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Abstract 
The deduction of a constant of motion, a Lagrangian, and a Hamiltonian for relativistic particle 
moving in a dissipative medium characterized by a force which depends on the square of the ve-
locity of the particle is done. It is shown that while the trajectories in the space ( ),x v , defined by 

the constant of motion, look as one might expected, the trajectories in the space ( ),x p , defined by 
the Hamiltonian, have an odd behavior. 
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1. Introduction 
It is well known that the Lagrangian and Hamiltonian approaches for some non-dissipative and some dissipative 
systems have some problems [1]-[6]. One of these problems consists of the possibility of having two different 
Hamiltonian to the same classical system [7], implying that one will have two different quantizations for this 
system. Another problem consists that for some dissipative non-relativistic systems, like a free particle moving 
in a dissipative medium characterized by a force which depends on the square of the velocity of the particle, the 
trajectories on the space ( ),x p  have an odd behavior. However, the trajectories on the space ( ),x v , defined 
by the constant of motion, have a good expected behavior [8]. Nevertheless, the interest in having Hamiltonian 
for dissipative system continues [9] [10]. 

In this work, the study of this former problem is extended to the relativistic motion of the particle. The 
constant of motion, the Lagrangian, and the Hamiltonian are deduced consistently, and it is shown that the 
behaviors of the trajectories of the particle in the phase space ( ),x p  are odd when the Hamiltonian approach is 
used. However, the trajectories in the space ( ),x v , when the constant of motion is used, behave as one can 
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expected . 

2. Constant of Motion, Lagrangian and Hamiltonian 
The one-dimensional motion of a relativistic particle of mass “m” at rest which is moving with a velocity 

d dx x t=  in a dissipative medium characterized by a force which depends on the square of this velocity is 
described by the equation 

( ) 2d
d

m x x
t

γ α= −  ,                                           (1) 

where α  is the dissipative parameter, c  is the speed of light, and γ  is the relativistic factor, ( ) 1 22 21 x cγ
−

= −  .  

Actually, Equation (1) represents a dissipative system for 0x ≥ , otherwise it represents an anti-dissipative 
system. Therefore, only the case 0x ≥  will be considered below. This system can be written as the following 
dynamical system  

( )
2 3 22 2,     1vx v v v c

m
α

= = − −  .                               (2) 

A constant of motion for this system is a function ( ),K K x v=  such that it satisfies the following partial 
differential equation of first order [11] 

( )
2 3 22 21 0K v Kv v c

x m v
α∂ ∂

− − =
∂ ∂

.                               (3) 

The general solution of this equation [12] is given by ( )K G C= , where G  is an arbitrary function of the 
characteristic curve C , 

2 2

2 2

1 11 ln
1

v c
C x

m v cv c

α  + −
 = + −
 −  

.                        (4) 

By choosing 2K mc C= , a constant of motion is gotten with energy units,  

2 22
2 2

2 2

1 1
ln

1

v cmcK c x mc
v cv c

α
 + −
 = + −
 −  

.                    (5) 

The Lagrangian of the system can be consistently deduced from the known expression  

( ) ( )
2

,
,  d

K x v
L x v v v

v
= ∫ ,                                       (6) 

which establishes the relation between the Lagrangian and the constant of motion of the system [13]-[16]. Using 
this expression it follows that 

2 2
2 2 2 2 2 1 1

2 1 ln
v c

L c x mc v c mc
v c

α
 + −
 = − − − +
 
 

.                      (7) 

The generalized linear momentum, p L v= ∂ ∂ , is given by  

( )

2 2

2 2

2 1

1

v cp mc
v c v c

−
=

−
.                                      (8) 

The plot of this expression and the plot of the usual relativistic free linear momentum expression  

( )2 21  p mv v c= −  are shown in Figure 1, where one sees that for Equation (8) there is not a one to one  

relation between the velocity v  and the generalized linear momentum p  of Equation (8). 
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Figure 1. Relation between the generalized linear momentum and 
velocity.                                                     

 
The inverse relation of Equation (8) is shown on Figure 2, which is given analytically by 

2

2 2 2

1 1 1    if    0
2 2 24

pv v
c cp m c−

  = − < ≤ 
  +

,                          (9a) 

and 
2

2 2 2

1 1 1    if    1
2 2 24

pv v
c cp m c+

  = + ≤ < 
  +

.                          (9b) 

These expressions define respectively the Hamiltonians ( )H −  and ( )H +  as 

( )

1 2

2 2 22
2 20

01 2 1 2

2 2 2 2 2 2

11 1
2 42

ln
11 1
24 4

p

p m cm c
H c x m c

p p

p m c p m c

α−

  
  + +
  +  = + −  

    
   + − 
   + +     

,              (10a) 

and 

( )

1 2

2 2 22
2 20

01 2 1 2

2 2 2 2 2 2

11 1
2 42

ln
11 1
24 4

p

p m cm c
H c x m c

p p

p m c p m c

α+

  
  + −
  +  = + −  

    
   − + 
   + +     

.              (10b) 

3. Trajectories 
Using the initial conditions 0x = , with 1m =  and 0.7v c = , the constant of motion (5) is determined and the 
trajectories on the space ( ),x v  can be calculated. Figure 3 shows these trajectories for several values of the 
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Figure 2. Inverse relation between the generalized linear momentum 
and velocity.                                                  

 

 
Figure 3. Trajectories in the (x,v) space, defined by the con- 
stant of motion.                                         

 
parameter α . As one can see, the falling down of these trajectories and the way they are falling as the para- 
meter α  increases represent the behavior that one can expected for a dissipative medium. Now, given these 
same initial conditions, the initial generalized linear momentum is calculated from expression (8). One uses the 
expression (10a) to determinate the value of this Hamiltonian and to calculated the trajectories in the space 
( ),x p . These trajectories can be seen in Figure 4. As one can see, these trajectories have an odd behavior since 
p  go to infinity as the particle is slowing down, but this was already expected from the same expression for 

the generalized linear momentum, Equation (8). 

4. Conclusion 
We have constructed consistently a constant of motion, Lagrangian, and Hamiltonian for a relativistic particle 
moving in a dissipative medium, characterized by a force which depends on the square velocity of the particle.  
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Figure 4. Trajectories in the (x,p) space, defined by the Hamil- 
tonian.                                               

 
The trajectories in the space ( ),x v , defined by the constant of motion, behave as we can expect. However, the 
trajectories in the space ( ),x p , defined by the Hamiltonian, behave oddly and totally anti-intuitively. This 
suggests that the Hamiltonian approach applied to dissipation problem may bring about incorrect solutions if it 
is directly applied to quantum mechanics or statistical physics. 

References 
[1] Dodonov, V.P., Man’ko, V.I. and Skarzhinsky, V.D. (1981) Hadronic Journal, 4, 1734. 
[2] Havas, P. (1973) Act. Phys. Austr., 38, 145. 
[3] Okubo, S. (1980) Physical Review D, 22, 919. http://dx.doi.org/10.1103/PhysRevD.22.919 
[4] Glauber, R. and Man’ko, V.I. (1984) Soviet Physics—JETP, 60, 450. 
[5] López, G. (1996) Annals of Physics, 251, 372-383. http://dx.doi.org/10.1006/aphy.1996.0118  
[6] López, G. (1998) International Journal of Theoretical Physics, 37, 1617-1623.  

http://dx.doi.org/10.1023/A:1026628221912  
[7] López, G., López, X.E. and González, G. (2007) International Journal of Theoretical Physics, 46, 149-156.  

http://dx.doi.org/10.1007/s10773-006-9224-y  
[8] López, G.V. (2009) arXiv:0901.4792 
[9] Musielak, Z.E. (2008) Journal of Physics A: Mathematical and Theoretical, 41, Article ID: 055205.  

http://dx.doi.org/10.1088/1751-8113/41/5/055205  
[10] Carinena, J.F. and Ranada, M.F. (2005) Journal of Mathematical Physics, 46, Article ID: 062703.  

http://dx.doi.org/10.1063/1.1920287  
[11] López, G. (2012) Partial Differential Equations of First Order and Their Applications to Physic, 2nd Edition, World 

Scientific, Singapore. 
[12] John, F. (1974) Partial Differential Equations. Springer-Verlag, Berlin. 
[13] Kobussen, J.A. (1979) Act. Phys. Austr., 51 193. 
[14] Leubner, C. (1987) Physical Review A, 86, 9. 
[15] Yan C.C. (1981) American Journal of Physics, 49, 296. http://dx.doi.org/10.1119/1.12632  
[16] See Reference 5. 

http://dx.doi.org/10.1103/PhysRevD.22.919
http://dx.doi.org/10.1006/aphy.1996.0118
http://dx.doi.org/10.1023/A:1026628221912
http://dx.doi.org/10.1007/s10773-006-9224-y
http://dx.doi.org/10.1088/1751-8113/41/5/055205
http://dx.doi.org/10.1063/1.1920287
http://dx.doi.org/10.1119/1.12632


http://www.scirp.org/
mailto:submit@scirp.org
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/
http://www.scirp.org/journal/CE/
http://www.scirp.org/journal/ENG/
http://www.scirp.org/journal/FNS/
http://www.scirp.org/journal/Health/
http://www.scirp.org/journal/JCC/
http://www.scirp.org/journal/JCT/
http://www.scirp.org/journal/JEP/
http://www.scirp.org/journal/JMP/
http://www.scirp.org/journal/ME/
http://www.scirp.org/journal/NS/
http://www.scirp.org/journal/PSYCH/

	One Dimensional Relativistic Free Particle in a Quadratic Dissipative Medium
	Abstract
	Keywords
	1. Introduction
	2. Constant of Motion, Lagrangian and Hamiltonian
	3. Trajectories
	4. Conclusion
	References



