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Abstract 
This article seeks to model daily asset returns using log-ARCH-Lévy type model which is expected 
to reproduce most of the stylized features of financial time series data (such as volatility cluster-
ing, leptokurtic nature of log returns, joint covariance structure and aggregational Gaussianity) 
that are empirically found in different types of market. In addition, unconditional variance of daily 
log returns in risk neutral world of different conditional heteroscedastic models is derived. A key 
observation is that liquid markets and illiquid market may not have the same underlying dynam-
ics. For instance empirical analysis based on S&P500 index log returns as a liquid market do not 
have autoregressive part in their first moments while in Nairobi Securities Exchange NSE20 index 
there is strong presence of autoregressive dynamics of order three, i.e. AR(3). Higher moments of 
both markets are serially correlated. 

 
Keywords 
AR-APARCH, Lévy Increments, Generalized Hyperbolic Distribution, Normal Inverse Gaussian,  
Illiquid Market 

 
 

1. Introduction 
It is well known that the stock price changes are neither independent nor identically distributed. There are linear 
and nonlinear dependencies between successive price changes. Distributional assumptions concerning risky 
asset log returns play a key role in option pricing. According to research finding of Mandelbrot [1], evidence 
indicates that the empirical distributions of daily stock returns differ significantly from the traditional Gaussian 
model. In search of satisfactory descriptive models for financial data, large number of distributions have been 
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tried (see for example, [2]-[6]). 
The deviations from normality become more severe when more frequent data are used to calculate stock 

returns. Various studies have shown that the normal distribution does not accurately describe observed stock 
return data. Over the past several decades, some stylized facts have emerged about the statistical behavior of 
speculative market returns such as aggregational Gaussianity, volatility clustering, etc see [7] [8]. On the same 
note, most of the literature for example [9]-[12] and references therein, assume that daily log returns, can be 
modeled by exponential Lévy processes and geometric Lévy process. 

There are two important directions in the literature regarding these type of stochastic volatility models. 
Continuous-time stochastic volatility process represented in general by a bivariate diffusion process, and the 
discrete time autoregressive conditionally heteroscedastic (ARCH) model of [13] or its generalization (GARCH) 
as first defined by [14]. Option pricing in GARCH models has been typically done using the local risk neutral 
valuation relationship (LRNVR) pioneered by [15]. The crucial assumptions in his construction are the con- 
ditional, normal distribution of the asset returns under the underlying probability space and the invariance of the 
conditional volatility to the change of measure. The empirical performance of these normal option pricing 
models has been studied extensively, for example in [16], [17]. 

The main focus of this paper is to develop a ARCH type Lévy model which attempts to capture some of the 
stylized features observed in demeaned log returns from any market data. More so we derive unconditional 
variance of daily log returns in risk neutral world of different ARCH type models, and an in-depth empirical 
study in liquid and illiquid market. All parameters are estimated from historical data, i.e. for S&P500 index from 
January 3, 1990 to January 18, 2008 and NSE20 index from March 2, 1998 to July 11, 2007. 

The article is organized as follows. Section 2 provides a brief overview of ARCH type models and Lévy 
increments resulting to parameter estimation of observed salient features. In Section 3 which is our major con- 
tribution, unconditional variance of different ARCH type models is presented. Filtered Leptokurtic residuals of 
Lévy increments are calibrated. Conclusions are drawn in Section 4. Appendix is in the last section. 

2. ARCH Type Models 
ARCH-type models are in general, discrete models used to estimate volatility of financial time series data such 
stock returns, interest rates and foreign exchange rates. Let 

1 1

log logt t
t

t t

S S
r

S S− −

= −  

where tS  denotes the price of stock at time t . Define the following equation  
( )20, ,t t t t tr Nµ ε ε σ= +                                (1) 

where 
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where 2
tσ  is the GARCH(p, q) volatility process. If 0q =  then tσ  is ARCH(p). [18] and [19] provide a 

general specifications of volatility dynamic that nest most ARCH type models. In this connection volatility 
dynamics can be written as 

( )2 2 2
1 1 1t t t tf zσ ω βσ ασ− − −= + +  

where ( )1tf z −  is the innovation function. Different GARCH models are mainly characterized by the following 
specifications of the innovation function ( )1tf z − . 
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The innovation function is used to model asymmetry and news impact to say the least. These GARCH models 
can be generalized to allow non-linearity of volatility dynamics by using Box-Cox transformation as follows  

( ) ( ) ( )2
1 1 1 1 1,  with  t t t t t tf z f z z ψψ ψ ψσ ω βσ ασ θ− − − − −= + + = −                    (4) 

which implies modeling news and power, will nest most of the proposed GARCH models in Literature. Note 
that the leverage parameter θ  shifts the innovation function, the news parameter κ  tilts the innovation, and 
the power parameters γ  and ψ  flatten or steepen the innovation function. Such a model (4) is the Asym- 
metric Power Autoregressive Conditional Heteroscedastic model i.e. APARCH model defined in (5). 

The APARCH(m, n) model of can be written as follows  

( ),  ,  . . 0,1t t t t t tX z z i i dε ε σ= =   

( )
1 1

m n

t i t i i t i j t j
i j

δδ δσ ω α ε γ ε β σ− − −
= =

= + − +∑ ∑                            (5) 

subject to 0, 0, 0, 1 1,iω δ α γ> ≥ ≥ − < <  for 1, ,i m=  , 0jβ ≥ , for 1, ,j n= 
. and  

( )1,  where  
m n

i j i i t i i t i
i j

k k
δ

β α ε γ ε− −+ < = −∑ ∑                        (6) 

The model introduces a Box-Cox power transformation on the conditional standard deviation process and on  
the asymmetric innovations, ( )i t i i t i

δ
α ε γ ε− −− , adds flexibility of a varying exponent with an asymmetry co-  

efficient to take the leverage effect into account. The properties of APARCH model have been studied, see [20]. 
The model nests seven other ARCH extensions as special cases. 
• ARCH model of [13] when 2, iδ γ= , and 0;jβ =  
• GARCH model of [14] when 2δ = , and 0;=iγ  
• GJR-GARCH Model of [21] when 2;δ =   
• TARCH Model of [22] when 1.δ =   

Note that ( )1t t trµ −=  F  denote the conditional mean given the information set 1t−F  available at time t − 1. 
The innovation process for the conditional mean is then given by t t trε µ= −  with corresponding unconditional 
variance 2σ  and zero unconditional mean. The conditional variance is defined as ( )1 .t t tV rσ −= F  

2.1. Empirical Data 
For simplicity, we focus on daily closing indices { }tS  as reported in Nairobi Securities Exchange for NSE20 
share index and S&P500 index in New-York Stock Exchange. Daily log-returns tX  of S&P500 index are 
computed from January 3, 1990 to January 18, 2008 for a total of 4550 daily observations. While for NSE20, 
share indexes are computed from March 2, 1998 to July 11, 2007 for a total of 2317 daily observations.  

All return series exhibit strong conditional heteroscedasticity. The Ljung and Box test rejects the hypothesis 
of homoscedasticity at all common levels both for returns in S&P500 index and AR(3) residuals of linear re- 
gression in NSE20 share index. We estimate GARCH type models assuming conditional normality. With re- 
spect to the absolute value of parameter estimates, we find that ( )0 1α β< + <  but different for both indices 
(NSE20 ( )0 0.924238 1α β< + = < , S&P500 ( )0 0.994097 1α β< + = < ), indicating the typical higher per- 
sistence of shocks in volatility in New York Stock exchange compared to Nairobi Securities Exchange. Model 
(5) is estimated using Pseudo Maximum Likelihood estimator based on the assumption of conditional normal in- 
novations. The parameter estimates of (8) are reported in Table 1 and AR-ARCH residual calibrations of GH 
distribution (9) are presented in Table 2. Empirical and kernel densities of fitted distributions for both indices 
are compared in Figure 1. 

( )1 1 2 2 3 3 , , 0,1 ,t t t t t t t t tX X X X Z Z Nφ φ φ ε ε σ− − −= + + + =                      (7) 

( )
1 1

m n

t i t i i t i j t j
i j

δδ δσ ω α ε γ ε β σ− − −
= =

= + − +∑ ∑  

2.2. Lévy Increments 
Suppose ( )uφ  is the characteristic function of a distribution. If for every positive integer n, ( )n uφ  is the  
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Table 1. GARCH and GJR model estimates for the indices.                                                           

 NSE20  S&P500  

Parameter GARCH GJR ( )2δ =  GARCH GJR ( )2δ =  

1φ  0.18915 (0.024496) 0.18136 (0.02424)   

2φ  0.16451 (0.023785) 0.16245 (0.02352)   

3φ  0.11388 (0.023413) 0.11516 (0.02308)   
410ω×  0.03549 (0.006902) 0.03458 (0.00647) 0.006577 (0.001645) 0.01088 (0.00204) 

α  0.15023 (0.017978) 0.18578 (0.02528) 0.056461 (0.0067528) 0.00322 (0.00512) 

β  0.78763 (0.024753) 0.79045 (0.02373) 0.937566 (0.0074845) 0.93202 (0.0079) 

( )GJR γ   −0.07332 (0.02592)  0.10558 (0.0123) 

( )10Q  9.3468 (0.2287) 8.8337 (0.2648) 16.5309 (0.08541) 15.2862 (0.1220) 

( )2 10Q  7.1689 (0.5739) 8.46159 (0.38973) 6.8918 (0.54835) 5.9298 (0.6551) 

lgl −8363.5 −8367.7 −15090.9 −15090.9 

n 2316 2316 4549 4549 

Notes: standard errors are in parenthesis. lgl is the log likelihood. 
 

thn  power of a characteristic function, we say that the distribution is infinitely divisible. One can define for 
every such infinitely divisible distribution a stochastic process { }, 0tX X t= ≥  called a Lévy process, which 
starts at zero, has independent and stationary increments and such that the distribution of an increment over 
[ ], , , 0s s t s t+ ≥  has ( )( )t

uφ  is the characteristic function. For more detailed treatment of Lévy process, see 
[23]. 

Definition 2.1 The probability density function of the one-dimensional Generalized Hyperbolic distribution is 
given by the following: 
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where 2 2 2γ α β= −  and Kλ  is the modified Bessel function of third kind, with the index .λ   

( ) ( )1 1
0

1 exp d
2 2

K v v v vλ
λ

ωω
∞ − − = − +  ∫                              (9) 

µ  is the location parameter and can take any real value, δ  is a scale parameter; α  and β  determine the 
distribution shape and λ  defines the subclasses of GH and is related to the tail flatness. 

The mean and variance of GH distribution are given respectively by the followings  

( ) ( )
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                                (10) 

and 
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where 2 2ζ δ α β= − . Note that, if ( ), , , ,X GH λ α β δ ν , then 

( )1 , , , , has normal-Inverse Gaussian distribution NIG
2

X GH α β δ µ − 
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( ) ( )1, , , ,   hyperbolic distribution HYX GH α β δ µ                          (12) 

( ) ( ), , ,0,    variance-gamma distribution VGX GH λ α β µ                     (13) 
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For more information about GH distribution, see [24]. 

3. Modeling the Underlying 

Let ( ) [ ]( )0,
, , ,t t T∈

Ω  F  be a stochastic basis describing the uncertainty of the economy. We refer to   as the  

physical probability measure and tF  represent the information flow driven by Brownian motion ( ) [ ]0,t t T
B B

∈
=   

and Lévy proces ( ) [ ]0,t t T
L

∈
= L . Let tS  be the price of a stock at time t  adapted to the natural filtration tF .  

Define daily log return as 1log log .t t tX S S −= −  It is well known from our empirical studies that tX  can he 
represented as t t t tX µ ε ξ= + +  where tµ  is a mean function and ,t tε ξ  are the two components of the error 
term. Moreover, define a thp  order autoregressive process { }tX  with APARCH(m,n) error as 
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where tZ  and tL  are identically and independently distributed random variables. A general time series model 
for log returns would be 

( ) ( ), 0,1 , t t t t t t tX Z Z N GHµ σ σ= + + ∈L L  

3.1. Risk Neutralization 
In this section, we construct risk neutral probability measure in the context of [15] and [19]. Duan [15] intro- 
duced the GARCH option pricing model by generalizing the traditional risk neutral valuation methodology to 
the case of conditional heteroscedasticity, the so called Local Risk Neutral Valuation Relationship (LRNVR). 

Definition 3.1 A pricing measure   is said to satisfy the locally risk-neutral valuation relationship (LRNVR) 
if measure   is equivalent to  , and 
 
Table 2. Calibration of AR-GARCH(1,1) residuals to a class of infinitely divisible distributions.                         

NSE20 GH HY NIG S&P500 GH HY NIG 

λ  −1.79233 1.0000 −0.5000 λ  2.38336 1.0000 −0.500 

α  0.98225 1.15813 0.66862 α  0.14671 1.68640 1.33977 

β  −0.05226 −0.06604 −0.05864 β  −0.14279 −0.14976 −0.15755 

δ  1.79373 0.45207 1.18530 δ  0.04052 1.04004 1.59588 

µ  0.12296 0.13923 0.13014 µ  0.14292 0.15130 0.16032 
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Figure 1. Empirical and kernel densities of standardized GARCH filtered Lévy increments of NSE20 index (left) S&P500 
index (right) calibrated vs. density of fitted infinitely divisible distributions and normal distributions.                                                                                            
 

1t tE X r−  = 
 F                                       (15) 

( ) ( )1 1Var Vart t t tX X− −= F F                           (16) 

almost surely with respect to measure  . 
For some commonly used assumptions concerning utility functions and distributions of change of con- 

sumption, [15] shows that a representative agent maximizes his expected utility using the LRNVR measure  . 
Risk neutralization should leave the variance unchanged and should transform the conditional expectation so 
that the discounted expected price of the underlying asset becomes a martingale. It is worth noting that in the 
case of homoscedasticity process, ( )0, 0p q= = , the conditional variances become the same constant and the 
LRNVR reduces to conventional risk neutral valuation relationship.  

Consider the general model of daily log returns under the data generating probability measure   as 

( ) ( )1 1
2 2
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F                         (17) 

where the parameters 0, 0ω α> >  and 0β >  and 1 0β α− − >  and given 0σ . The sequence { }tε  and 
{ }tξ  are conditionally independent, while 1t−F  is the past information set. tµ  represents the conditional 
expectation of returns.  

The pricing measure   shifts the error term tε  by some measurable function tλ , so that the conditional 
expectation of tX  becomes equal to r . In the case of AR(1)APARCH(1,1)-Lévy filter, we follow the [25] 
argument. Therefore under the equivalent martingale measure   the model (16) translates to  

1 2 ;t t t tX µ ε ε= + +                                                     (18) 
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The LRNVR implies that under the risk neutral measure   the return process evolves as  

( )
( ) ( )

( )
0,1 , ;

,  
, , , ;

t t
t t t t t

NIG NIG NIG NIG

Z N NIG
X r Zσ

α β µ δ

Θ= + + − 
Θ =

 


L

L L                    (20) 



I. J. Mwaniki 
 

 
21 

( )22 2 2
1 1 1 1,t t t t tZσ ω α λ σ βσ− − − −= + − +                            (21) 

( )1 1 1 ,t t trλ µ σ− − −= −                                        (22) 

1 2 ,t tv Xµ φ− −= +                                            (23) 

It follows quite easily that 
( ) ( ) ( )2

1 1 1  and  Var Var 1 Vart t t t t t t tX r X X σ− − −  = = = + 
    F F F L               (24) 

3.2. Unconditional Variance 
The following propositions provide the unconditional variance for the process tX  under    

Proposition 3.1 Consider AR(3) APARCH(1,1) Lévy filter, with 2δ =  and 0k =  which implies AR(3)- 
GARCH(1,1) Lévy model, the unconditional variance of tX  under the LRNVR equivalent measure   is  

( )
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Proof: See Appendix.                                                                      
Proposition 3.2 A special case of AR(1)GARCH(1,1)Lévy filter the unconditional variance under the LRNVR 

equivalent measure   is given by 

( ) ( )( )
( )( )
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2

1 Var 1
Var

1 1 1 Var

t

t
t

v r
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ω α φ

α φ β

 + + − −  =
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Proof: See Appendix.                                                                      
Example 3.1 In case of Hyperbolic distribution we substitute mean and variance respectively into (25). 

Where the parameters used maximize the likelihood function of Hyperbolic distribution. i.e. Let 
2 2   HP HP HP HPζ δ α β= −  then, 

( )
( )

2

2 2
1

,  andHPHP HP
t HP

HPHP HP

K
K

ζβ δ
µ

ζα β
= +

−
L                                   (25) 

0.0073397=                                                      (26) 

( )
( )

( )
( )

( )
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22
2 3 22

2 2
1 1 1

Var HP HP HPHP
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HP HP HP HPHP HP

K K K
K K K
ζ ζ ζβ

δ
ζ ζ ζ ζα β

     = + −    −     
L              (27) 

1.713026=                                                      (28) 
Consider a discrete time economy, where interest rates and returns are paid after each time interval of equal 

spaced length. Suppose there is a price for risk, measured in terms of a risk premium that is added to the risk 
free interest rate r to build the expected next period return. As in Duan [15], we adopt and extend the ARCH-M 
model of [26] with the risk premium being linear functional of the conditional standard deviation, hence the 
following model under  ,  

( )
( )
( ) ( )

1

22 2
1 1 1

, infinitely divisible density;

  where 0,1 , Standard normal;

, GARCH 1,1 ;
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     (29) 

The parameters , ,ω α  and β  are constant parameters satisfying stationarity and positivity conditions, while 
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the constant parameter λ  may be interpreted as the unit price for risk. If we change the function 2
tσ  in (29) to 

model news impact, we get threshold GARCH model of [21] where 

( ) 2 2
1 0 2 0x xg x x xω α α< ≥= + +                                 (30) 

hence the resulting TGARCH Lévy filter model  

( )
( )
( ) ( )

1

2 2
1 1 1

, infinitely divisible density;

  where 0,1 , Standard normal;

, TGARCH 1,1 ;
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F L L

        (31) 

Proposition 3.3 The unconditional variance of the GARCH-M Lévy filter model under the LRNVR equivalent 
martingale measure   is 

( )
( )2

1 Var
Var

1 1
t

tX
ω

α λ β

+
=

− + −
 L

                                 (32) 

Proof: See Appendix.                                                                        
Proposition 3.4 The unconditional variance of the TGARCH-M Lévy filter model under equivalent martingale 
measure   is 

( )
( ) ( )( )2

1 2

1 Var
Var

1 1
t

tX
ω

αψ λ α λ ψ λ β

+
=

− − + − −
 L

                   (33) 

where 

( ) ( ) ( )2 21exp 1
22π

uu u u uψ  = − + + Φ 
 

                       (34) 

and ( )uΦ  denoting the cumulative standard normal distribution function. 
Proof: See Appendix.                                                                      

4. Concluding Remarks 
This article develops an log-ARCH-Lévy type risk neutral model. The proposed method delivers predictive dis- 
tribution of the payoff function for a given econometric model. As a result, the probability distribution could be 
useful to market participants who wish to compare the model predictions to the potential prices in liquid and 
illiquid markets. 

Any effective option pricing model is expected to be consistent with distributional and time series properties 
of the underlying asset. The proposed model accommodates most of the observed stylistic fact about financial 
time series data i.e. skewness and leptokurtic nature of demeaned GARCH filtered log returns and perhaps 
aggregational Gaussianity. In summary, 
• developed markets and emerging markets may not have the same underlying dynamics. It would be incorrect 

to assume that a universal model for the underlying process for all markets. 
• The presence of linear autoregressive dynamics AR(3)-GARCH(1,1) effects in NSE20 index affects the un- 

conditional variance in risk neutral world. S&P500 index was found to follow GARCH(1,1) plus leptokurtic 
residual which was calibrated in one class of generalized hyperbolic distributions,say for example, Normal 
inverse Gaussian (NIG). 

• The presence of autoregressive dynamics, i.e. AR(3)-GARCH(1,1) model of NSE20 index as an example of 
illiquid market would have an impact in pricing options, if the index were to be used as an underlying process. 

The log-ARCH-Lévy model is very tractable compared to other jump-diffusion or stochastic volatility models. 
It attempts to addresses the drawbacks of local volatilities. Further refinements and extensions are left for future 
research. 
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Appendix 
Proof of proposition 3.1 

Given ( ) ( ) 3
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Thus under stationarity, the unconditional expectations are independent of t  
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Therefore, the unconditional variance of AR(3)GARCH(1,1)Levy filter model under LRNVR equivalent mar- 
tingale measure is 
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Proof of proposition 3.2 
This is a special case of (3.1) with 1φ φ=  and 2 3φ φ= . 
Proof of proposition 3.3 
It is a special case of proposition 3.4 when we take 1α α=  and 2 0.α =  
Proof of proposition 3.4 
Under measure .   
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and ( )uφ  denoting the cumulative standard normal distribution. Note that ( )1 ,1tZ N λ−′ −  and 
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Therefore, for positive support  
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