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Abstract 
In this paper, we study the oscillatory and asymptotic behavior of second order neutral delay dif-
ference equation with “maxima” of the form  

( )( )
[ ]

( )   n n n n n sn n
a x p x q x n n− −

∆ ∆ + + = ∈α
τ σ 0,

max 0, .  

Examples are given to illustrate the main result. 
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1. Introduction 
Consider the oscillatory and asymptotic behavior of second order neutral delay difference equation with “max-
ima” of the form 

( )( )
[ ]

( )0,
max 0,   ,n n n n n sn n

a x p x q x n nα
τ σ− −

∆ ∆ + + = ∈                      (1) 

where Δ is the forward difference operator defined by 1n n nx x x+∆ = −  and ( ) { }0 0 0 0, 1, 2,n n n n= + +   and 
0n  is a nonnegative integer subject to the following conditions: 
(C1) τ  and σ  are positive integers; 
(C2) α  is a ratio of odd positive integers; 
(C3) { }np  and { }nq  are nonnegative real sequences with 0np∆ ≥  and 0 1np p≤ ≤ <  for all 0n n≥ ; 
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(C4) { }na  is a positive real sequence such that 
0

1
n n

na
∞

=
< ∞∑ . 

Let { }max ,θ τ σ= . By a solution of Equation (1), we mean a real sequence { }nx  satisfying Equation (1) 
for all 0n n θ≥ − . Such a solution is said to be oscillatory if it is neither eventually positive nor eventually 
negative and nonoscillatory otherwise. 

From the review of literature it is well known that there is a lot of results available on the oscillatory and 
asymptotic behavior of solutions of neutral difference equations, see [1]-[5], and the references cited therein. 
But very few results are available in the literature dealing with the oscillatory and asymptotic behavior of solu-
tions of neutral difference equations with “maxima”, see [6]-[9], and the references cited therein. Therefore, in 
this paper, we investigate the oscillatory and asymptotic behavior of all solutions of Equation (1). The results 
obtained in this paper extend that in [4] for equation without “maxima”. 

In Section 2, we obtain some sufficient conditions for the oscillation of all solutions of Equation (1). In Sec-
tion 3, we present some sufficient conditions for the existence of nonoscillatory solutions for the Equation (1) 
using contraction mapping principle. In Section 4, we present some examples to illustrate the main results. 

2. Oscillation Results 
In this section, we present some new sufficient conditions for the oscillation of all solutions of Equation (1). 
Throughout this section we use the following notation without further mention: 

,n n n nz x p x τ−= +  

0

1 1 ,
n

n
s n s

A
a

−

=

= ∑  

1 ,n
s n s

B
aτ

∞

= −

= ∑  

and 

0

1 1 .
n

n n
s n s

C a
a σ

−

= −

= ∑  

Lemma 2.1. Let { }nx  be an eventually positive solution of Equation (1). Then one of the following holds 
(I) 0, 0n nz z> ∆ >  and ( ) 0n na z∆ ∆ ≤ ; 
(II) 0, 0n nz z> ∆ <  and ( ) 0n na z∆ ∆ ≤ . 
Proof. Let { }nx  be an eventually positive solution of Equation (1). Then we may assume that 0nx σ− > , 

0nx τ− >  for all 0n n≥ . Then inview of (C3) we have 0nz >  for all 0n n≥ . From the Equation (1), we obtain 

( )
[ ],
max 0.n n n sn n

a z q xα
σ−

∆ ∆ = − ≤  

Hence n na z∆  and nz  are of eventually of one sign. This completes the proof.   
Lemma 2.2. Let { }nx  be an eventually negative solution of Equation (1). Then one of the following holds 
(I) 0, 0n nz z< ∆ <  and ( ) 0n na z∆ ∆ ≥ ; 
(II) 0, 0n nz z< ∆ >  and ( ) 0n na z∆ ∆ ≥ . 
Proof. The proof is similar to that of Lemma 2.1.   
Lemma 2.3. The sequence { }nx  is an eventually negative solution of Equation (1) if and only if { }nx−  is 

an eventually positive solution of the equation 

( )( )
[ ],
max 0.n n n n n sn n

a x p x q xατ σ− −
∆ ∆ + + =  

The assertion of Lemma 2.3 can be verified easily. 
Lemma 2.4. Let { }nx  be an eventually positive solution of Equation (1) and suppose Case (I) of Lemma 2.1 

holds. Then there exists ( )0N n∈  such that 

( )1   for all .n n n np z x z n N− ≤ ≤ ≥  
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Proof. From the definition of nz  and condition (C3), we have n nz x≤ . Further  
( )1n n n n k n n n k n nx z p x z p z p z− −= − ≥ − ≥ − , since { }nz  is nondecreasing. This completes the proof.   

Lemma 2.5. Let { }nx  be an eventually positive solution of equation (1) and suppose Case (I) of Lemma 2.1 
holds. Then there exists ( )0N n∈  such that 

  for all .n n nz C z n Nσ− ≥ ∆ ≥  

Proof. Since ( ) 0n na z∆ ∆ ≤ , we see that 
1 1 1n n

n N s n n
s N s N s

z z z a z
aσ σ σ σ σ

σ

− −

− − − − −
= = −

= + ∆ ≥ ∆∑ ∑  

or 
1 1 .

n

n n n
s N s

z a z
aσ

σ

−

−
= −

≥ ∆ ∑  

The proof is now complete.   
Lemma 2.6. Let { }nx  be an eventually positive solution of Equation (1) and suppose Case (II) of Lemma 2.1 

holds. Then there exists ( )0N n∈  such that { }nx  is nonincreasing for all n N≥ . 
Proof. Since 0np∆ ≥  and 1 0n n k n n k n nz x p x p x− − +∆ = ∆ + ∆ + ∆ <  then we have 0nx∆ ≤  for n N≥ . This 

completes the proof. 
Theorem 2.1. Assume that 1α ≥ , and there exists a positive integer k such that kσ τ≥ − . If for all suffi-

ciently large ( )1 0n n∈  and for all constants 0M > , 0L > . One has 

[ ]
( )

1

1 ,
max 1 ,n n sn nn n

A q p α

σ

∞

+ −=

− = ∞∑                                (2) 

and 

[ ]
1

1 1,

1max ,
1n n n nn n n n n

B q
p L B a

α
α

ασ
τ τ

α∞

+ −−= − −

  
 − = ∞ +   

∑                        (3) 

then every solution of Equation (1) is oscillatory. 
Proof. Assume to the contrary that there exists a nonoscillatory solution { }nx  of Equation (1). Without loss 

of generality we may assume that 0nx θ− >  for all ( )0n N n≥ ∈ , where N is chosen so that both the cases of 
Lemma 2.1 hold for all n N≥ . We shall show that in each case we are led to a contradiction. 

Case(I). From Lemma 2.4 and Equation (1), we have 

( )( )
[ ]

( )
,

max 1 0n n n n sn n
a z q z p αα

σ−
∆ ∆ + − ≤  

or 

( )( )
[ ]

( )
,

max 1 .n n
n sn n

n

a z
q p

z
α

α σ−

∆ ∆
≤ − −                              (4) 

Define 0, n n
n n

n

a z
w A n N n k

zα
∆

= ≥ ≥ + , then we have 

( )

[ ]
( )

[ ]
( )

1 1 1
1

1

1 ,

1 ,

max 1

max 1

n n n n n n n n
n n n

n n n n

n n n
n n sn n

n

n
n n sn n

n

a z A a z A a z
w A z

z z z z
A a z

A q p
z

z
A q p

z

α
α α α α

α
ασ

α
ασ

+ + +
+

+

+ −

+ −

∆ ∆ ∆ ∆ ∆
∆ = + − ∆

∆ ∆
≤ − − +

∆
≤ − − +

 

or 
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[ ]
( )1 ,

max 1 .n n n sn n
w A q p α

σ+ −
∆ ≤ − −                                (5) 

Summing the last inequality from 1n N≥  to 1n − , we have 

[ ]
( )

1
1

1

1 ,
0 max 1 .

n

n n s s ts ss n
w w A q p α

σ

−

+ −=

< ≤ − −∑  

Letting n →∞ , we get a contradictions to (2). 
Case(II). Define 

,  .n n
n

n

a z
v n N

zα τ−

∆
= ≥                                    (6) 

Then 0nv <  for n N≥ . Since { }n na z∆  is nonincreasing, we have 

,  .n n
s

s

a z
z s n

a
∆

∆ ≤ ≥  

Summing the last inequality from n τ−  to 1− , we obtain 
1 1 .n n n

s n s

z z a z
aτ

τ

−

−
= −

≤ + ∆ ∑




 

Since 0z >


 and 0z∆ <


 by letting →∞ , in the last inequality we obtain 
0 ,  n n n nb z a z B n Nτ−≤ ≤ + ∆ ≥  

or 
0 ,  n n n nz a z B n Nτ−≤ + ∆ ≥  

or 

1,  .n n
n

n

a z
B n N

z τ−

∆
≥ − ≥  

Thus 

( ) 1

1.n n n n
n

n

a z a z
B

z
α

α
τ

−

−

∆ − ∆
− ≤  

So, by ( ) 0n na z∆ − ∆ >  and (6), we have 

1

1 0,  ,n nv B n N
L

α
α −− ≤ ≤ ≥                                 (7) 

where n NL a z= − ∆ . From (6), we obtain 

( ) 1 1

1

.n n n n
n n

n n n

a z a z
v z

z z z
α
τα α α

τ τ τ

+ +
−

− − + −

∆ ∆ ∆
∆ = − ∆  

By Mean Value Theorem, 
1

1n n n nz z z t zα α α α
τ τ τ τα −
− + − − −∆ = − = ∆  

where 1n nz t zτ τ+ − −≤ ≤ . Since 1α ≥  and ( ) 0nzτ∆ < , we have 
1
1 .n n nz z zα α

τ τ τα −
− + − −∆ ≤ ∆  

Therefore, 

[ ]

1
1 1 1

,
1

max .s n n n n
n n n n

s n n

x a z z z
v q

z z z

α α
τ τ

α α ασ
τ τ τ

α −
+ + + − −

−
− − + −

∆ ∆
∆ ≤ − −  

Since 1n nz zτ τ+ − −≤ , we have 
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[ ]
1 1

1,
max .s n n

n n nn n
s n

x a z
v q z

z z

α

τασ
τ τ

α + +
−+−

− −

  ∆
∆ ≤ − − ∆ 

 
                         (8) 

From Lemma 2.6, 0nx∆ ≤  for n N≥ , we have 

1 .
1

n n

n n n n k n

x x
z x p x p

α α α

τ τ τ τ τ− − − − − −

     
= ≥     + +     

                        (9) 

From (8) and (9), we have 

[ ],

1max 0,  .
1n n n n

s

v q n N
p

α

σ
τ

−
−

 
∆ + ≤ ≥ + 

                          (10) 

Multiply (10) by 1nBα
+  and summing it from 1n N≥  to 1n − , we have 

[ ]
1 1

1 1

1 1 ,= =

1max 0.
1

n n

s s s s s ss n s n t

B v B q
p

α
α α

σ
τ

− −

+ + −
−

 
∆ + ≤ + 

∑ ∑  

Summation by parts formula yields 

1 1
1 1

1 1

1 .
n n

s s n n n n s s
s n s n

B v B v B v v Bα α α α
− −

+
= =

∆ = − − ∆∑ ∑  

Using Mean Value Theorem, we obtain 
1

.s
s

s

B
B

a

α
α

τ

α −

−

∆ ≥ −  

Since 0nv < , we have 

1 1
1 1

11 1

1 .
n n

s s
s s n n n n

s n s n s

v B
B v B v B v

a

α
α α α

τ

α −− −

+
= = −

∆ ≥ − −∑ ∑  

or 

[ ]1 1
1 1

11 1

1 ,

1max 0
1

n n
s s

n n n n s s s ss n s ns t

v B
B v B v B q

a p

αα
α α α

σ
τ τ

α −− −

+ −= =− −

 
− + + ≤ + 

∑ ∑                   (11) 

Therefore, from (7) and (11), we have 

[ ]1 1
1

1

1 1,

1max .
1

n

n n n n s s s ss n t s s

B v B v B q
p L B a

α
α α α

ασ
τ τ

α−

+ −−= − −

  
 ≤ − − +   

∑  

Letting n →∞  in the last inequality, we obtain a contradiction to (3). This completes the proof.   
Theorem 2.2. Assume that 1α ≥ , and there exists a positive integer k such that kσ τ≥ − . If for all suffi- 

ciently large ( )1 0n n∈  and for every constant 0M > , (2) holds, and 

[ ]
1

1
1 ,

1max ,
1n n n nn n s

B q
p

α
α

σ
τ

∞
+
+ −= −

 
= ∞ + 

∑                             (12) 

hold, then every solution of equation (1) is oscillatory. 
Proof. Proceeding as in the proof of Theorem 2.1, we see that Lemma 2.1 holds for ( )0n N n≥ ∈ . 
Case(I). Proceeding as in the proof of Theorem 2.1 (Case(I)) we obtain a contradiction to (12). 
Case(II). Proceeding as in the proof of Theorem 2.1 (Case(II)) we obtain (7) and (10). Multiplying (10) by 

1
1nBα +
+  and summing it from 1n N≥  to 1n −  we have 

[ ]
1 1

1
1 1

1 1 ,

1max 0.
1

n

s s s s s sn n s n t

B v B q
p

α
α α

σ
τ

∞ −
+ +
+ + −= = −

 
∆ + ≤ + 

∑ ∑  
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Using the summation by parts formula in the first term of the last inequality and rearranging, we obtain 

( )
[ ]1 1

1 1

1 1
1 1 1

,

1 1max 0
1

n n
s s

n n n n s s s ss n s ns t

v B
B v B v q B

a p

αα
α α α

σ
τ τ

α− −
+ + +

−= =− −

+  
− + + ≤ + 

∑ ∑                 (13) 

Inview of (7), we have 1
1

1
n n nv B B

L
α

α
+

−− ≤ < ∞  as n →∞  and 

[ ] 1 1
1 1

1 1
1 1 1

1 1,

1 1 1max .
1

n n

s s n n n ns ss n s nt s

q B B v B v
p aL

α
α α α

ασ
τ τ

α− −
+ + +
+ −−= =− −

  +
≤ − + + 

∑ ∑  

As n →∞  in the last inequality, we obtain a contradiction to (12). This completes the proof. 
Theorem 2.3. Assume that 1α ≥ , and there exists a positive integer k such that kσ τ≥ − . If for all suffi- 

ciently large ( )1 0n n∈  and for every constant 0M > , (2) holds, and 

[ ]
1 1

1

,

1 1max ,
1

n

s s s sn n s nn t

q B
a p

α
α

σ
τ

∞ −

−= = −

 
= ∞ + 

∑ ∑                           (14) 

then every solution of equation (1) is oscillatory. 
Proof. Proceeding as in the proof of Theorem 2.1, we see that Lemma 2.1 holds and Case(I) is eliminated by 

the condition (2). 
Case(II). Proceeding as in the proof of Theorem 2.1 (Case(II)) we have 

( ) 1 1n n n n n n nnz a z B a z B cBτ ≥ − ∆ ≥ − ∆ =  

where 
1 1n nc a z= − ∆ . From Equation (1), we have 

( )
[ ],
max ,n n n sn n

a z q xα
σ−

∆ − ∆ =  

and 

1 .
1

n

n n

x
z pτ τ− −

≥
+

                                   (15) 

Hence 

( )
[ ],

1max .
1n n n n n n

n

a z c q B
p

α
α α

σ
τ

−
−

 
∆ − ∆ ≥  + 

 

Summing the last inequality from 1n N≥  to 1n − , we obtain 

[ ] [ ]1 1
1 1

1 1

, ,= =

1 1max max .
1 1

n n

n n n n s s s ss s s ss n s nt t

a z a z c q B c q B
p p

α α
α α α α

σ σ
τ τ

− −

− −
− −

   
− ∆ ≥ − ∆ + ≥   + +   

∑ ∑  

Again summing the last inequality from 1n N≥  to 1n − , we have 

[ ]1 1
1 1

1 1

,

1 1max .
1

n s

n n n t t t ts n t ss i

z z z c q B
a p

α
α α

σ
τ

− −

−= = −

 
≥ − ≥  + 

∑ ∑  

Letting n →∞  in the above inequality, we obatin 

[ ] 1
1 1

1 1

,

1 1max
1

n s

t t nt ts n t ss i

c q B z
a p

α
α α

σ
τ

− −

−= = −

 
≤ + 

∑ ∑  

a contradiction to (14). This completes the proof. 
Next, we obtain sufficient conditions for the oscillation of all solutions of Equation (1) when 0 1α< ≤ . 
Theorem 2.4. Assume that 0 1α< ≤ , and there exists a positive integer k such that kσ τ≥ − . If for all 

sufficiently large ( )1 0n n∈  and for every constant 1 0, 0M L> > , one has 
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[ ]
( ) ( )

1

1
1

1 ,
max 1 ,n

n n sn nn n n

M A
A q p

C

α
α

σ

−
∞

+ −=

 
 − − = ∞
  

∑                          (16) 

and 

[ ]
1

1
1 ,

1

1 1max ,
1 4n n n nn n t n n

B q L
p a B

α

σ
τ τ

∞
−

+ −= − − +

  
− = ∞  +   

∑                        (17) 

then every solution of equation (1) is oscillatory. 
Proof. Proceeding as in the proof of Theorem 2.1, we see that Lemma 2.4 holds for ( )0n N n≥ ∈ . 
Case(I). Define nw  by 

,  .n n
n n

n

a z
w A n N

zα
∆

= ≥  

Then 0nw >  and from Equation (1) and Lemma 2.2, we have 

[ ]
( )1 ,

max 1 .n n
n n n sn n

n n

a z
w A q p

a z
α

ασ+ −

∆
∆ ≤ − − +                           (18) 

Using Lemma 2.5 in (18), we obtain 

[ ]
( )

1

1 ,
max 1 .n

n n n sn n
n

z
w A q p

C

α
α

σ

−

+ −
∆ ≤ − − +                            (19) 

From the monotoncity of { }n na z∆ , we have 
1

.
n

s s
n N N N N n

s N s

a z
z z z a z R

a

−

=

∆
= + ≤ + ∆∑  

and hence 

1n nz M R≤                                      (20) 

for some constant 1 0M >  for all large n. Using (20) in (19) and then summing the resulting inequality from 
1n N≥  to 1n − , we have 

[ ]
( ) ( )

1
1

11
1

1 ,
0 max 1 .

n
n

n n s s ts ss n n

M A
w w A q p

C

α
α

σ

−
−

+ −=

 
 < ≤ − − −
  

∑                    (21) 

Letting n →∞  in (21), we obtain a contradiction to (16). 
Case(II). Define a function nv  by 

,  .n n
n

n

a z
v n N

z τ−

∆
= ≥  

Then 0nv <  for n N≥ , we have 

( )
[ ]

1 1

,
1 1

max .n n n n s n n
n n n nn n

n n n s n n

a z a z x a z
v z q z

z z z z z z

α

τ τσ
τ τ τ τ τ τ

+ +
− −−

− − + − − − + −

∆ ∆  ∆ ∆
∆ = − ∆ ≤ − − ∆ 

 
 

Since ( )n nτ ≥ , and n na z∆  is negative and decreasing we have 
.n n n na z a zτ τ− −∆ ≤ ∆  

Therefore 

[ ]

( )2

,
1

max .n ns
n n n n

s n n n

a zx
v q

z a z z

α

σ
τ τ τ τ

−
− − − + −

∆ 
∆ ≤ − − 

 
 

Since nz  is a positive and decreasing, we have 1n nz zτ τ+ − −≤ . Combining the last two inequalities, we have 
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[ ]

2

,
max .s n

n n n n
s n

x v
v q

z a

α

σ
τ τ

−
− −

 
∆ ≤ − − 

 
                              (22) 

Now using (15) in (22), we obtain 

[ ]

2
1

,

1max
1

n
n n n n

s n

v
v q L

p a
α

σ
τ τ

−

−
− −

 
∆ ≤ − − + 

 

for some constant 0L > . That is 

[ ]

2
1

,

1max 0,  .
1

n
n n n n

s n

v
v q L n N

p a
α

σ
τ τ

−

−
− −

 
∆ + + ≤ ≥ + 

 

Multiplying the last inequality by 1nB + , and then summing it from 1n N≥  to 1n − , we have 

[ ]
1 1 1

1 1 1
1 21

1 1 ,

1max 0.
1

n n n
s

s s s s ss ss n s n s nt s

B
B v q L B v

p a
α

σ
τ τ

− − −
− +

+ + −= = =− −

 
∆ + + ≤ + 

∑ ∑ ∑  

Using the summation by parts formula in the first term of the above inequality and rearranging we obtain 

[ ]1 1
1 1

21 1
1 1

1 ,

1max 0.
1

n n
s s s

n n n n s s s ss n s nt s s

v B v
B v B v q B L

p a a
α

σ
τ τ τ

− −
− +

+ −= =− − −

  
− + + + ≤  +   

∑ ∑  

Using completing the square in the las term of the left hand side of the last inequality, we obtain 

[ ]1 1
1 1 1

2
1 1 1

1 1
1 ,

1 1

1 1 1max 0
1 2 4

n n n
s

n n n n s s ss ss n s n s nt s s s s

B
B v B v q B L v

p a B a B
α

σ
τ τ τ

− − −
− +

+ −= = =− − + − +

   
− + + + − ≤   +   

∑ ∑ ∑  

or 

[ ]1 1
1

1
1

1 ,
1

1 1max .
1 4

n

n n n n s s s ss n t s s

B v B v q B L
p a B

α

σ
τ τ

−
−

+ −= − − +

  
≤ − −  +   

∑  

Letting n →∞  in the above inequality, we obtain a contradiction to (17). The proof is now complete.   

3. Existence of Nonoscillatory Solutions 
In this section, we provide sufficient conditions for the existence of nonoscillatory solutions of Equation (1) in 
case 1α >  or 0 1α< < . Note that in this section we do not require np p≡ . 

Theorem 3.1. Assume that 1α > . If 

0

n n
n n

q Aα
σ

∞

−
=

< ∞∑                                     (23) 

and 

lim 1,n

n
n

A
A

τ−

→∞
=                                      (24) 

then Equation (1) has a bounded nonoscillatory solution. 
Proof. Choose 0N n≥  sufficiently large so that 

3 1
4

n
n

n

A pp
A

τ− +
≤                                    (25) 

and 

1
8s s

s N

pq Aα
σ α

∞

−
=

−
≤∑                                    (26) 

for n N≥ . Let χ  be the set of all bounded real sequences defined for all 0n n≥  with norm 
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0

sup ,n
n

n n n

x
x

A≥

 
=  

 
 

and let 

( )
0

3 1
; 1, .

8 n

p
S x x n nχ

−  = ∈ ≤ ≤ ≥ 
  

 

Define a mapping :T S χ→  by 

( ) [ ] [ ]

( )
, ,

0

3 5 max max ,    
8

,                                          .

n

n n n n s t s s ts s s ss N s nn

N

p A p x A q x q A x n N
Tx

Tx n n N

α α
τ σ σ

∞

− − −= =

+ − + + ≥= 
 ≤ <

∑ ∑  

Clearly, T is continuous. Now for every x S∈  and n N≥ , (25) implies 

( )

( )

3 5 3 5
8 8

3 13 5 3 1 .
8 4 8

n
n n n n nn

n

n n

Ap pTx A p x A p
A

pp pA A

τ
τ

−
−

 + +
≥ − ≥ − 

 
−+ + ≥ − ≥ 

 

 

Also, from (26) we have 

( )
[ ] [ ]

[ ]

, ,

,

3 5 max max
8

3 5 max
8

3 5 1 .
8 8

n

n n s t s s tn s s s ss N s n

n n s ts ss N

n n

pTx A A q x q A x

pA A q A

p pA A

α α

σ σ

α

σ

α

∞

− −= =

∞

−=

+
≤ + +

+
≤ +

+ − ≤ + < 
 

∑ ∑

∑  

Thus, we have that TS S⊂ . Since S is bounded, closed and convex subset of χ , we only need to show that 
T is contraction mapping on S in order to apply the contraction mapping principle. For ,x y S∈  and n N≥ , 
we have 

( ) ( )
[ ] [ ] [ ]

[ ] [ ]

, , ,

, ,

1 1max max max

max max .

n
n

s s s t t s s t tn n n n s s s ss N s nn n n

n s s t t
n s sn n s ss Nn s s t t

pTx Ty x y q x y q A x y
A A A

A x y x yp q A
A A A A A

α α α α
τ σ τ σσ σ σ

α α
ατ τ τ σ σ
σσ σ

τ τ σ σ

∞

− + − +− − −= =

∞
− − − − −

−− −=− − − −

− ≤ − + − + −

   
≤ − + −   

   

∑ ∑

∑
 

By the Mean Value Theorem applied to the function ( ) , 1f u uα α= > , we see that for any ,x y S∈ , we have 
2x y x yα α α− ≤ −  for all n N≥ . Hence 

3 1 2
4

3 1 12
4 8

1 .
2

s s
s N

pTx Ty x y q A x y

p px y x y

p x y x y

α
σα

α
α

∞

−
=

+
− ≤ − + −

+ −
≤ − + −

+
= − < −

∑

 

Thus, T is a contraction mapping, so T has a unique fixed point x S∈  such that Tx x= . It is easy to see that 
{ }nx x=  is a positive solution of Equation (1). This complete the proof of the theorem.   

Theorem 3.2. Assume that 0 1α< < . If 

0

n n
n n

A q
∞

=

< ∞∑                                      (27) 
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then Equation (1) has a bounded nonoscillatory solution. 
Proof. Choose 0N n≥  sufficiently large so that 

( )21
.

8s s
s N

p
q A

∞

=

−
≤∑  

Let χ  be the set of all bounded real sequences defined for all 0n n≥  with norm 

{ }
0

sup ,n
n n

x x
≥

=  

and let 

( )
0

3 1
: 1, .

8 n

p
S x x n nχ

−  = ∈ ≤ ≤ ≥ 
  

 

Define a mapping :T S χ→  by 

( ) [ ] [ ]

( )
, ,

0

3 5 max max ,        
8

,                                          .

n

n n n s t s s ts s s ss N s nn

N

p p x A q x q A x n N
Tx

Tx n n N

α α
τ σ σ

∞

− − −= =

+ − + + ≥= 
 ≤ <

∑ ∑  

It is easy to see that T is continuous, TS S⊂ , and for any ,x y S∈  and n N≥ , we have 

( ) ( )
[ ] [ ], ,
max max .n s s s s t tn n n n s ss N

Tx Ty p x y q A x yα α
τ τσ σ

∞

− −− −=

− ≤ − + −∑  

By the Mean Value Theorem applied to the function ( ) , 0 1f u uα α= < < , we see that for any ,x y S∈ , we 

have 
( )
8

3 1
x y x y

p
α α α
− ≤ −

−
 for all n N≥ . Hence 

( )
( )218 ,

3 1 8
p

Tx Ty x y p x y
p

α −
 − ≤ − + < −
 − 

 

and we see that T is a contraction on S. Hence, T has a unique fixed point which is clearly a positive solution of 
Equation (1). This completes the proof of the theorem. 

4. Examples 
In this section we present some examples to illustrate the main results. 

Example 4.1. Consider the difference equations 

[ ]
1 4 3

3 1,

12 2 max 0,  0.
3

n n
n n sn n

x x x n+
− −

  ∆ ∆ + + = ≥  
  

                       (28) 

Here 1 413, 2 , , 2
3

n n
n n na p qα += = = =  and 3, 1τ σ= = . Then 3

2 1 1, 
2 2

n

n nn nA B −

−
= = . Choosing 3k = , we  

see that kσ τ≥ − . Further it is easy to verify that all other conditions of Theorem 2.1 are satisfied. Therefore 
every solution of Equation (28) is oscillatory. 

Example 4.2. Consider the difference equations 

[ ]

1
1 2 3

3 2,

12 2 max 0,  0.
4

n n
n n sn n

x x x n+
− −

  ∆ ∆ + + = ≥  
  

                         (29) 

Here 1 41 1, 2 , , 2
3 4

n n
n n na p qα += = = =  and 3, 2τ σ= = . Then 3

2 1 1, 
2 2

n

n nn nA B −

−
= =  and  

( )2 2 1n
nC = − . Choosing 2k = , we see that kσ τ≥ − . Further it is easy to verify that all other conditions of 

Theorem 2.4 are satisfied. Therefore every solution of Equation (29) is oscillatory. 
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Example 4.3. Consider the difference equations 

( )
[ ]

2 3
3 1,

11 max 0,  1.
4n n sn n

n n x x n x n− −

  ∆ + ∆ + + = ≥  
  

                       (30) 

Here ( ) 213, 1 , , 
4n n na n n p q nα = = + = =  and 3, 1τ σ= = . By talking 1

nA
n

= , we see that all conditions 

of Theorem 3.1 are satisfied and hence Equation (30) has a bounded nonoscillatory solution. 
Example 4.4. Consider the difference equations 

( )
[ ]

1
3

3 2,

1 11 max 0,  1.
2n n sn n

n n x x x n
n− −

  ∆ + ∆ + + = ≥  
  

                       (31) 

Here ( )1 1 1, 1 , , 
3 2n n na n n p q

n
α = = + = =  and 3, 2τ σ= = . By talking 1

nA
n

= , we see that all conditions 

of Theorem 3.2 are satisfied and hence Equation (31) has a bounded nonoscillatory solution. 
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