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Abstract 
Bayesian network (BN) is a well-accepted framework for representing and inferring uncertain 
knowledge. As the qualitative abstraction of BN, qualitative probabilistic network (QPN) is intro-
duced for probabilistic inferences in a qualitative way. With much higher efficiency of inferences, 
QPNs are more suitable for real-time applications than BNs. However, the high abstraction level 
brings some inference conflicts and tends to pose a major obstacle to their applications. In order 
to eliminate the inference conflicts of QPN, in this paper, we begin by extending the QPN by adding 
a mutual-information-based weight (MI weight) to each qualitative influence in the QPN. The ex-
tended QPN is called MI-QPN. After obtaining the MI weights from the corresponding BN, we dis-
cuss the symmetry, transitivity and composition properties of the qualitative influences. Then we 
extend the general inference algorithm to implement the conflict-free inferences of MI-QPN. The 
feasibility of our method is verified by the results of the experiment. 
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1. Introduction 
Bayesian network (BN) is a well-accepted model to represent a set of random variables and their probabilistic 
relationships via a directed acyclic graph (DAG) [1] [2]. There is a conditional probability table (CPT) asso-
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ciated with each node to represent the quantitative relationships among the nodes. BN has been widely used in 
different aspects of intelligent applications including representation, prediction, reasoning, and so on [1] [3]. 
However, exact inference in an arbitrary BN is NP hard [4], and even the approximate inference is also very dif-
ficult [5]. As a result, BN’s inferences are not very efficient, which is doomed to pose limits to BN-related ap-
plications, especially for real-time situations. Fortunately, as the qualitative abstraction of BN, QPN was pro-
posed by Wellman [6] and can be appropriately used to remedy the above drawbacks of a BN. A QPN adopts a 
DAG to encode random variables and their relationships, which are not quantified by conditional probabilities, 
but are summarized by qualitative signs [7]. The most important thing is that there has been an efficient QPN 
inference (reasoning) algorithm, which is based on sign propagation and run in polynomial time [8]. 

However, the high abstraction level of QPN results in the problem that there is no information left to compare 
two different qualitative influences in a QPN. Thus, when a node receives two inconsistent signs from its two 
different neighbor nodes during inferences, it is hard to know which sign is more suitable for the node, so that 
the “? (i.e., unknown)” sign is obtained as the result sign on the node. This means that there are inference con-
flicts generated on the node, which lead to less powerful expressiveness and inference capabilities than expected 
for real-world prediction and decision-making of uncertain knowledge in economics, health care, traffics, etc 
[9]-[16]. Worst of all, when the ambiguous results caused by inference conflicts are produced, they will be 
spread to most parts of the network with the reasoning algorithm going on. 

To provide a conflict-free inference mechanism of QPN is paid much attention. Various approaches have 
been proposed from various perspectives. However, in some representative methods [9] [11] [13], the original 
sample data or threshold values are required or predefined when the influences are weighted quantitatively. This 
is not consistent with the BN-based applications that focus on probabilistic inferences taking as input BN with-
out the original sample data. Furthermore, a BN is frequently defined by experts instead of learned from data. 
Even though the original data are available, the efficiency of the process of deriving influence weights is sensi-
tive to the data size. Meanwhile, the uncertainty of the influence weight has not been well incorporated, and the 
propagation of influence weights lacks solid theoretical foundations during QPN inferences. 

Therefore, in this paper we are to consider eliminating the inference conflicts of general QPNs and developing 
a conflict-free inference method. We derive the quantitative QPN by adding a weight to each qualitative influ-
ence from the corresponding BN, while sample data and threshold values are not required. The weight is 
adopted as the information to compare two different qualitative signs. Therefore, when a node in a general QPN 
faces an inference conflict, a trade-off will be incorporated to avoid the conflict based on the weights. 

Mutual information (MI) is a quantity that measures the mutual dependence of the two random variables [17] 
[18]. As well, MI is widely applied to test the association degree among the BN nodes [19]-[21]. When node A 
receives two inconsistent signs from its two different neighbor nodes, say B and C, we can naturally think that 
the result sign on A is more dependent on the sign propagated from B than that from C, if the mutual information 
between A and B is larger than that between A and C. Based on the above idea, we adopt MI as the weight to 
quantify the degree of the mutual dependence between two nodes linked by a directed edge. 

Generally speaking, the main contributions of this paper can be summarized as follows: 
 We define the MI-based weight of a qualitative influence, called MI weight, and extend the traditional QPN 

by adding a MI weight to each qualitative influence. We call the extended QPN as MI-QPN. 
 We propose an efficient algorithm to derive MI weights from the conditional probability tables and prior 

probability distributions in the corresponding BN instead of the sample data. 
 We discuss the symmetry, transitivity and composition properties of qualitative influences in the MI-QPN. 

Then, we extend the general QPN’s inference algorithm to achieve conflict-free inferences with the MI- 
QPN. 

 We give preliminary experiments to verify the feasibility and correctness of our method. 

2. Related Work 
BN has been successfully established as a framework to describe, manage uncertainty using the probabilistic 
graphical approach [2] [3]. As the qualitative abstraction of BN, QPN [6] was proposed by Wellman and widely 
used in decision making, industrial control, forecasting, and so on [22]-[24]. The methods to construct QPNs 
mainly include deriving QPNs from the corresponding existing BNs [15] or giving QPNs by the domain experts. 
As for the QPN’s inference, an efficient algorithm was proposed by Druzdzel et al. [8]. The inference conflict 
has become a common problem for QPNs and how to resolve the inference conflicts is the subject that was paid 
much attention in recent years. Various methods were proposed from various perspectives. 
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Lv et al. [9] proposed the ambiguity reduction method by associating a qualitative mutual information weight 
to each qualitative influence in the QPN, but the weight can only be obtained from the given or generated sam-
ple data. This is not always feasible, since the BN may be not learned from data, or the sample data cannot be 
available. Parsons [10] introduced the concept of categorical influence, which is either an influence that serves 
to increase a probability to 1 or an influence that decreases a probability to 0, regardless of any other influences. 
By this approach, only some of the inference conflicts can be resolved. 

Renooij et al. [11] [15] proposed two methods to solve the inference conflicts by using both kappas values 
and pivots to zoom upon inferences. The kappas value based method distinguishes the strong and weak influ-
ences by the interval values that do not have solid theoretical basis for interval value propagation during QPN 
inferences. Renooij et al. [12] presented an enhanced QPN that differs from a regular QPN to distinguish be-
tween strong and weak influences. This method is only suitable for the binary-variable situation. A threshold 
value is required in these methods except that exploits context-specific information. Renooij et al. [13] proposed 
SQPN (semi-QPN) by associating a probability interval value with each qualitative influence to quantify the qu-
alitative influences. De Campos et al. [25] discussed the complexity of inferences in polytree-shaped SQPNs. 
Renooij et al. [14] extended QPNs by providing the inclusion of context-specific information about influences 
and showed that exploiting this information upon inference had the ability to forestall unnecessarily weak results. 
By this method, a threshold value should be given to distinguish the strong and weak influences. 

We extended QPN to solve inference conflicts by adding the weights to qualitative influences based on the 
rough set theory and interval probability theory respectively in [16] and [26]. By the method in [16], the depen-
dency degree was computed based on the threshold value, but the corresponding sample data was required to 
obtain the weights. By the method in [26], the interval-probability weights were derived from the corresponding 
BN’s CPT, but the calculation of interval probability during inferences led to approximate results. 

3. Preliminaries and Problem Statement 
3.1. The Concept of QPN 
A QPN has the same graphical structure as the corresponding BN, also represented by a DAG. In a QPN, each 
node accords with a random variable, and the influence between each pair of the nodes can only be one of the 
signs including “+”, “−”, “?” and “0”, where “+” (“−”) means the probability of a higher (lower) value for the 
corresponding variable increases, sign “?” denotes the unknown influence by giving an evidence and “0” 
represents initial state of the variable without observations. Each edge with a qualitative sign means the qualitative 
influence between two corresponding variables. The definition of the qualitative influence [6] is given as follows. 

Definition 3.1 We say that A positively influences C, written ( ),S A C+ , if for all values 1 2a a> , 0c  and x, 

which is the set of all of C’s parents other than A, ( ) ( )0 1 0 2P C c a x P C c a x> ≥ > . 
This definition means the probability of a higher value of C is increased when given a higher value of A, re-

gardless of any other direct influences on C. A negative qualitative influence S− and a zero qualitative influence 
S0 are defined analogously, by replacing ≥ in the above formula by ≤ and = respectively. If the qualitative influ-
ence between A and C does not belong to the above three kinds, written ( )? ,S A C . 

Example 3.1 Based on Definition 3.1 and from the BN shown in Figure 1, we derive a QPN shown in Figure 2. 

3.2. QPN Inference and Inference Conflicts 
It is known that the qualitative influence of a QPN exhibits various useful properties [6]. The symmetry prop- 

 

 
Figure 1. An simple BN.                 
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Figure 2. QPN derived from the BN in Figure 1. 

 
erty expresses if there is ( ),S A Bδ  in a QPN, then we have ( ),S B Aδ . The transitivity property can be used 
to combine qualitative influences along a trail without a head-to-head node into a single influence with the ⊗- 
operator. The composition property asserts that multiple qualitative influences between two nodes along parallel 
chains combine into a single influence with the ⊕-operator. The ambiguous results (“?”) maybe appear by ⊕- 
operator during inference, and then will be propagated to other nodes by ⊗-operator. 

Building on these three properties and operators, Druzdzel et al. proposed an efficient inference algorithm 
based on sign propagation [8]. The algorithm traces the effect of observing a value for one node on the other 
nodes by message-passing between neighbors. When the evidences are given to the network, each node receiv-
ing a message updates its sign and subsequently sends a message to each (induced) neighbor node that is inde-
pendent of the observed node. The sign propagation reach all the nodes that are not d-separated with the evi-
dence nodes. During the process of sign propagation, each node has changed its sign at most twice. 

The inference conflicts take place when a node receives two different kinds of qualitative signs (“+” and “−”). 
In fact, the weights of qualitative influences in a QPN are not always equivalent. Thus, in this paper, we will add 
a weight to each qualitative influence so that a node facing a conflict will take a sign (“+” or “−”) instead of “?” 
by comparing the corresponding weights. 

4. Constructing MI-QPN 
4.1. Concepts of Mutual Information 
It is well known that information entropy quantifies the information contained in a message and is a measure of 
the uncertainty associated with a random variable. Now we introduce relevant definition [17] and properties [1]. 

Definition 4.1 The information entropy H  of a discrete random variable X  with possible values 
{ }1 2, , , nx x x  is 

( ) ( ) ( )21 logn
i iiH X P X x P X x

=
= − = =∑                            (1) 

Definition 4.2 The conditional information entropy of Y  given X  is 

( ) ( ) ( ) ( )21 1 logI J
i i i i ii jH Y X P X x P Y y X x P Y y X x

= =
= − = = = = =∑ ∑              (2) 

where X  and Y  are two discrete random variables, { }1, ,i Ix x x∈  , { }1, ,i Jy y y∈ 

 
and I  (or J ) de-

notes the total number of possible values of X  (or Y ). 
We know ( )H X  is regarded as a measure of uncertainty about a random variable X , and ( )H X Y  de-

notes the amount of uncertainty remaining about X  when Y  is known. The mutual information is just de-
fined as the difference between ( )H X  and ( )H X Y , which is to denote the amount of uncertainty in X  
that is removed by knowing Y . 

Definition 4.3 The mutual information of two discrete random variables X  and Y  is defined as 

( ) ( ) ( ),I X Y H Y H Y X= −                                 (3) 

4.2. Defining MI-QPN 
It is known that the dependency quantity X  on Y  is the same with that of Y  on X . However, the same 
dependency degree may have different influences on X  and Y  respectively. This means that the weight of 

( ),S X Yδ  does not always equal that of ( ),S Y Xδ , although we always have ( ) ( ), ,I X Y I Y X= . Intuitively, 
for any node Y  with two different neighbor nodes X  and Z , if the degree of the mutual dependence be- 
tween Y  and X  is greater than that between Y  and Z , then the weight of ( ),S X Yδ  should be greater 
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than that of ( ),S Z Yδ . Consequently, we know the weights of qualitative influences should satisfy the follow-
ing properties: 1) ( )MI X Y→  does not always equal ( )MI Y X→ ; 2) For any X , Y  and Z ,  

( ) ( ) ( ) ( ) ( ) ( ), ,I X Y I Z Y MI X Y MI Z Y> = ⇔ → > = → . 
Now, we define the weight of a quantitative influence based on a normalized variant of the mutual informa-

tion. The weight is called MI weight that satisfies the above properties. 
Definition 4.4 The MI weight of a qualitative influence ( ),S X Yδ  is defined as 

( )
( )

( )
( ) ( )

0, , 0;
,

, 0.

I X Y
MI X Y I X Y

I X Y
H Y

 =
→ =  >


，
                         (4) 

From the above definition, we know that the MI weight further satisfies the third property: 3)  
( ) [ ]0,1MI X Y→ ∈ . Especially, ( ) 1MI X Y→ =  when X  depends on Y  completely, and ( )MI X Y→  

= 0 when X  and Y  are independent. 
Then, we consider the concerned computation in each of the three properties of the MI weight as follows: 

• For the first property, if ( ) ( ), , 0I X Y I Y X= = , we have ( ) ( )MI X Y MI Y X→ = → . If  

( ) ( ), , 0I X Y I Y X= ≠  and ( ) ( )H X H Y≠ , we know ( ) 0H X ≠  and ( ) 0H Y ≠ . Thus, we have  

( ) ( )MI X Y MI Y X→ ≠ → . 
• For the second property, if ( ) ( ), ,I X Y I Z Y> , we have ( ), 0I X Y > , since ( ), 0I Z Y ≥ . Then, we have 

( ) ( ) ( ) ( ) ( ) ( ), ,     ,MI X Y MI X Y H Y ZI Y I Z Y H Y= → =→                 (5) 

since if ( ), 0I Z Y = , otherwise ( ) 0MI Z Y→ = . Then, we have 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ), , 0,     MI X Y MI Z Y I X Y I Z Y H Y MI X Y MI Z Y→ − → = − > → > →       (6) 

If ( ) ( ), , 0I X Y I Z Y= = , then we have  

( ) ( ) 0MI X Y MI X Y− → =→                                    (7) 

If ( ) ( ), , 0I X Y I Z Y= ≠ , we have ( ) ( )MI X Y MI Z Y=→ →  since 

                 
( ) ( ) ( ) ( )( ) ( ), , 0MI X Y MI Z Y I X Y I Z Y H Y→ − → = − =                   (8) 

Therefore, the second property can be derived from Definition 4.4. 
• For the third property, if ( ), 0I X Y = , we have 

( ) 0MI X Y→ =                                          (9) 

If ( ), 0I X Y > , we have 

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ), 1MI X Y I X Y H Y H Y H Y X H Y H Y X H Y→ = = − = −         (10) 

Thus, we have ( ) ( ) ( ), 0I X Y H Y H Y X= − ≥ , ( ) 0H Y ≥  and ( ) 0H Y X ≥ , and if ( ) 0H Y ≠ , we have 

                  
( ) ( )0 1H Y X H Y≤ ≤                                   (11) 

By Formulae (9), (10) and (11), we can obtain ( )0 1MI X Y→ ≤≤ . 

Definition 4.5 If we have ( ),S A Bδ , we denote the qualitative influence with an MI weight as ( ) ( )MI ,B AS A Bσ
→ , 

where { }, ,?,0δ ∈ + − . 

By the symmetry property of the qualitative influence, we know ( ),S A Bδ  implies ( ),S B Aδ . Based on 

Definition 4.5, we know ( ) ( )MI ,B AS B Aσ
→ . Therefore, two MI weights are added to each QPN edge to repre-  
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sent bidirectional qualitative influences with the MI weights between the corresponding two nodes. 
Definition 4.6 MI-QPN is a DAG ( ), wG V Q= , where V  is a set of variables (nodes) in the graph, and  
wQ  is a set of qualitative relations and each qualitative influence in wQ  is associated with a MI weight. 

4.3. Deriving MI Weights from BN 
We can obtain a prior probability distribution from each orphans node and a CPT from each non-orphans one 
taking as input the BN directly. If 0B  is a orphans node, we denote the prior probability distribution as set 

( ) ( ){ }0 0 0 0 01PT B P B s s S= = ≤ ≤ . Otherwise, we denote the CPT of node 0B  with parents 1, , nB B  as the 
probability set ( ) ( ){ }0 1 0 0 1 1 0 0, , , , 1 ,1 ,1n n n i iCT B B B P B s B s B s i n s S s S= = = = ≤ ≤ ≤ ≤ ≤ ≤ 

, where iS   
denotes the total number of possible states of iB , and is  means the is -th state of iB . It is worth noting that 

1, , nB B  are independent given the value 0s  of their child node 0B . 
In order to derive the MI weights between 0B  and its parent iB  ( )1 i n≤ ≤ , it is necessary to obtain the 

conditional probability sets associated with 0B  and iB , denoted as  
( ) ( ){ }0 0 0 0 01 ,1i i i i iCT B B P B s B s s S s S= = = ≤ ≤ ≤ ≤ .  

  It is also necessary to compute the prior probability distribution of 0B  and iB , denoted as 

( ) ( ){ }0 0 0 0 01PT B P B s s S= = ≤ ≤ , ( ) ( ){ }1i i i i iPT B P B s s S= = ≤ ≤ . Then, we can use ( )0 iCT B B ,

( )0PT B  and ( )iPT B  to compute the MI weights of the qualitative influences associated with 0B  and iB  
according to Definition 4.4. Let   is  and iS  be the   is -th state and the total number of possible states of ran-
dom variable iB  ( )0 i n≤ ≤ , respectively, { }1, ,i is S∈  . Let { }1, ,i iD S=  , if ( )1 1, , 0n nP B s B s= = > , 
for all is  and for any { }1, ,m n∈  ,we have 

( ) ( ) ( )1 2

1 20 0 1 1 0 0 1 11 1 1 1, , , ,m m n

m m n

nS S S
m m m m j js s s j mP B s B s B s P B s B s B s P B s+ +

+ += = = = +
= = = = = = = =∑ ∑ ∑ ∏  

 

where ( )0 0 1 1, , m mP B s B s B s= = =  denotes the probability of 0B  taking the 0s -th state, given iB  taking 

the si-th state for each i  { }( )1, ,i m∈  , i.e., ( )0 0 1 1 m mP B s B s B s= = ∩ ∩ = . 

It can be seen that we need traverse the CPT once to derive the conditional probability set associated with one 
node and one of its parents. With the CPTs and the prior probability distributions of a BN, we propose Algo-
rithm 1 to compute the MI weights for each qualitative influence in the MI-QPN. 

As the basic operation in Algorithm 1, the multiplication operation for computing relevant probabilities in get 
conditional probability is the most time-consuming operation. Let m and n be the number of non-orphans nodes 
and the maximal in-degree of these nodes respectively. For convenience, we suppose the number of each node’s 
possible values, denoted as s , is the same as that in the corresponding BN. Thus, the total number of rows of 
each orphans node’s CPT is 1ms + . For each orphans node, the multiplication operation can be expressed for  
( ) ( ) 1, 2 smf m s f m s += ∗ +  times, which leads to the time complexity of Algorithm 1 in the worst case is 

( ) ( ) 1, log2 m mn f m s s n+∗ < ∗ ∗ . This means that to compute the MI weights for a QPN, we need scan each con-
ditional probability table in the relevant BN for 2log m  times at most. 

Example 4.3 We consider the MI weights for the QPN in Figure 2. By Algorithm 1, we can obtain the cor-
responding MI-QPN shown in Figure 3. 

5. Conflict-Free Inference with the MI-QPN 

It is known that ( ),S A Bδ  implies ( ),S B Aδ  according to the symmetry property. Then, we know there exist 

( ) ( ),MI ,B AS B Aδ  in the MI-QPN by Definition 4.4, since ( ),S B Aδ  exists in the corresponding QPN. We can 

obtain  

( ) ( ) ( ) ( ), ,A BI M B AM IS A B S B Aδ δ
→ →⇒                              (12) 
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Figure 3. MI-QPN.                      

 
Algorithm 1. Deriving MI weights from a BN.                                                                

Input: A BN 
Output: All the MI weights of the MI-QPN 
Symbol Description: 
● 0B : an orphans node in a BN or a non-orphans one with parents 1, , nB B  

● ( ) ( ) ( ){ }TP , , PT , , PTk m k mB B B B= 
: the prior probability distribution set of nodes , ,k mB B  

● ( ) ( ){ }0 0 0 0 0CT , , , , 1 , ,1k m k k m m i iB B B P B s B s B s s S k i m s S= = = = ≤ ≤ ≤ ≤ ≤ ≤  : the CPT of 0B  with some of its parents , ,k mB B  

● ( ) ( ) ( ){ }0 0 0TC , , CT , ,CTk m k mB B B B B B B=  : the set of conditional probability sets 

Steps: 
1. Obtain a topological sequence of all the nodes in the BN 
2. for each node B0 in the topological sequence do 
3. if B0 is a non-orphans node then 
4. CT(B0|B1,…,Bn)←get conditional probability (B0, TP(B1, …, Bn), CT(B0|B1, …, Bn)) 
5. Compute PT(B0) with TC(B0|B1) and PT(B1) 
6. for i←1 to n do 
7. Compute MI(B0→Bi) and MI(Bi→B0) with TP(B0|B1,…,Bn) and CT(B0|B1,…, Bn). 
8. end for 
9. end if 
10. end for 
Get conditional probability (B0, TP(Bk,…,Bm), CT(B0|B1, …, Bn)) 
1. if m<n then 
2. mid ←m−k/2 
3. CT(B0|Bk, …, Bmid)←{P(B0|Bk = sk, …, Bmid = smid)|1 ≤ s0 ≤ S0, k ≤ i ≤ mid, 1 ≤ si ≤ Si} 
4. CT(B0|Bmid+1, …, Bm)←{P(B0|Bmid+1=smid+1,…, Bn = sm)|1 ≤ s0 ≤ S0, mid+1 ≤ i ≤ n, 1 ≤ si ≤ Si} 
5. TC(B0|Bk, …, Bmid)←get conditional probability(B0, TP(Bk, …, Bmid), CT(B0|B1, …, Bmid)) 
6. TC(B0|Bmid+1, …, Bm)←get conditional probability(B0, TP(Bmid+1, …, Bmid), CT(B0|Bmid+1, …, Bm)) 
7. return TC(B0|Bk, …, Bmid)∪TC(B0|Bmid+1, …, Bm) 
8. end if 
9. return CT(B0|Bk) 

 
In order to address the transitivity property, we consider the MI-QPN fragment in Figure 4, where X denotes 

the predecessors of B  other than A , and Y  represents the predecessors of C  other than B . From this  
network, we have ( ) ( )1 ,A BMIS A Bδ

→  and ( ) ( )2 ,B CMIS B Cδ
→ . Based on ( ) ( )1 ,A BMIS A Bδ

→  and ( ) ( )2 ,B CMIS B Cδ
→ , we  

are to derive the qualitative influence of A  on C  with an MI weight, denoted as ( ) ( )MI ,A CS A Cδ
→ . 

First, based on QPN’s transitivity property, we can obtain 1 2δ δ δ= ⊗ . Then, we derive the MI weight of qu-
alitative influence A  on C , ( )MI A C→ . The transitivity property is denoted as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2, & , ,MI MI MIA B B C A C A BMI MI B CS A B S B C S A Cδ δ δ δ δ= ⊗
→ → → = → ∗ →⇒                 (13) 

In order to discuss the composition property, we consider the MI-QPN fragment in Figure 5, where X denotes  
the predecessors of C  other than A  and B . From the MI-QPN, we have ( ) ( )1 ,A CMIS A Cδ

→  and ( ) ( )2 ,B CMIS B Cδ
→ . 

Then, we are to derive the combination influence of ( ) ( )1 ,A CMIS A Cδ
→  and ( ) ( )2 ,B CMIS B Cδ

→ , denoted as 

( ) ( ) ( ) ( ) ( ) ( )1 2, , ,MI MIX MIC A C B CS X C S A C S B Cδ δδ
→ → →= ∨                       (14) 

where X AB= , ( )MI A C→  denotes the composition weight and “∨” is the composition operator. 
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Figure 4. MI-QPN fragment. 

 

 
Figure 5. MI-QPN MI-QPN fragment. 

 
Intuitively, the composition operator “∨” ought to satisfy the following properties: 1) The composition weight 

belongs to [0, 1]; 2) The composition operation is commutative; 3) The composition operation is associative; 4) 
Combining two influences with the same qualitative signs (e.g., two “+” signs or two “−” signs) will result in an 
influence with a greater MI weight; 5) Combining two influences with different qualitative signs will result in an 
influence dependent on but less than the larger one. Inspired by the evidence theory and the basic idea of evi-
dence combination [27], we define the composition operator “∨” based on evidence superposition. 

Definition 5.1 ( ) ( ) ( ) ( ) ( ) ( )1 2, , ,MI MIX MIC A C B CS X C S A C S B Cδ δδ
→ → →= ∨ , defined as follows: 

• if 1 2δ δ= , then  

( ) ( ) ( ) ( ) ( )1    and  X C A C BMI MI MI C CIC BMAMIδ δ= → = → + → − → ∗ →       (15) 

• if 1 2δ δ≠  and ( ) ( )A CI B CM MI→ ≥ → , then 

( ) ( ) ( ) ( ) ( )2    and  X C A C BMI MI MI C CIC BMAMIδ δ= → = → − → + → ∗ →       (16) 

• if 1 2δ δ≠  and ( ) ( )A CI B CM MI→ < → , then 

( ) ( ) ( ) ( ) ( )2    and  X C B C AMI MI MI C CIC BMAMIδ δ= → = → − → + → ∗ →   (17) 

• if 1 2δ δ≠  and ( ) ( )A CI B CM MI→ = → , then 

( ) ( )1 2   and  XM IC M CI Aδ δ δ= ⊕ → = →                         (18) 

Based the above properties, we give Algorithm 2 for conflict-free inferences with the MI-QPN. 
Now, we discuss the time complexity of Algorithm 2 for MI-QPN inferences. First, whether a node will be 

visited is determined by its node sign whose changes are specified in QPN’s general inference algorithm [8], 
while the influence weights are just used to decide the node sign during inferences. Second, Algorithm 2 is the 
same as the general QPN’s inference algorithm if there does not exist “?” during inferences [8]. However, Algo-
rithm 2 can be used to avoid the “?” results as possible by means of weighting influences quantitatively, where 
each time of weight computation w.r.t. the composition property can be fuelled by Step 5 in Merge-Sign in O(1) 
time. Therefore, the time complexity of Algorithm 2 will be the same as that for the general QPN’s inferences. 
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Algorithm 2. Conflict-free inference with an MI-QPN.                                                          

Input: an MI-QPN MQ 
Output: Sign of the influence of evidence node e on each node in MQ 
Steps: 
1. for each node n∈MQ do 
2. sign[n]←0, MIweight[n]←0, Propagate-Sign(φ, e, e, sign,1) 
3. end for 
Propagate-Sign(trail, from, to, msgsign, msgMIweight) 
1. Merge-Sign (tosign, toMIweight, msgsign, msgMIweight) 
2. sign[to]←tosign, MIweight[to]←toMIweight, trail←trail∪{to} 
3. for each (induced) neighbor of to do 
4. linksign←sign of influence between to and n 
5. msgsign←linksign⊗sign[to] 
6. msgMIweight←MIweight[to]*MI(to→n) 
7. Merge-Sign(nsign←sign[n], nMIweight←MIweight[n], msgsign, msgMIweight) 
8. if n∉trail and sign[n]∉nsign then 
9. Propagate-Sign(trail, to, n, msgsign, msgMIweight) 
10. end if 
11. end for 
Merge-Sign(tosign, toMIweight, msgsign, msgMIweight) 
/*tosign and toMIweight denotes both input parameters and return values*/ 
1. if tosign ≠ msgsign then 
2. if toMIweight ≥msgMIweight then 
3. toMIweight←toMIweight−msgMIweight+toMIweight*msgMIweight 
4. else if toMIweight<msgMIweight then 
5. tosign←msgsign, toMIweight←msgMIweight−toMIweight+toMIweight*msgMIweight 
6. else 
7. tosign←tosign⊕msgsign 
8. end if 
9. else 
10. toMIweight←msgMIweight+toMIweight−toMIweight*msgMIweight 
11. end if 

6. Experimental Results 
To test the performance of our method in this paper, we implemented our algorithms for constructing and inferring 
MI-QPN. We take BN’s inference results obtained from Netica [28] as the criteria to decide whether the increase 
(or decrease) trends of the nodes indicated by the inference results of the corresponding MI-QPN are correct. 

It is well known that Wet-Grass network is a classic BN for whether the Our Grass is wet, related to Our Wall, 
Rain, Our Sprinkler and Neighbor’s Grass status, containing 5 binary variables and 6 edges [2] [28]. From the 
Wet-Grass BN, we know the qualitative influences between node Rain and Neighbor’s Grass and the ones be-
tween Rain and Our Grass are the same. To illustrate our methods and show the results straightforwardly, we 
modify the knowledge in the network by removing node Neighbor’s Grass and the corresponding edge, which 
will not affect the rest part of the original network and we denote the possible values of the nodes wet, was on, 
rained as 1, and dry, was off, didn’t rain as 0. Moreover, we rename Our Wall as Wall or W, Our Grass as Grass or 
G and Our Sprinkler as Sprinkler or S for short. Then, the modified network is shown in Figure 6. 

First, we derive the corresponding QPN and MI-QPN shown in Figure 7 and Figure 8 respectively. Then, we 
compare the inference results of the QPN and those of the MI-QPN to verify the feasibility of our algorithms. By 
using the general QPN’s inference algorithm [8] and our inference algorithm for an MI-QPN, we take each node in 
the QPN and the MI-QPN as evidence and record the inference results of other nodes. The comparisons are shown 
in Table 1, from which we can see all possible inference conflicts have been eliminated in the MI-QPN. 

Then, we compare the inference results on the modified Wet-Grass BN and those on the derived MI-QPN. We 
take each node of the BN as evidence, and then record the inference results of other nodes shown in Table 2, 
where E-Node and E-Sign denotes the evidence and corresponding sign respectively. The E-sign 0 → 1 represents 
that the state of the evidence node changes from 0 to 1, indicating that the probability of state 1 is changed from 0 
to 1. If a node in the MI-QPN takes sign “+” (“−”) as the final inference result and the increase (decrease) of the 
probability of state 1 of the corresponding node in the BN, we can conclude that the inference result is correct. 
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Figure 6. The modified Wet-Grass BN.                                             

 

 
Figure 7. Wet-Grass QPN.            

 

 
Figure 8. Wet-Grass MI-QPN.         

 
Table 1. Comparisons of inference results between QPN and MI-QPN.                                             

Evidence QPN MI-QPN 
Node Sign Rain Sprinkler Grass Wall Rain Sprinkler Grass Wall 
Rain + + − ? ? + − + − 

Sprinkler + − + ? ? − + + + 
Grass + ? ? + ? + + + + 
Wall + ? ? ? + − + + + 

 
Table 2. Comparisons of inference results between the modified BN and the derived MI-QPN.                          

 E-Node E-Sign Rain Sprinkler Grass Wall 

BN 

Rain 0 → 1 0 → 1 0.5 → 0.10 0.475 → 0.905 0.355 → 0.165 

Sprinkler 0 → 1 0.31 → 0.0476 0 → 1 0.314 → 0.902 0.0379 → 0.702 

Grass 0 → 1 0.0433 → 0.323 0.0934 → 0.676 0 → 1 0.0782 → 0.504 

Wall 0 → 1 0.245 → 0.104 0.183 → 0.931 0.408 → 0.892 0 → 1 

MI-QPN 

Rain + + − + − 

Sprinkler + − + + + 

Grass + + + + + 

Wall + − + + + 
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7. Conclusions and Future Work 
In this paper, we introduced mutual-information based weights (MI weights) to qualitative influences in QPNs to 
resolve conflicts during the inferences. We first defined the MI weights based on mutual information and 
MI-QPN by extending the traditional QPN. Then, we proposed the method to derive the MI weights for the 
MI-QPN from the corresponding BN without sample data or threshold values. By theoretic analysis, we know the 
method for deriving MI weights is effective. Furthermore, we discussed the symmetry, transitivity and composi-
tion properties in the MI-QPN, and extended the general influence algorithm to implement the conflict-free in-
ferences of MI-QPN. The feasibility of our method was verified by the results of the preliminary experiment. 

Our work in this paper also leaves open some other interesting research issues. We are to further consider 
adding the MI weights to the qualitative synergies and discussing the method to resolve the inference conflicts 
caused by two inconsistent signs with the same MI weight. As well, we will further resolve the conflicts that take 
place during the fusion or integration of multiple QPNs by adding the MI weights to the qualitative influences in 
the QPNs. These are exactly our future work. 
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