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Abstract

This paper investigates the structure of general affine subspaces of I’ (]R"'). For a d x d expansive

matrix 4, it shows that every affine subspace can be decomposed as an orthogonal sum of spaces
each of which is generated by dilating some shift invariant space in this affine subspace, and every
non-zero and non-reducing affine subspace is the orthogonal direct sum of a reducing subspace
and a purely non-reducing subspace, and every affine subspace is the orthogonal direct sum of at
most three purely non-reducing subspaces when |det4| = 2.

Keywords

Affine Subspace, Reducing Subspace, Shift Invariant Subspace, Orthogonal Sum

1. Introduction

Let A be a d x d expansive matrix. Define the dilation operator D and the shift operator T,, k € Z*, by
1
Df (.):|detA|E f (A) and T, f (): f (‘—k), fel? (Rd),

respectively. It is easy to check that they are both unitary operators on L?(RR®). Given a closed subspace X of
L?(R?), X is called a shift invariant subspace if T, X =X for every k eZ®; X is called a reducing subspace
of LZ(R") if DX=X and T,X =X forevery keZ"; X is called an affine subspace of LZ(R") if there
exists an at most countable subset ® of L (R“) such that

X =span{D'Tp:ge®, jeZkez"}.
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In this case, we say that @ generates the affine subspace X. An affine subspace, which does not contain any
non-zero reducing subspace, is called purely non-reducing. By Theorem 3.1 in [1], a closed subspace X of

L2 (R“) is an affine subspace if and only if X = span{Djf feM,je Z} for some shift invariant subspace

M. Therefore an affine subspace X of L?(RR®) is a reducing subspace if and only if it is shift invariant. So far,
the study of reducing subspaces has achieved fruitful results. The existence and construction of wavelet frames
for an arbitrary reducing subspace can be seen in [2]-[7]. For one-dimensional case A = 2, Gu and Han investi-
gated the existence of Parseval wavelet frames for singly generated affine subspaces in [8] and the structural
properties of affine subspaces in [9]. For a given d x d expansive matrix A, Zhou and Li studied the construction
of wavelet frames in the setting of finitely generated affine subspaces of L (Rd) in [10]. For a general d x d
expansive matrix A, this paper focuses on the structure of affine subspaces of L2 (Rd ) which is a continuation
of the literature [10] and has not been investigated yet.

2. Main Results

Lemma 1. Let X and Y be closed subspaces of a Hilbert space H and PXL be the orthogonal projection onto
X*. Then

D (XNY)* =span{x*Y*};
2) W:(spﬁ{x,v})@x.
Proof. 1) Obviously, (X ﬂY)L =X"UY'c spﬁ{XL,Yi} . For the other direction, note that
X* cspan{X",Y*}and Y* cspan{X*,Y"},
then
(spﬁ{xi,vl})lcx and (span{x* Y*}) <.
So (span{X*Y*})" = XNY . Therefore, (X NY)" < span{X*,Y*} . Thus 1) holds.
2)For feP Y P, span{X,Y},thereexistssome gespan{X,Y} suchthat f=P g.So
g=P_.g+Pg="f+Pg,or f=g-P,gespan{X,Y}, whichshows fespan{X,Y}o©X due to the fact

that feX*. For fespan{X,Y}©X, 6 wehave fespan{X,Y} and f L X.Thusforany >0, thereis
gwith |g]<e and h eX and h,eY suchthat f=h +h,+g.Consequently,

f=P.,f=P (h+h+g)=P g+P heP Y

since “PXL g

‘ <|g] < e . The proof is completed. O

Lemma 2. Let {Xn ‘ne Z} be a monotone sequence of subspaces in a Hilbert space H.
1) If {X,:neZ} isincreasing, then

ﬁ{xn:neZ}=m=(ﬂxnj@(@(xm®xn))
2)If {X,:neZ} isdecreasing, then
ﬁ{xn:neZ}zmz(ﬂxnj@(@(Xn@XM)}.

Proof. We only prove 1) since 2) can be obtained similarly. Since {Xn ‘ne Z} is increasing, the first equal-
ity is obvious and

[ﬂan@(@(xmoxn)ch-

nez nez nez
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If fe(JX,, then for any >0, there exists ge™, n,eZ and heX, such that |g]<e and

nez

f =g+h. For such h, there is a unique sequence {hn}:":fw and a unique h such that h e X, o X, for

each n<ny, he (X, and h=h+ Y h . This means that

nez

f € (ﬂxnj®(®z(xnﬂ © Xn)] = (ﬂxnj@(@(xml © Xn))
neZ ne nezZ ne
The proof is completed. O
Proposition 1. Suppose that X is an affine subspace of LZ(IR{d) with M being its generating shift invariant
subspace. Then there exist a shift invariant subspace M, in X and a reducing subspace Y of L? (Rd) contained

in X such that the length of M; is no more than thatof Mand X = [@MIJ@Y :

nez
Proof. For each jeZ, define

Y, =span{D"M :neZn> j}.

Obviously, Y,,cY; for jeZ and X = UYJ- .Let Y = ﬂYj . Similarly to the proof of Proposition 2.2 in
jez jez

[10], we know that Y is a reducing subspace. Now define M, =Y, ©Y;. Then Y; ©Y

2 and

=D'"'M, by Lemma

j+l

X =U_Yj=[ﬂvjj@(@(\(j OYM)j:Y@[JQE-) Dj”MJ:Y@[@ DJMl].

jeZ jeZ jeZ jeZ jez
Suppose that for some subset ¥ — L* (R") such that

M :Spm{Tkt//:keZd,t//e‘P}.

Since Y, is a shift invariant subspace, so is Y; . Thus for each keZ®, T, PYOL = oniTk' Also note that
Y, :ﬁ{DjM,M jeZ,j >O} = span{Y,,M} . Therefore, by Lemma 1,
M, =Y, 0, =(span{M.Y,}) Y,
=|:’Y()L—M:5pm{PY&Tky/:keZd,t//e‘P}
=ﬁ{TkPY0ly/:keZd,We\P},

which shows that My is a shift invariant subspace of length no more than the length of M. The proof is com-
pleted. O

Proposition 2. Suppose that X is a non-zero affine subspace of L (Rd) and Q is the maximal shift invariant
subspace contained in X. Then the following hold:

1) DQcQ and Qo DQ is a shift invariant subspace contained in X;

2) X =@D(QoDQ) ifand only if X is purely non-reducing subspace of L2 (Rd ) .

nez

Proof. 1): Obviously, DQ < X is shift invariant space since Q is shift invariant. So DQ — Q due to the
fact that Q is the maximal shift invariant subspace contained in X. Thus Q © DQ is a shift invariant subspace
contained in X.

2): By 1) and Lemma 2, it follows that

X =span{D"Q:neZ} :nEUZD"Q =(@(Q@ DQ)}@(H D”Qj.

nez nez
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If X is purely non-reducing, then (|D"Q={0} since ()D"Q=[)D"Q is a reducing subspace. So

nez nez neN

X=@ D(Q@ DQ) . Suppose X =P D(Q@ DQ) and X contains a reducing subspace Y. Next we only need

nez nez

to show Y :{0} . Since Y is reducing, we have Y cQ and DY =Y cDQ,i.e, Y <QMDQ. Also note that

Q=(QoDQ)®(QNDQ). Hence Y L(QoDQ). Thus foreach neZ, Y =D"Y L D"(QNDQ). Therefore
Y L X, which shows that Y ={0} . The proof is completed. [

Proposition 3. Let X be an affine subspace of L (]Rd ) and define L :=span {Tkx ke } O X .The

X ﬂ(span {TkL ‘kez® })l is the maximal shift invariant subspace contained in X.

Proof. We first show that X ﬂ(span {TLikez! })l is shift invariant. For k e Z° and

- Lo
feX ﬂ(span{'l’,L ez’ }) , it follows that
feX, Tf ispan{T,L:I eZd}.
Next we will show that T, f € X by contradiction. If there exists some k, € Z° such that T, feX, then
T,f=n+d forneX and 0£J e Xt
So ¢=T,f —nespan{Tlx 4 eZd}@X =L . Therefore Tfkocjespan{TlL:l eZd} , which implies that
JEE— 1

T, St since fe(span{T,L:keZ’}) . Consequently, |f=(f. T n+T&)=(f T on)<|f[lpn]. This
leads to a contradiction since || >||i7|. Assume that M is a shift invariant subspace contained in X. Obviously

M Lspan{TX:leZ’}oX =L. Thus, M Lspan{T,L:1€Z’}. So M cXﬂ(spﬁ{T,L:leZd})L. The re-

sult follows. The proof is completed. O

Lemma 3. Let X and Y be affine subspaces of LZ(R") with X LY . Let M and N be generating shift inva-
riant subspaces for X and Y respectively. Then X @Y is an affine subspace of Lz(Rd) with M®N as a
generating shift invariant subspace.

Proof. Since X =span{D'M: jeZ| and Y =span{D’N: jeZ}, it follows that
span{D’ (M ®N): jeZ} =span{D'M : je Z}®span{D'N: jeZ| = X ®Y.

The proof is completed. O
Lemma 4. Assume {Xn ‘n eZ} is @ monotone sequence of subspaces in a Hilbert space H and give a
subspace Y — H satisfying X, cY foreach neZ. Then

spﬁ{voxn:nez}:UYoxn:Yo(ﬂxnj.

nez nez

Proof. Since {Xn ‘ne Z} is @ monotone sequence of subspacesand X, <Y, neZ, we have

{Y oX,ine Z} is also a monotone sequence. Then the first equality follows by Lemma 2. For xe | JY © X,

nez

there exists some n, e Z suchthat xeY o X, ,namely xeY and xLX, . Then xeY o(ﬂxn].Thus

nez

Uyex,cv @(ﬂ XHJ .So JyoXx,cy @(ﬂ XHJ . For the other direction, without loss of generality,
nez nezZ nez nez

assume that {X, :neZ} isincreasing. By Lemma 2,
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ve(n ij{YoW]@[mO(ﬂ XKJ}YOW@[@(X“M)}

nez nez nez keZ nez keZ

which shows that Y @[ﬂ ijc J(Y ©X,). The proof is completed. O

nez kez

Lemma 5. Let X be an affine subspace of L? (Rd) and Q be the maximal shift invariant subspace contained

in X. Define V :=span{T, (X ©Q):k eZ’} . Then the following hold:

1) DIQcD/™™Q and DV <DV for jeZ:
2) QLV, V={0} ifandonlyif X is a reducing subspace of L*(R‘);
3) X LDV, MDV isin any reducing subspace of L*(R’) containing X.

jez jez
Proof. 1): Note that we only need to show DQcQ and D'V cV . While DQcQ follows by Proposi-
tion 2. So Q = D™'Q. Thus we have

DV =span{D T, (X ©Q):k e Z*} = span T, (X ©D7Q):k e Z°}
< span{T, (X ©Q):k e Z*} = span{T, (X ©Q):k e Z*} =V.
2): Since Q is shift invariantand Q i(X @Q) , it follows that
Q Lspan(T, (X ©Q):kez'}=V.

If X is a reducing subspace, then Q = X . By the definition of V, we have V ={0}.If V ={0},then X =Q,
which shows that X is shift invariant. Thus X is a reducing subspace.
3): By 1) and 2), we have D'Q L D'V forallj, leZ with j>1.Thusforeach jeZ,

D'Q LDV =(V . Therefore X =span{DjQ: j eZ} L[V . Let M be a reducing subspace containing X.

I<j leZ leZ

Then V =span{T, (X ©Q):keZ’}cM . So for each jeZ, DVcD'M =M. Hence (\DVcM.
jeZ

The proof is completed. O
Proposition 4. Let X and Y be affine subspaces of L (Rd) satisfying X Y . Let Q and S be the maximal

shift invariant subspaces contained in X and Y respectively. Define V = span{Tk(X ©Q):k eZd}. Then
(S ﬂVL)eQ is the maximal shift invariant subspace containedin Y © X .

Proof. Let M be a shift invariant subspace contained in Y © X . By Lemma 3 and the maximality of S as a
shift invariant subspace in Y, we have M @Q c S. Note that Q L(X @Q) and M L X .Then

(M®Q)L(X©Q). So (M®Q) Lspan{T, (X ©Q):keZ'} =V . Hence (M ®Q)c(SNV"). Therefore
M < (SNV*)oQ. The proof is completed. [

Proposition 5. Let X and Y be affine subspaces of L (Rd) satisfying X Y . Let Q and S be the maximal
shift invariant subspaces contained in X and Y respectively. Define V = span{Tk(X ©Q):k eZd}. Then

Y © X isan affine subspace of L*(R?) if and only if Y:Spm{Dl (SﬂVL):IeZ}.

Proof. According to Proposition 4, (S NV*)oQ is the maximal shift invariant subspace in Y © X . If
Y © X is an affine subspace, then by Lemma 3, SNV " is a generating shift invariant subspace for Y, i.e.,

Y =span{D' (S ﬂvl):l € Z}. Now suppose Y :span{D' (S ﬂvi):l eZ} .Since D''S < D'S and
D'V < D"V byLemma5for leZ, wehave D'*'(SOV*)<D'(SAV"') for I eZ. Thusby Lemma4,

Y =span{D'(sNV*):1ez}=JD'(snV*),
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Write M :=(SMV*)©Q and M :=(Y©X)o((Y ©X)N(SNV*)). Then M <M . In fact,

(Yox)o(snving')=

Hence
(Y@X)@((Y@X)O(Sﬂvl)l)c((S nv*)oQ)

due to the fact that HoMc L is equivalent to HOL < M for a given Hilbert space H with its two
subspaces £ and M. Also by Lemma 4, we have

span{D'M :1 e Z} =| JD'M

leZ

:(YOX)O((YOX)QH(Dl(SnVL))lj

leZ

= (Y ox)o((vox)m(UD'(snvi)n

leZ

=(Yox)o((yex)ny*)=yox.

So Y © X =span{D'M :l e Z} = span{D'M :1 € Z} . The proof is completed. [J

Proposition 6. Let X and Y be two affine subspaces of L* (Rd ) with X <Y . Then the following holds.
1) Y © X isaffine if X is reducing;

2) (D" ={0} ifYisreducingand Y © X is affine, where V =spﬁ{Tk (XoQ):ke Zd} and Q is the

nez
maximal shift invariant subspace in X.
Proof. 1): By Lemma 5, V :{0} with X being a reducing subspace. Then S©Q is the maximal shift
invariant subspace for Y © X by Proposition 4. Now we only need to show that

Y©X =span{D’(S©Q): jeZ}. Note that
(SeQ)® X =span{(S©Q)®Q, X}
due to the facts that (S@Q)LX and Qc X .SobyLemmal,
P S=span{S,X}©X =span{(S©Q)®Q,X}o X =(SOQ)®X o X =S0Q.
Observe that PXLD':D'PXL since X' isinvariantunder D' for |eZ . Therefore,
span{D’(S©Q): j ez}
:spm{D"ﬁ:jeZ}:spm{DjPXLS:jeZ}:spm{PxiDjS:jeZ}

=P, span{D’S: jeZ{=P Y =span{X,Y}© X =Y O X.

2): According to Proposition 5, it follows that Y = UD' (Y ﬂVL) . By Lemma 4,

leZ
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Y =D (Y ﬂVi)=U(Yﬂ(DIVL)):m

leZ leZ leZ

cYn[J_(_Dv_)zm(ﬂ(D'v)]L

leZ leZ

1
which shows that Y [ﬂ(D'V )J , e, ﬂ(D'V)cYL . Since ﬂ(D'V) is contained in any reducing space

leZ leZ

containing X by Lemma 4, ﬂ(D V)cY Consequently ﬂ(D V) {0} . The proof is completed. [

lezZ

Theorem 7. Let X be an affine subspace of L (Rd ) Then the following holds.

1) There exist a shift invariant subspace M in X such that D"M L D"M for n,meZ with n=m, and
X=@D"M;

nezZ

2) If X is a non-zero reducing subspace and |det A| =2, then there exist two purely non-reducing affine sub-
spaces X; and X, such that X = X, X, ;

3) If X is non-zero and not reducing, then there exists a unique decomposition X = X,@X, with X; be re-
ducing and X, being purely non-reducing;

4) If X is non-zero and |det A| =2, then X is the orthogonal direct sum of at most three purely non-reducing
affine subspace.

Proof. 1): By Proposition 1, it follows that X :(@ D”MJ@Y , Where M; is some shift invariant subspace

nez

in X and Y is a reducing subspace. If Y :{O} , then the result follows. Otherwise, there is a y < L2 (R“) such
that {D”Tkz// ‘neZke Z“} is an orthonormal basis for Y. Let M, =span {Tkz// ke Z“} and define

M =M, ®M, . Note that by the definition of M, in the proof of Proposition 1, it follows that D"M, L D"M,
for nmeZ with n#m.So X=@D"M with D'M LD"M when nmeZ and n=m.

nez

2): Let y be an orthonormal wavelet for X. Choose k, 1N such that k =2'" and n,eZ*\AZ®. Let
E,={¢ &, & beasetof representatives of distinct cosets in Z°/A™Z® . Then

F ':{A"lno+gO,A"1n0+gl,~- Ang+g, l}UE is a set of representatives of distinct cosets in Z°/A'Z°.

Indeed, for 0<i, j<k-1, clearly A™nj+&—¢;=A"n g AZ® if i=j. Now we consider the case i j.
Observe that A'ng+s—s, ¢ AZ° equals to ny+A "™ (5-¢)e AL Note that &-¢ ¢ A7Z*. So
A 1(5 -& )e 7" . Define two subsets ¥ and @ of X and two shlft invariant subspaces P and M as follows:

={D%%DQM, DT¢¢

&k-1

_Ip I

- {D TA"1n0+sol//' D TA"1n0+sk,1l//}'
P:span{Tnf  f e‘P,neZd},

M =span{Tng ‘ged,n eZ“}.

Then ST f:f e¥,nez’! forms an orthonormal basis for P due to the fact that w is an orthonormal
wavelet for X. The same to M. Define
X, =@D'P and X,=@D'M.

jeZ jezZ

Then X =X,@X, . Next, we will show X is a purely non-reducing affine subspace. Write

Q=@D’P.
j=0
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Obviously Q is a shift invariant subspace contained in X; and P=Q© DQ . According to Proposition 2, it
suffices to show that Q is the maximal shift invariant subspace contained in X;. Also by Proposition 3, it is

_— 1 -
enough to show X, ﬂ(span {TnL1 nez’ }) cQ, where L, =span {Tnx1 neZ’ } © X, . Observe that for each
jeN,

T D‘j‘I’={TAj,lnoD"jTgol//,TAj,lnoD"jTé.ll//,-u,TAj,l D"jTé_H(//}

i1,
A7y o

+é&

(D" Ty DT
AT g+ n

cDIM.

LA 'D J-TAHn +& l//}
0 Tek-1

Then foreach jeN,

T, DP cspan{T X, :neZ'fo X, =L,

Aj’lno
since D"M L X, forall meZ. Therefore, foreach jeN,
D'W < span{T,L,:neZ’}.
Hence

@D /P =span{D'T,D'T, y,D'T,D'T, y,--,D'T,D'T, w:jeNnez’|

jeN

— span y,DT_ D', p,-,DT_ D'T, w:jeNnez’|

=spansT

n

span{D”!
span { nD' T y/TD' Ty TDT, wijeNnez’]
{ h:he DY, JeNneZd}cspan{TL1 neZd}

Thus X, ﬂ(spﬁ{TnL1 ‘neZ’ })L c @Dj P =Q. So X, is a purely non-reducing affine subspace. Similarly to
j=0
Xa.

3): Let X be a non-reducing affine subspace of L*(R") and X; be the maximal reducing subspace contained
in X. Write X, =X @ X,. Then X; is affine by Proposition 6 and X, is purely non-reducing since X; is the
maximal reducing subspace in X. Also note that the orthogonal complement of a reducing space within another
reducing space is always reducing. Then the uniqueness follows.

4): 4) follows after 2) and 3). The proof is completed. [
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