyond that, the
pending frame will be dropped [3]. The contention win-
dow update can be summarized as follows:

current
new

min

2 CW , transmission failure- up to max value
CW

CW , transmission success


 



The metrics used in comparing protocol performance are
1) the Packet Delivery Fraction (PDF), which represents
the ratio of the number of the successfully delivered data
packets to their destinations versus the number of all data
packets being sent; 2) the average end to end delay,
which measures the average required time in seconds to
receive a packet; and 3) the throughput, which is the
amount of data successfully transferred through the
channel in a given time period. It is measured in kilo bits
per second (kbps) [15].

3. History Based Adaptive Backoff (HBAB)

Algorithm

This paper proposes a novel backoff algorithm, the His-
tory Based Adaptive Backoff (HBAB) algorithm, in
which the history of the past trials for transmission is

taken into account. In short, HBAB modifies BEB in
such a way that the history of the past trials of trans-
mission is taken into account. In order to do that,
HBAB defines three variables: the contention window
size (CW), which holds the current contention window
size, the multiplicative factor, α, which is used to
update CW and the ChannelState, which captures a
snapshot of the medium (or channel) representing its
most recent busy/free states. The first variable is
common with BEB whereas the latter two variables are
HBAB-specific.

The parameter α is a multiplicative factor used to up-
date CW value. A similar multiplicative factor is implic-
itly defined in the original IEEE 802.11 BEB to have the
value of two since CW is doubled upon each transmis-
sion failure, i.e. the current CW is multiplied by two to
get the new CW. However, α is different from that im-
plicit definition in two aspects:

Figure 1. IEEE 802.11 DCF operation.

 ADAPTIVE BACKOFF ALGORITHM FOR IEEE 802.11 MAC PROTOCOL 303

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 4, 249-324

- Value: theoretically, any positive value greater than 1

-
EB uses the multiplica-

I
Cha history of
th

ium trying
to

When HBAB begins, the three variables, CW, α and
ChannelState

where CWmin is th
sen value for the

current value of CW multiplied by the
m

 the
cu

he possible update schemes:

can be assigned to α while the multiplicative factor
of the original algorithm is fixed at two. The value of
α can be either assigned statically, i.e. before runtime
and remains constant during runtime or dynamically,
i.e. to change according to certain parameters that
are sampled during runtime. In this work, only static
assignment is implemented.

 Usage: α is used to update CW upon both transmis-
sion failures and successes. B
tive factor only in transmission failure updates since
it resets CW upon a transmission success.

n addition to α, HBAB defines another parameter,
nnelState, which reflects the most recent

e medium in terms of its busy/free states. That is,
ChannelState stores the most recent N states of the me-
dium sensed upon each transmission trial. A free channel
state means that the channel is available and no stations
are currently transmitting; it is represented by 1. A busy
channel state means that there is at least one stations
currently transmitting; it is represented by 0. Hence, if
N=2 (which is the case in this work), a ChannelState of
01 means that the medium had been busy then becomes
free. N indicates the depth of this history; the greater N,
the deeper captured history of the channel. An obvious
tradeoff will be the depth of the channel history versus
the available memory to store the states.

The ChannelState is updated upon each transmission
trial, i.e. each time the station senses the med

 transmit a packet. To make room and store the new
channel state, the oldest channel state is removed and the
remaining stored states are shifted to the left.

, are initialized as follows:

CW = CWmin (1)

α = f, f >1 (2)

ChannelState = 11 (3)

e minimum value of CW, f is the cho-
multiplicative factor α and Channel-

State is expressed in binary representation. f could be
theoretically any positive value greater than one to
assure the multiplicative impact on CW; in the special
case of f is exactly one, no updates will take place as
the process of updating CW involves multiplication or
division as will be shown later in this section. If f is a
positive value less than one, then the multiplicative
impact is reversed: multiplying by α decreases the
multiplicand whereas dividing by α increases it. Nega-
tive values of f are meaningless since α is used to up-
date a counter.

If the current transmission trial has failed, CW is up-
dated to be the

ultiplicative factor α. Thus, the station would wait for a
number of time slots equal to the new value of CW be-
fore attempting transmission again. If, however, the cur-
rent transmission trial has succeeded, further checks need
to be done in order to calculate the updated, namely:

1) If the value of the ChannelState represents two con-
secutive busy states, the new value of CW would be

rrent CW divided by α.
2) Otherwise, CW is reset to CWmin.
Equation (4) illustrates t

CW ,

CW CWmin, transmission success, ChannelState 00

CW
, transmission success, ChannelState 00

transmission failure




 


 

 


 (4)

here ChannelState is expressed in binary representa-
ion.

heck (0 indicates a busy channel and 1 indicates a
fr

BEB doubles the value of CW upon a
tra

cates a congested medium), CW is divided by α instead
of resetting to CW . In other words, a slow decrease in

w
t

Table 1 shows the suggested CW updating method per
state c

ee channel):
Compared to BEB adopts a similar incrementing ap-

proach. While
nsmission failure, HBAB multiplies the value of CW

by α. As for the decrementing approach, it is somehow
different. Instead of resetting CW to CWmin all the time as
in BEB, HBAB first checks the value of the Channel-
State is not busy for two consecutive times provided that
the current channel state is free (the latter condition is
indicated by the transmission success). In case the chan-
nel state is busy for two consecutive times (which indi-

min

Table 1. Possible CW update values based on HBAB opera-
tion.

urrent state State CW value C

00(busy, busy)
01 (busy, free)
10 (free, busy)

y)

11 (free, free)

CW = CW *() 0 (bus

11 (free, free)
01 (busy, free)
10 (free, busy)

CW = CWmin
1 (free)

00(busy, busy) CW = CW / ()

304 M. ALBALT ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 4, 249-324

CW is preferred in t congested medium
(for at least stat to b sin-
gle s

As for the overh s w g

for memory, the extra storage space is
ne

ection shows the performance of HBAB-based
EE 802.11 against the BEB-based IEEE 802.11 under

 simulation is carried out in
ualNet network simulator version 4.0 [17]. Each point

ion modelled a network of 50 mobile nodes
laced randomly within a 1000 × 1000 meters area. Ra-

 is 250 meters and
hannel capacity is 2 Mbits/sec. As for node mobility,

 lasts until the end of the simula-
tio

his case since a
 two

uccess.
es) is unlikely e free upon a

ead that come ith implementin
HBAB, it is due to two factors: extra memory space for
new variables and extra computations for additional op-
erations. As

eded for the new variables: ChannelState and eight
other utility variables. As for computations, five addi-
tional operations are needed to determine the next value
of CW, which are multiplication, shifting, ‘if’ condi-
tional statement, memory read and memory write opera-
tions (to update the hardware registers). An implicit
power overhead is associated with the additional opera-
tions.

4. Simulation Results

This s
IE
different network loads. The
Q
on every graph represents the average of 10 trials using
different SEED values to minimize the effect of outliers.
The SEED value is used to initialize the random number
generator, which is used for node placement and mobility
among other usages. Each SEED was used twice: once
for an IEEE 802.11 simulation run and the other for the
corresponding HBAB simulation run under the same
parameters. That ensures the testing has been conducted
under the exact conditions, including any random-based
parameter.

4.1. Simulation Environment

Our simulat
p
dio propagation range for each node
c
the random waypoint model is used. In this model, a
node chooses a random point in the network, and moves
towards that point at a constant speed. The speeds are
uniformly chosen between the minimum and maximum
speeds set to 0 m/s and 10 m/s, respectively. When the
node reaches its destination, it stays there for a certain
pause time (fixed to be 20 seconds in this paper), after
which it chooses another random destination point and
repeats the process.

All simulations last for 600 seconds. The data traf-
fic is generated by Constant Bit Rate (CBR) sessions
initiated between random source and destination
pairs. Each session

n. Table 2 shows the common simulation parame-
ters.

Table 2. Simulation parameters.

Parameter Value
Area 1000×1000m
Number of n
Simulation t
Packet s 512 bytes

 rate (per connection)

dom waypoint with max
of 10m/s and pause

 rate (CBR)

CW , CW

odes 50
ime 600s

ize

Packet 4 packets/s

Mobility pattern
Ran
speed
time of 20s

Traffic type Constant bit

min max 31, 1023

Simulation results are show and Figures 2

th ble 3 shows a de ove-
ment of HBAB averaged for ections loads per
alues of α (compared to IEEE 802.11). Figures (2)–(4)

sh

wed a different be-
ha

n in Table 3
rough 4. Ta tailed percentage impr

 all conn
v

ow the individual PDF, throughput and average delay
comparisons between HBAB (for selected values of α)
and IEEE 802.11. It was noted that for all values of α and
under most of the tested networks loads, HBAB had out-
performed IEEE 802.11 for all of the three performance
metrics. The only exception was the lowest network load
(the ten connections) for higher values of α. In general,
performance improvement tended to be higher for smaller
values of α; in other words, as the value of α increases,
the percentage improvement in HBAB performance
compared to IEEE 802.11 decreases.

As for each of the performance metrics, the PDF
maintained a descending pattern of improvement as the
value of α increased (with the highest improvement at α
= 1.1), while the average delay sho

vior; it reached the peak at α = 1.2 and recorded an-
other increase at α = 1.4. Throughput showed similar
behavior to PDF. Overall, the best performance im-
provement was obtained for α = 1.2 (with 33.51% im-
provement in delay and 7.36% improvement in PDF
compared to IEEE 802.11).

Table 3. Performance improvement of HBAB.

 value Improvement (compared to IEEE802.11)

 PDF Average delay Throughput

1 .1 8.60% 12.13% 8.56%

1.2 7.36% 33.51% 7.40%

1

1.4

-16.39%

.3 7.70%

5.73%

14.43%

17.48%

7.57%

5.71%

1.5 5.33% 9.28% 5.32%

1.6 5.04% 6.95% 4.93%

1.7 5.69% 3.38% 5.68%

1.8 5.87% 0.89% 5.89%

1.9 5.36% 1.33% 5.46%

2 3.59% 6.46%

 ADAPTIVE BACKOFF ALGORITHM FOR IEEE 802.11 MAC PROTOCOL 305

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 4, 249-324

5. L x Te Resul

The testbed that was used to BAB for real time

erfor nce co 4 L d station sk-
ork in the ad-hoc mode.
 loaded on an Atheros-

inu stbed ts

 test H

based wireless adapter [18] running the Madwifi driver
[19]. All of the four stations ran Fedora 7 distribution [20]
and the Linux kernel version 2.6.21. Although Atheros
chipset and Madwifi driver offer a level of coding flexi-
bility not present in other chipsets, implementing the
backoff algorithm fully was not possible because packet

p ma mprises inux-base s: 3 de
tops and 1 laptop configured to w

he backoff algorithm itself wasT

Packet delivery fraction

20%

30%

40%

50%

60%

70%

80%

10 20 30 40 50

Number of connections

802.11



Packet delivery fraction

20%

30%

40%

50%

60%

70%

80%

10 20 30 40 50

Number of connections

802.11



(a) (b)

Packet delivery fraction

20%

30%

40%

50%

60%

70%

80%

10 20 30 40 50

Number of connections

802.11



Packet delivery fra
80%

ction

20%

30%

40%

50%

60%

70%

10 20 30 40 50

Number of connections

802.11



(c) (d)

Packet delivery fraction

20%

30%

40%

50%

60%

70%

80%

10 20 30 40 50

Number of connections

802.11



(e)

Figure 1. PDF of HBAB (α= 1.1, 1.3, 1.5, 1.7 and 1.9) vs BEB-simulation.

306 M. ALBALT ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 4, 249-324

transmission trial handling is done per-packet, not per
transmission. That is, a packet success in Madwifi means
that a packet has been delivered to the destination re-
gardless the number of retransmissions it had encoun-
tered. Similarly, a packet failure means that the packet

had failed all the possible transmission trials (until
hit-ting the maximum retry limit). Not being able to access
the packets per retransmission means that implementing a
backoff algorithm per transmission is not possible. Alter-
natively, a per-packet variant of HBAB has been pro-

Packet delivery fraction

20%

10 20 30 40 50

Number of connections

Packet delivery fraction

30%

40%

50%

60%

70%

80%

802.11



40%

50%

60%

70%

80%

802.11



20%

10 20 30 40 50

Number of connections

30%

(a) (b)

Packet delivery fraction

20%

30%

40%

50%

60%

70%

80%

10 20 30 40 50

Number of connections

802.11



Packet delivery fraction

20%

30%

40%

50%

60%

70%

80%

10 20 30 40 50

Number of connections

802.11



(c) (d)

Packet delivery fraction

20%

30%

40%

50%

60%

70%

80%

10 20 30 40 50

Number of connections

802.11



(e)

Figure 2. PDF of HBAB (α = 1.2, 1.4, 1.6, 1.8 and 2) vs BEB-simulation.

 ADAPTIVE BACKOFF ALGORITHM FOR IEEE 802.11 MAC PROTOCOL 307

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 4, 249-324

posed to demonstrate the new backoff algorithm. Table 4
shows the wireless adapters used in this work along with
their specifications.

A number of Linux-compatible software tools were
used to implement and evaluate HBAB. The network
load traffic was generated using the Multi-Generator

(MGEN) tool, which is open source software that pro-
vides the ability to perform IP network performance tests
and measurements using UDP/IP traffic [21]. The TRace
Plot Real-time (TRPR) software tool was used to analyze
the output files generated by MGEN and calculate the
performance metrics used in this work [22]. In order to

Throughput

50

70

10 20 30 40 50

90

110

130

150

170

190

210

230

K
b

p
s

Number of connections

802.11



Throughput

110

130

150

170

190

210

230

K
b

p
s

50

70

10 20 30 40 50

Number of connections

90

802.11



(a) (b)

Throughput

50

70

90

110

130

150

170

190

210

230

10 20 30 40 50

Number of connections

K
b

p
s

802.11



Throughput

50

70

90

110

130

150

170

190

210

230

10 20 30 40 50

Number of connections

K
b

p
s

802.11



(c) (d)

Throughput

50

70

90

110

130

150

170

190

210

230

10 20 30 40 50

Number of connections

K
b

p
s

802.11



(e)

Figure 3A. Throughput of HBAB (α = 1.1, 1.3, 1.5, 1.7 and 1.9) vs BEB-simulation.

308 M. ALBALT ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 4, 249-324

monitor the network and capture live packets as experi-
ments were conduct
lyzer was used [23]. Forming a MANET needed a suit-
able routing protocol, which was the DSR routing proto-
col in this work (DSR-UU implementation) [24].

In order to evaluate HBAB real-time performance, a
number of testing scenarios were conducted in both
simulation and Linux testbed environments. In all testing
scenarios, the main connection that was used to evaluate
HBAB performance, i.e. to generate the fore ground traf-
fic, was established between Station 2 (source; HBAB-
loaded) and Station 4 (destination). The packet genera-
tion rate was changed per testing scen rio. Other connec-
tions were establis
as Stations 2 and 4 to g

acket generation rate also varied per testing scenario.

s were
co

all connections loads per values of α (compared to IEEE
 the individual

PDF, throughput and average delay comparisons be-
tween HBAB (for selected values of α) and IEEE 802.11.
Since HBAB implementation in the Linux testbed was
a bit different from simulation, performance results
were different as well. In general, there was no consis-
tent performance improvement pattern in the testbed
experiment results as illustrated in simulation. HBAB
outperformed IEEE 802.11 for almost all values of α
(except α = 1.1) with respect to the average delay, and
for half of the val es of α with respect to the PDF and

. Over ll, the best performance improve-
 34.30% improve-
ent in PDF com-

pared to IEEE 802.11).

ed, Wireshark network protocol ana- 802.11), whereas Figures (6)–(8) show

a
u
a

hed between Stations 1 and 3 as well
throughput

enerate background traffic, whose
ment was obtained for α = 1.7 (with
ment in delay and 1.40% improvem

Throughput

50

70

90

110

130

150

170

190

210

230

10 20 30 40 50

Number of connections

K
b

p
s

802.11



Throughput

50

70

90

110

130

150

170

190

210

230

10 20 30 40 50

Number of connections

K
b

p
s

802.11



Throughput

50

70

90

110

130

150

170

190

210

230

10 20 30 40 50

Number of connections

K
b

p
s

802.11



(a) (b) (c)

Throughput

50

70

90

110

130

150

170

190

210

230

0 10 20 30 40 50 60

Number of connections

K
b

p
s

802.11



Thr

p
The performance measures (average delay, loss fraction
and throughput) were extracted from the log files pro-
duced at Station 4 after each testing scenario. Traffic
generation rate was changed from 100 to 200 packets/s
per station in steps of 20. All testbed scenario

nducted using the special per-packet variant of HBAB
(with varying the multiplicative factor α from 1.1 to 2.0
in steps of 0.1). Table 5 further shows the parameters of
the testing scenarios.

The results of the Linux testbed experiments are
shown in Table 6 and Figures (5)–(7). Table 6 shows a
detailed percentage improvement of HBAB averaged for

6. Conclusions

A MANET is an infrastructure-less network connecting a
number of mobile nodes via wireless media. The special
characteristics of MANETs, such as mobility and ab-
sence of centralized control, have made the provisioning
of end-to-end QoS guarantees a very challenging prob-
lem.

In this work, an adaptive backoff algorithm was de-
veloped based on the IEEE 802.11 MAC to provide bet-
ter QoS performance (especially delay) in MANETs. In

oughput

50

70

90

110

130

190

210

230

10 20 30 40 50

Number of connections

K
b

p 150

170

s

802.11



(d) (e)

Figure 3B. Throughput of HBAB (α = 1.2, 1.4, 1.6 and 1.8) vs BEB-simulation.

 ADAPTIVE BACKOFF ALGORITHM FOR IEEE 802.11 MAC PROTOCOL 309

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 4, 249-324

Average delay

0

2

4

6

8

10

12

14

16

10 20 30 40 50

Number of connections

se
co

n
d
s

802.11



Average delay

14

16

0

2

4

6

8

se
c

10

o
n
d
s

12

10 20 30 40 50

Number of connections

802.11



 (b) (a)

Average delay
16

Average delay

0

2

4

6

8

10

12

14

16

10 20 30 40 50

Number of connections

se
co

n
d

s

802.11



0

2

4

6

8

10

12

14

10 20 30 40 50

Number of connections

se
co

n
d
s

802.11



(c) (d)

Average delay

0

2

4

6

8

10

12

14

16

10 20 30 40 50

Number of connections

se
co

n
d

s

802.11



(e)

Figure 4A. Average delay of HBAB (α = 1.1, 1.3, 1.5, 1.7 and 1.9) vs BEB-simulation.

particular, the IEEE 802.11’s Binary Exponential Back
off (BEB) algorithm was replaced with a History-Based
Adaptive Backoff (HBAB) algorithm that updated the
value of the BEB’s Contention Window (CW) according
to the channel state over a period of time. In addition to
the channel state, HBAB utilized a multiplicative factor,

α, to increase or decrease CW value.
HBAB was tested by simulation (using QualNet

simulation package) and implemented in a Linux-based
testbed. The simulation environment featured fifty nodes
moving in random way-point fashion within 1000 square
meters area, whereas the Linux testbed comprises four

310 M. ALBALT ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 4, 249-324

Average delay

0

2

4

6

8

10

12

14

16

10 20 30 40 50

Number of connections

se
co

n
d

s

802.11



Average delay

0

2

4

6

8

10

12

14

16

10 20 30 40 50

Number of connections

se
co

n
d

s

802.11



(a) (b)

Average delay

10

12

14

16

0

2

4

6

8

10 20 30 40 50

Number of connections

se
co

n
d

s

802.11



Average delay

14

16

0

2

4

6

8

10

12

10 20 30 40 50

Number of connections

802.11



(c) (d)

Average delay

0

2

4

6

8

10

12

14

16

10 20 30 40 50

Number of connections

se
co

n
d

s

802.11



(e)

Figure 4B. Average delay of HBAB (α = 1.2, 1.4, 1.6, 1.8 and 2) vs BEB-simulation.

 ADAPTIVE BACKOFF ALGORITHM FOR IEEE 802.11 MAC PROTOCOL 311

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 4, 249-324

Table 4. Wireless cards specifications.

Make and model Dlink DWL-122 Netgear WPN-511 Dlink DWA-110

Chipset Intersil Prism II Atheros AR5002 (AR5212) Ralink RT2501U

Network standards 802.11 b 802.11 b and g 802.11 b and g

Host interface USB PCMCIA USB

Wireless adapter driver Linux-wlan-ng 0.2.8 Madwifi 0.9.3.1 rt73 1.1.0.0

Table 5. Testbed parameters.

Parameter Value

Area 4×4m

Number of stations

Testing scenario duration

Packet size (foreground and background traffic) 512 bytes

Packet rate (foreground and background traffic) 100, 120, 140, 160, 180, 200 packets/s (per station)

Background traffic type UDP Constant Bit Rate (CBR)

4

Average of 2 trials, each of 60 s

Table 6. HBAB performance improvement (compared to IEEE 802.11) for the hardware testbed experiments.

Improvement (compared to IEEE 802.11)
 value

PDF Average delay Throughput

1.1 1.50% -0.51% 1.50%

1.2 -1.49% 6.10% -1.49%

1.3 0.74% 1.11% 0.74%

1.4 0.72% 13.11% 0.73%

1.5 0.33% 14.75% 0.32%

1.6 -2.47%

1.7 1.40%

1.8 0.29% 0.29%

-1.37%

-3.75%

10.95% -2.48%

34.30% 1.40%

13.37%

1.9 -1.37% 17.57%

2 -3.75% 4.35%

s with t ry hardware and
s a MANET. Du me hardware limita-
t e to the

 its o ple-
ented in simulation. Therefore, a special variant

was developed for that purpose as detailed in Se
Simulation results have shown significant improve-

ment in IEEE 802.11 p measures upon using
H ver BEB. For HBAB (α = 1.2), the average im-
provements in PDF and average delay were 7.36% and
3 . The Linux-based testbed results
f and 34.30% improvement in
PDF and a on those
r ues of α
(which are associated with lower delay) combined with

 approach in updatin better
utilization and eliminated unnecessary waiting

 revealed as a decre erage de-
F and throug overhead

 implementing HBAB is due to two fac-
emory space for nine new variables and ex-

tra computations for five additional operations.
There are a number issues for future develop-

t. For instance, HBAB can be applied to different
Access Categories (ACs) in IEEE 802.11e instead of
only one category as in the legacy IEEE 802.11. Also,

n be implemented in such a
at it can be dynamically modified according to the

network load and/or medium status.

tationary nodes equipped he necessa
oftware to form e to so
ions, it was not possibl

nux-based testbed with
implement HBAB in
riginal design as imLi

m of HBAB
ction 5.

associated with
tors: extra m

erformance
BAB o

3.51%, respectively
or α = 1.7 showed 1.40%

verage delay, respectively. Based
esults, it could be concluded that the lower val

HBAB’s novel g CW provided
channel
time. That was
lay and increase in PD

ase in the av
hput. The

of open
men

the multiplicative factor α ca
way th

312 M. ALBALT ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 4, 249-324

Packet delivery fraction

92%

94%

96%

98%

120 140 180 200

Packet ra s/s)

100%

100 160

te (packet

802.11

HBAB1.1

 (a)

Packet delivery fraction
100%

92%

100 120 140 160 180 200

Packet rate (packets/s)

94%

96%

98%

802.11

HBAB1.3

 (c)

Packet delivery fraction

96%

98%

100%

92%

94%

100 120 140 160 180 200

Packet rate (packets/s)

802.11

HBAB1.5

 (e)

Packet delivery fraction

92

98%

100%

%

96%

100 120 140 180 200

Packet rate (p)

94% 802.11

HBAB1.7

160

ackets/s

 (b)

Packet delivery fraction

90%

92%

94%

96%

98%

100%

100 120 140 160 180 200

Packet rate (packets/s)

802.11

HBAB1.9

 (d)

Figure 5A. PDF of HBAB (α = 1.1, 1.3, 1.5, 1.7 and 1.9) vs BEB-Linux implementation.

 ADAPTIVE BACKOFF ALGORITHM FOR IEEE 802.11 MAC PROTOCOL 313

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 4, 249-324

Packet delivery fraction

92%

94%

96%

98%

100%

100 120 140 160 180 200

Packet rate (packets/s)

802.11

HBAB1.4

Packet delivery fraction

92%

94%

96%

98%

100%

100 120 140 160 180 200

Packet rate (packets/s)

802.11

HBAB1.2

(a) (b)

Packet delivery fraction

92%

94%

96%

98%

100%

100 120 140 160 180 200

Packet rate (packets/s)

802.11

HBAB1.6

Packet delivery fraction

92%

94%

96%

98%

100%

100 120 140 160 180 200

Packet rate (packets/s)

802.11

HBAB1.8

(c) (d)

Packet delivery fraction

84%

86%

88%

90%

92%

94%

96%

98%

100%

100 1

802.11

HBAB2

20 140 160 180 200

Packet rate (packets/s)

(e)

Figure 5B. PDF of HBAB (α = 1.2, 1.4, 1.6, 1.8 and 2) vs BEB-Linux implementation.

314 M. ALBALT ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 4, 249-324

Average delay

3

4

5

6

7

8

9

100 120 140 160 180 200

Packet rate (packets/s)

m
il

li
se

co
n

d
s

802.11

HBAB1.3

Average delay (ms)

3

4

5

6

7

8

9

10

100 120 140 160 180 200

Packet rate (packets/s)

m
il

is
ec

o
n

d
s

802.11

HBAB1.1

(a) (b)

Average delay

3

4

5

6

7

8

9

100 120 140 160 180 200

Packet rate (packets/s)

m
il

li
se

co
n

d
s

802.11

HBAB1.5

Average delay

3

4

5

6

7

8

9

100 120 140 160 180 200

Packet rate (packets/s)

kb
p

s
802.11

HBAB1.7

(c) (d)

Average delay

2

3

4

5

6

7

8

9

100 120 140 160 180 200

Packet rate (packets/s)

m
il

li
se

co
n

d
s

802.11

HBAB1.9

(e)

Figure 6A. Average delay of HBAB (α = 1.1, 1.3, 1.5, 1.7 and 1.9) vs BEB-Linux implementation.

 ADAPTIVE BACKOFF ALGORITHM FOR IEEE 802.11 MAC PROTOCOL 315

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 4, 249-324

Average delay

3

4

5

6

7

8

9

100 120 140 160 180 200

Packet rate (packets/s)

m
il

li
se

co
n

d
s

802.11

HBAB1.2

Average delay

3

4

5

6

7

8

9

100 120 140 160 180 200

Packet rate (packets/s)

m
il

li
se

co
n

d
s

802.11

HBAB1.4

(a) (b)

Average delay

2

3

4

5

6

7

8

9

100 120 140 160 180 200

Packet rate (packets/s)

m
il

li
se

co
n

d
s

802.11

HBAB1.8

Average delay

3

4

5

6

7

8

9

100 120 140 160 180 200

Packet rate (packets/s)

m
il

li
se

co
n

d
s

802.11

HBAB1.6

(c) (d)

Average delay

2

3

4

5

6

7

8

9

100 120 140 160 180 200

Packet rate (packets/s)

m
il

li
se

co
n

d
s

802.11

HBAB2

(e)

Figure 6B. Average delay of HBAB (α = 1.2, 1.4, 1.6, 1.8 and 2) vs BEB-Linux implementation.

316 M. ALBALT ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 4, 249-324

Throughput (kbps)

350

400

450

500

550

600

650

700

750

800

850

100 120 140 160 180 200

Packet rate (packets/s)

kb
p

s

802.11

HBAB1.1

Throughput

350
400

450
500
550
600

650
700
750

800
850

100 120 140 160 180 200

Packet rate (packets/s)

kb
p

s

802.11

HBAB1.3

(a) (b)

Throughput

350
400

450
500

550
600

650
700

750
800

850

100 120 140 160 180 200

Packet rate (packets/s)

kb
p

s

802.11

HBAB1.5

Throughput

350

400

450

500

550

600
650

700

750

800

850

100 120 140 160 180 200

Packet rate (packets/s)

kb
p

s

802.11

HBAB1.7

(c) (d)

Throughput

350

400

450

500

550

600

650

700

750

800

100 120 140 160 180 200

Packet rate (packets/s)

kb
p

s

802.11

HBAB1.9

(e)

Figure 7A. Throughput of HBAB (α = 1.1, 1.3, 1.5, 1.7 and 1.9) vs BEB-Linux implementation.

 ADAPTIVE BACKOFF ALGORITHM FOR IEEE 802.11 MAC PROTOCOL 317

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 4, 249-324

Throughput

350

400

450

500

550

600
650

700

750

800

850

100 120 140 160 180 200

Packet rate (packets/s)

kb
p

s

802.11

HBAB1.2

Throughput

350
400
450
500
550
600
650
700
750
800
850

100 120 140 160 180 200

Packet rate (packets/s)

kb
p

s

802.11

HBAB1.4

Throughput

350

400

450

500

550

600

650

700

750

800

100 120 140 160 180 200

Packet rate (packets/s)

kb
p

s

802.11

HBAB1.6

 (c) (a) (b)

Throughput

350
400
450
500
550
600
650
700
750
800
850

100 120 140 160 180 200

Packet rate (packets/s)

kb
p

s

802.11

HBAB1.8

Throughput

350

400

450

500

550

600

650

700

750

800

100 120 140 160 180 200

Packet rate (packets/s)

kb
p

s

802.11

HBAB2

 (d) (e)

Figure 7B. Throughput of HBAB ( and) vs BEB-Linux implementation.

7. References

[1] C. Jones, “A survey of energy efficient network protocols

for wireless networks,” Wireless Networks, Vol. 7, No. 4,
pp. 343-358, 2001.

[2] D. Deng and R. Chang, “A priority scheme for IEEE
802.11 DCF access method,” IEICE Transactions on
Communications, Vol. E82-B, No. 1, pp. 96-102, 1999.

[3] M. Barry, A. Campbell, and A. Veres, “Distributed con-
trol algorithms for service differentiation in wireless
packet networks,” Proceedings of INFOCOM 2001, An-
chorage, AK, USA, April 2001.

[4] V. Kanodia, C. Li, A. Sa
Knightly, “Distributed mul
access with delay and throughput constraints,” Proceed-
ings of MobiCOM 2001, Rome, Italy, July 2001.

[5] I. Aad and C. Castelluccia, “Differentiation mechanisms
for IEEE 802.11,” Proceedings of INFOCOM 2001, An-
chorage, AK, USA, April 2001.

[6] Q. Ni, I. Aad, C. Barakat, and T. Turletti, “Modeling and
analysis of slow CW decrease for IEEE 802.11 WLAN,” Pro-
ceedings of PIMRC 2003, Beijing, China, September 2003.

[7] P. Chatzimisios, et al., “A simple and effective backoff
scheme for the IEEE 802.11 MAC protocol,” Proceedings
of CITSA 2005, Orlando, FL, USA, July 2005.

[8] J. A. Moura and R. N. Marinheiro, “MAC approaches for
QoS enhancement in wireless LANs,” Proceedings of
JETC 2005, Lisbona, Portugal, November 2005.

[9] B Li and R. Battiti, “Achieving optimal performance in
IEEE 802.11 wireless LANs with the combination of link
adaptation and adaptive backoff,” Computer Networks
Journal, Elsevier Science BV, Vol. 51, No. 6, pp. 1574-
1600, 2007.

[10] F. Calì, M. Conti, and E. Gregori, “IEEE 802.11 protocol:
Design and performance evaluation of an adaptive back-
off mechanism,” IEEE Journal on Selected Areas in
Communications, Vol. 18, No. 9, pp. 1774-1786, 2000.

[11] R. Bruno,

for the dynamic tuning of the backoff mechanism in IEEE
802.11 networks,” Computer Networks Journal, Elsevier
Science BV, Vol. 37, No. 1, pp. 33-44, 2001.

[12] T. B. Reddy, J. P. John, and C. S. R. Murthy, “Providing
MAC QoS for multimedia traffic in 802.11e based
multi-hop ad hoc wireless networks,” Computer Net-
works: The International Journal of Computer and Tele-
communications Networking, Vol. 51, No. 1, pp. 153-
176, 2007.

[13] Q. Nasir and M. Albalt, “History based adaptive backoff
(HBAB) IEEE 802.11 MAC protocol,” Proceedings of
CNSR 2008, Nova Scotia, Canada, May 2008.

[14] Q. Ni, “Performance analysis and enhancements for IEE
EEE Networks, Vol. 19, No.

[15] K. Farkas, D. Budke, B. Plattner, O. Wellnitz, and L.
Wolf, “QoS extensions to mobile ad hoc routing support-
ing real-time applications,” Proceedings of AICCSA
2006, Sharjah, UAE, March 2006.

[16] T. Reddy, J. John, and C. Murthy, “Providing MAC QoS
for multimedia traffic in 802.11e based multi-hop ad hoc
wireless networks,” Computer Networks, Vol. 51, No. 1,
pp. 153–176, 2007.

[17] Scalable Network Technologies, Inc., QualNet 4.0 product
tour, 2006.

[18] Atheros Communications, AR5002 product bulletin, 2007.
[19] Madwifi driver webpage: www.madwifi.org, retrieved on

April 15, 2008.
[20] Fedora Linux distribution webpage: www.fedoraproject.

org, retrieved on April 15, 2008.
[21] MGEN webpage: http://cs.itd.nrl.navy.mil/work/mgen/,

retrieved on April 15, 2008.
[22] TRPR webpage: http://pf.itd.nrl.navy.mil/protools/trpr.

html, retrieved on April 15, 2008.
[23] Wireshark webpage: http://www.wireshark.org/, retrieved

on August 15, 2008.
[24] DSR-UU webpage: http://core.it.uu.se/core/index.php/

bharwal, B. Sadeghi, and E.
ti-hop scheduling and medium

802.11e wireless networks,” I
4, pp. 21-27, 2005.

M. Conti, and E. Gregori, “A simple protocol DSR-UU, retrieved on August 15, 2008.

E

