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Abstract

Network traffic prediction plays a fundamental role in characterizing the network performance
and it is of significant interests in many network applications, such as admission control or net-
work management. Therefore, The main idea behind this work, is the development of a WIMAX
Traffic Forecasting System for predicting traffic time series based on the daily and monthly traffic
data recorded (TRD) with association of feed forward multi-layer perceptron (FFMLP). The quality
of forecasting WIMAX Traffic obtained by comparing different configurations of the FFMLP that
consist of investigating different FFMLP model architectures and different Learning Algorithms.
The decision of changing the FFMLP architecture is essentially based on prediction results to ob-
tain the FFMLP model for flow traffic prediction model. The different configurations were tested
using daily and monthly real traffic data recorded at each of the two base stations (A and B) that
belongs to a Libyan WiMAX Network. We evaluate our approach with statistical measurement and
a good statistic measure of FMLP indicates the performance of selected neural network configura-
tion. The developed system indicates promising results in which it successfully network traffic
prediction through daily and monthly traffic data recorded (TRD) association with artificial neural
network.
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1. Introduction

Fuzzy systems are systems combining fuzzifier, fuzzy rule bases, fuzzy inference engine and defuzzifier (Wang,
[1]). The systems have advantages that the developed models are characterized by linguistic interpretability and
the generated rules can be understood, verified and extended. As a universal approximator, fuzzy systems have
capability to model non stationary time series and give effect of data pre-processing on the forecast performance
(Zhang, et al., [2] [3]; Zhang & Qi, [4]). Studying on data pre-processing using soft computing method has been
done. Popoola [4] has analyzed effect of data pre-processing on the forecast performance of subtractive cluster-
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ing fuzzy systems. Then, Popoola [5] has developed fuzzy model for time series using wavelet-based pre-
processing method. Wang [1] and Tseng, et al. [6] applied fuzzy model to analyze financial time series data. Not
all kinds of series data can be analyzed by conventional time series methods. Song & Chissom [7] introduced
fuzzy time series as a dynamic process with linguistic values as its observations. Techniques to model fuzzy
time series data are based on fuzzy systems. Network traffic prediction plays a fundamental role in characteriz-
ing the network performance [8] and it is of significant interests in many network applications, such as admis-
sion control or network management. Therefore, The main idea behind this work, is the development of a
WIMAX Traffic Forecasting System for predicting traffic time series based on the daily and monthly traffic data
recorded (TRD) with association of feed forward multi-layer perceptron (FFMLP) [9]. The quality of forecasting
WIMAX Traffic obtained by comparing different configurations of the FFMLP that consist of investigating dif-
ferent FFMLP model architectures and different Learning Algorithms [10].

The decision of changing the FFMLP architecture is essentially based on prediction results to obtain the
FFMLP model for flow traffic prediction model. The different configurations was tested using daily and
monthly real traffic data recorded at each of the two base stations (A and B) that belongs to a Libyan WiMAX
Network. We evaluate our approach with statistical measurement and a good statistic measure of FMLP indi-
cates the performance of selected neural network configuration [11]. The developed system indicates promising
results in which it successfully network traffic prediction through daily and monthly traffic data recorded (TRD)
association with artificial neural network.

Fuzzy Time Series

The fuzzy time series model proposed by Song and Chissom [7] consists of two major processes: 1) fuzzifica-
tion and 2) the establishment of fuzzy relation relationships and forecasting. One study has pointed out that dur-
ing the fuzzification process, different lengths of intervals will result in various forecasting results, and it has
been proposed that the effective lengths of intervals be used [4]. The forecasting results that were based on the
effective lengths of intervals were found to outperform those based on arbitrary ones.

Chen’s method uses a simple operation, instead of complex matrix operations, in the establishment step of
fuzzy relationships. The algorithm of Chen’s method can be given as follows:

Step 1. Define the universe of discourse and intervals for rules abstraction. Based on the issue domain, the
universe of discourse can be defined as: U = [starting, ending]. As the length of interval is determined U can be

Partitioned into several equally length intervals.

Step 2. Define fuzzy sets based on the universe of discourse and fuzzify the historical data.

Step 3. Fuzzify observed rules.

Step 4. Establish fuzzy logical relationships (FLRs) and group them based on the current states of the data of
the fuzzy logical relationships.

Step 5. Forecast. Let F(t-1) = A,

Case 1: If the fuzzy logical relationship of A; is empty; A; — @, then F(t), forecast value, is equal to A;.

Case 2: There is only one fuzzy logical relationship in the fuzzy logical relationship sequence. If A; — A;,
then F(t), forecast value, is equal to A;.

Case 3: If Aj — Aj, Aja, ..., Aj, then F(t), forecast value, is equal to Aj1, Ajp, ..., A

Step 6. Defuzzify. If the forecast of F(t) is Aj, Ap, ..., Ay, the defuzzified result is equal to the arithmetic
average of the midpoints of Aj1, A, ..., A

2. Methodology

Apart with some modifications Fuzzy Time Series (FTS) models have achieved successes in their own linear or
nonlinear domains. Zhang [12] stated that since it is difficult to completely know the characteristics of the data
in a real problem, hybrid methodology can be a good strategy for practical use. Liu [13] introduced a combina-
tion between decomposition method and FTS for forecasting trend and seasonal time series. In this paper, we
proposed a combination method between differencing as data preprocessing method [14] and FTS models for
forecasting trend and seasonal time series [15].

Case (1): WIMAX traffic of userA

Trying to estimate the WiMAX Traffic from userA using the daily, weekly and monthly recorded data in-
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cludes the maximum and the minimum number of online users only, so the Traffic from userA of daily data give
as:

T Daily (A) f UserA (X user (Max), X user(Min)) (€))]

Case (2): WIMAX traffic of userB

Trying to estimate the WiMAX Traffic from userA using the daily, weekly and monthly recorded data in-
cludes the maximum and the minimum number of online users only, so the Traffic from userB of daily data give
as:

T Daily (B) f UserB (X user (Max), X user(Min)) 2

Case (3): WIMAX traffic of userAB

Trying to estimate the WiMAX Traffic from userAB using the daily, weekly and monthly recorded data in-
cludes the maximum and the minimum number of online users only, so the Traffic from userB of daily data give
as:

T Daily (AB) f UserAB (X user (Max), X user(Min)) 3)

where,

T Daily(A, B, AB) represents the WiMAX traffic from userA, userB and userAB users (byte) respectively.

X user (Max), X user (Min) represent the maximum and the minimum number of online (Max-online) and
(Min-online) respectively.

Three differencing process are used in this study, the original series become three new series:

TA=F(t) - F(t—1) 4
TB = F(t) - F(t— 2) (5)
TAB = F(t) - F(t— 3) (6)

In summary, the proposed methodology of the FITS system consists of two steps. In the first step, a diffe-
rencing is used to make stationary process. In the second step, a FTS model is developed to model the diffe-
rencing data. In this second step, we apply four FTS models proposed by Chen [16], Yu [17], Cheng et al. [18],
and Lee and Suhartono [19]. The proposed method exploits the unique feature and strength of FITS model in
determining different patterns. Thus, it could be advantageous to model trend, seasonal, and nonlinear patterns
separately by using different models and then combine the forecasts to improve the overall modeling and fore-
casting performance.

To validate the methodology of the FITS method for forecasting trend and seasonal time series data, a new
algorithm is proposed as follows:

Step 1. Apply differencing to get the stationary process, TA, TB and TAB

Step 2. Apply FTS method to model the differencing data and get the forecast component of the stationary
process, Y a(t), Yg(t), and Y ag(t). In this step, four FTS methods proposed by Chen [16], Yu [17], Cheng et al.
[18], and Lee and Suhartono [19] are applied to find the best forecasted values.

Step 3. Calculate the final forecast values at the same original data scale.

1. For UserA differencing data

UA (1) = Ya(t) + F(t— 1) @)
2. For UserB differencing data
UB (t) = Yg(t) + F(t—2) (8)
3. For both UserAB differencing data
UAB (t) = Yg(t) + F(t - 3) 9)
Now Mean Square Error can be calculated as below:
MSE = (Y= 1100 [{F(t) - U®Y /] (10)

where n is the number of forecasts.

3. Result and Discussions

Weekly, monthly and daily data are taken in three category and intermediate of them as shown below:
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Weekly forecasting Exponential FTS method

Weekly forecasting Exponential FTS method USER A Weekly forecasting Exponential FTS method USER B Weekly forecasting Exponential FTS method USER AB
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Daily forecasting Exponential FTS method

Daily forecasting Exponential FTS method USER A Daily forecasting Exponential FTS method USER B Daily forecasting Exponential FTS method USER AB

1,200,600,200 30,0000
600,000,000
530,000 000
200,000,200
450,000,000 550,000,000
300,009,000 40,000,000 500,200,000
. 700,000,200 30,0000 450,000,000
<
g = 200,000,000
2 500,000,200 £ 400,000,000
250,000 000
500,000,200
- 350,000,000
400,000,200 150,000,000 300,200,000
300,000,200 100,000,090 250,000,000
200,000,200 000020 200,200,000
Ot0E M3 Cenais W23 AR Seo03  ONI@ K23 D23 WooR | Awoo3 3 onoo3 N3
TIVE TIME TIME
[~ actualDeta -+ Fitted Vakies for |- Step() ahead [ Actual Data - Ficted Vel fo :Sten(s) Ahead [=- actus Data - Fitted Values for |:Step(s) Ahead

We have taken the traffic data with 51 in samples and 130 out samples for UserA, UserB and UserAB using
FTS method is shown below:

Exponential FTS USER A: 2013m06d25

Daily forecasting Exponential FTS method USER A: Number of outsamples: 130; Number of insample: 51
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Daily forecasting Exponential FTS method USER B: Number of outsamples: 130; Number of insample: 51
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D1: 100, d2: 100; Order 1,2
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Similarly weekly and monthly data are taken for User A, B and AB
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Daily fuzzy time series forecasting results

USER A USER B USER AB
Mse all 8.117465852396059E15 2.924431681416891E15 1.994923193333558E15
Mse-in 3.12496250225E11 1.40000000225E11 3.89989500225E11
Exponential FTS Mser-o0 9.740896523625224E15 3.509290017700224E15 2.3938298341002245E15
weekly L intr 5500000.0 1200000.0 2400000.0
2.31E7 1.406E7 1.398E7
MSE fitted v 3.241700322458558E15 1.64951556125225E14 1.7434240980855834E14
Mse all 8.122874861000004E15 2.367500078000004E15 3.226031221000004E15
Mse-in 2.49998000004E11 4.0 6.2501000004E10
Exponential FTS Mser-o 1.0830416482000004E16 3.1566667706666705E15 4.3013541276666705E15
monthly L intr 3000000.0 2000000.0 2500000.0
4.23E7 1.55E7 2.24E7
MSE fitted v 2.70037439000004E14 3.5312490500004E13 1.371599984800004E15
Mse all 5.070127920068365E15 4.690668157682404E15 2.8700774810506975E15
Mse-in 6.22022223306997E13 4.834410027190476E13 5.078880791341112E12
Exponen_tial FTS Mser-o 6.957730683061792E15 6.440467225475593E15 3.949961568840763E15
paily L intr 5760000.0 4190000.0 3720000.0
1.9322222E7 1.5641667E7 1.4936111E7
MSE fitted v 8.423388576076724E14 9.384482805563819E14 6.57489415119946E14

Mse all: mean square error for all; Mse-in: mean square error for insamples; Mse-0: mean square error for outsamples; I. intr: length of intervals.

The results shows that in case of Weekly data, overall MSE is least for Use rAB, insamples MSE is least for
User B, out samples MSE is least for User AB, intermediate MSE is least for User B and MSE fiited v is least
for User B.

In case of Monthly data, overall MSE is least for User B, in samples MSE is least for User A, outsamples
MSE is least for User B, intermediate MSE is least for User B and MSE fited v is least for User AB.

In case of Daily data, overall MSE is least for Use rAB, in samples MSE is least for User B, outsamples MSE
is least for User AB, intermediate MSE is least for User AB and MSE fiited v is least for User AB.

4. Conclusion

In this paper we have used FTS method for forecasting of WIMAX data traffic inbound and outbound which
leads to seeking for accuracy in the term of Mean Square Error (MSE). The modeling uses classical FTS to the
weighted FTS and finally the differencing provides the accurate results near to actual ones.
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