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ABSTRACT 

This paper describes a generalization methodology for nonlinear magnetic field calculation applied on two-dimensional 
(2-D) finite Volume geometry by incorporating a Jiles-Atherton scalar hysteresis model. The scheme is based upon the 
definition of modified governing equation derived from Maxwell’s equations considered the magnetization M. This pa- 
per shows how to extract optimal parameters for the Jiles-Atherton model of hysteresis by a real coded genetic algo- 
rithm approach. The parameters identification is performed by minimizing the mean squared error between experiment- 
tal and simulated magnetic field curves. The calculated results are validated by experiences performed in an SST’s 
frame. 
 
Keywords: Magnetic Hysteresis, Jiles-Atherton Model, Genetic Algorithm Optimization, Parameters Identification, 

Finite Volume Method (FVM) 

1. Introduction 

Numerical electromagnetic is the theory and practice of 
solving electromagnetic field problems on digital com- 
puters. It reflects the general trend in science and engi- 
neering to formulate the laws of nature as computer algo- 
rithms and to simulate physical processes on digital 
computers. While theory and experiment remain the two 
traditional pillars of science and engineering, numerical 
modeling and simulation represent a third pillar that 
supports, complements, and sometimes replaces them. 
For this reason, the objective of this work is therefore to 
study for modeling, magnetic hysteresis, to integrate it 
into a computer code field. Different hysteresis models 
are available for incorporation into the finite volume 
framework. Although the Preisach model appears to be 
the hysteresis model of choice, the J-A model is at- 
tracttive because of its simplicity and ease of implement- 
tation. The attributes of the J-A hysteresis model include- 
ing level of accuracy for several practical materials, ease 
of implementation into the FVM (Finite Volume Method), 
and computational efficiencies make it a viable choice 
for implementation into a 2-D finite Volume model [1], 

[2]. This study will choose the model best suited from the 
standpoint accuracy, processing speed and ease of im- 
plementation. The working hypotheses are restricted to 
the case of static regime and the equation that we solve 
axi-symmetrical in two dimensions 2-D, is the non-linear 
magnetodynamic. Thus, the finite element method has 
proved it self as an effective tool in solving differential 
equations, it allows another to take into account complex 
geometries and non-linearity’s possible, only its imple- 
mentation is against a fairly complicated. So we choose 
in our study for the method of finite Volume, which is 
less difficult to achieve and simple design. 

2. Finite Volume Formulations Including 
Magnetic Hysteresis 

2.1. Basic Field Axi-Symmetrical Equations 

The derivation of the finite Volume equations begins 
with Maxwell’s field equations 

0div B                  (1) 

 curl H J                 (2) 

The Maxwell field equations are extended to allow 
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treatment of hysteresis by including the constitutive 
equation for magnetic material. The general equation for 
a ferromagnetic material can be expressed as 

0 B H M                (3) 

where  the nonlinear magnetization is function, and M

0  is the permeability in free space [1]. The flux density 
can be expressed as the circulation of a potential vec- 

tor, 
B

 B A , where A  is the magnetic vector poten- 
tial naturally satisfying Maxwell’s equation 0 B  
since the divergence of the curl is zero. The most obvious 
way is to directly use μ0 (or 0 01 



 

) and in the 
field equation by applying the vector form of (3) Am- 
pere’s law. The field equation is then given by 

M

     0 t t t t t t         A J M   (4) 

where ,  and  are, re-
spectively, the magnetic vector potential, the current 
density, and the magnetization vectors at time 

 t t A t t J t t M

 t t  , 
Δt is the time step. 

When considering dJ  as negligible in the azimuth 
direction (axis-symmetrical Formulation), (4) is written 
using the tow-dimensional (2-D) magnetic vector poten- 
tial A


 as unknown in cylindrical coordinates as 

0 0

r z
ex

A A A

z r z r r r r t

M M
J

z r

A rA

                     
          

 


         (5) 

2.2. Jiles-Atherton Model of Hysteresis 

The original J-A model presented in [3] gives the mag- 
netization M versus the external magnetic field H. This 
model is based on the magnetic material response with- 
out hysteresis losses. This is the anhysteretic behavior 
which Man (H) curve can be described with a modified 
Langevin equation 

( ) coth e
an s

e

H a
M H M

a H

       
    

        (6) 

where He =H + αM is the effective field experienced by 
the domains, H is the external applied field and α is the 
mean field parameter representing inter-domain cou- 
pling. The constant a is an increasing function of the 
temperature. The magnetization M is decomposed into its 
reversible component Mrev and its irreversible component 
Mirr. 

irr revM M M                (7) 

The relationship between these two components and 
the anhysteretic magnetization Man is obtained from 
physical considerations of the magnetization process and 
is given by 

(rev an irr )M c M M               (8) 

With  

d

d
irr an irr

e

M M M

H k


              (9) 

where a, α, c, k and the saturation magnetization Ms are 
parameters which are determined from measured hys- 
teresis characteristics [4], δ is a directional parameter and 
takes the value +1 for dH/dt > 0 and –1 for dH/dt < 0. 
Using this method, the magnetization M is commonly 
obtained from the magnetic field H. With the proposed 
inverse Jiles-Atherton model, M will be calculated from 
the magnetic induction B, integrating a differential equa- 
tion in terms of dM/dB. To obtain such a relationship, we 
will start substituting (8) in (7) and differentiating the 
resulting term with respect to the effective flux density Be 
= µ0He. 

( ) (1 )irr an irr irr anM M c M M c M cM         (10)
 d dd

(1 )
d d

irr an

e e d e

M MM
c c

B B
  

B
        (11) 

One can write this term as 

0

d d d

d 1 (1 )d de

M M B

B M 


  B
        (12) 

Deriving (6) with respect to He 
2

2

0

d
1 coth

d
an s e

e e

M M H a

B a a H

  
     
   

     (13) 

And, with deriving (9) results in  

0

d

d
irr an irr

e

M M M

B k 


            (14) 

in which δ = + 1 for dB/dt > 0 and 1    for dB/dt < 0. 
The term Mirr in (14) is obtained applying (8) in (7) 

1
an

irr

M cM
M

c





            (15) 

Finally, written (11) using (12) and (13), and isolating 
dM/dB gives the main equation of the proposed inverse 
Jiles-Atherton model 

0 0

d d
(1 )

d dd
d dd 1 (1 )(1 ) (1 )
d d

irr an

e e

irr an

e e

M M
c c

B BM
M MB c c
B B

   

 


    
 (16) 

The numerical solution of (5) including hysteresis 
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cannot be done with the same method as the one used 
with univocal functions (Newton-Raphson scheme for 
example). We have chosen the fixed-point method al- 
ready presented in [1]. The hysteretic constitutive rela- 
tionship is then rewritten under the form 

( ) ( )FP FPH f B M B                 (17) 

The reluctivity νFP is a constant and must respect some 
conditions to achieve convergence [2]. The studied hys- 
teretic models assume B and H collinear; consequently 
the magnetization MFP has the same direction as νFP B. 
Its magnitude is obtained by calculating MPF= f(B) – νFP 

B. Finally, the partial differential equation (5) becomes  

FP Fcurl curl A J curl M P            (18) 

The discretization with nodal shape functions for the 
potential vector of (18) using the finite Volume method 
leads to the matrix system 

      FPS A J M  FP             (19) 

where the vector [A] represents the nodal values of vec- 
tor potential, [SFP] a square matrix called stiffness matrix, 
[MFP] and [J] the vectors which take into account the 
magnetization MFP and the current density J. One can 
note that the matrix [SFP] is constant because the perme- 
ability νFP is constant as well. The non-linearity’s intro- 
duced by ferromagnetic materials are reported in the 
source term [MFP] which depends on B (i.e. A). To take 
into account the coupling with the external circuit of a 
coil made up of stranded conductors flowed by a current 
i, a vector [D] is introduced such that [J] = [D] i. Then, 
we obtain the system 

0 0 d

0 0 d

0
.

0

FP
t

PF

S D A A

R i D it

M

u

       
       

       
   

    
   

       (20) 

3. Genetic Algorithms 

3.1. Introduction 

Genetic algorithms are developed for the purpose of op- 
timization. They allow the search for a global extremis. 
These algorithms are based on natural selection mecha- 
nisms (Darwin) and the genetic evolution. A genetic al-
gorithm is changing a population of genes using these 
mechanisms. It uses a cost function based on a perform- 
ance criterion to calculate a (fitness). Those most 
“strong” will be able to reproduce and have more off- 
spring than others. 

Originally, the coding of individuals was in transcribe- 
ing binary parameters to optimize to form a gene. These 
genes are then put together to form the chromosome. 

There is, however, an approach called real coding, where 
the functions of change and passing are rewritten to ap- 
ply directly to the vector of parameters without going 
through the binary. We have identified a coding real, 
more flexible and precise. This avoids some problems 
due to binary encoding. The actual coding also provides 
a direct view of settings throughout the evolution of the 
population. These modified genetic operators are used in 
this paper as well as the improvement tools presented in 
[7]. 

3.2. Parameters Identification Procedure 

The schematic representation of the parameters identify- 
cation procedure is shown in [8,9], the first step is the 
characterization of the individuals that will form the 
population. The individuals θ are composed by the five 
parameters of the J-A model (in real coding, it is not 
necessary to code the variables in binary representation) 
[6], [10]. We consider the case where the population is 
given by 

,1 ,1 ,1 ,1 ,1

, , , , ,

n n n n n
s

n

n np n np n np n np n np
s

M k c a

pop M M M M M

M k c a





 
 

  
 
 

   (21) 

where each line represents an individual (a point in the 
optimization space), n is the generation, and np is the 
population size. The initial values assigned to the popu- 
lation are random values in the allowable range, as 
shown in Table 1. Each individual of the population is 
evaluated using the fitness between calculated and ex- 
perimental results. That minimizes the fitness function 
given by [11]  

2

1

( ) ( ) ( , )
n

s i s i
i

ff M t M t 




   
 

         (22) 

where ( )s iM t and ˆ ( , )s iM t   represent the measured and 
estimated magnetization, respectively. The optimal pa- 
rameter vector is obtained solving ˆ min ( ( ))n

GA ff   
and also on a maximum allowed number of generations. 
Figure 1 shows the variation of the function of adapta- 
tion (fitness) according to the number generations, and 
Table 1 give the final results of the genetic algorithm. 

3.3. The Solution Procedure 

The finite Volume method is a discretization method 
which is well suited for the numerical simulation of 
various types (elliptic, parabolic or hyperbolic, for in- 
stance) of conservation laws, it has been extensively used 
in several engineering fields, such as fluid mechanics, 
heat and mass transfer or petroleum engineering [12]. 
Some of the important features of the finite volume 
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Figure 1. Evolution of the total error. 
 

Table 1. Material parameters. 

Parameter 
Design Variable  

Range 
Optimized  

Values 

Ms 0.5×106 - 2.5 × 106 1.2865×106 

k 75 - 450 195.68 

c 0.15 - 0.65 495×10-3 

a 120 - 750 195.2 

α 1×10–4 - 3 × 10–4 1.75 × 10–4 

 
method are similar to those of the finite element method, 
it may be used on arbitrary geometries, using structured 
or unstructured meshes, and it leads to robust schemes. 
An additional feature is the local conservatively of the 
numerical fluxes, which is the numerical flux, is con- 
served from one discretization cell to its neighbor. This 
last feature makes the finite Volume method quite attrac- 
tive when modeling problems for which the flux is of 
importance, such as in fluid mechanics, semi-conductor 
device simulation, heat and mass transfer. 

The finite Volume method is locally conservative be- 
cause it is based on a “balance” approach: a local balance 
is written on each discretization cell which is often called 
“control Volume”, by the divergence formula, an integral 
formulation of the fluxes over the boundary of the con- 
trol Volume is then obtained. The fluxes on the boundary 
are discretized with respect to the discrete unknowns. 
The solution of the posed problem is constructed using 
finite Volume method. With this purpose let us multiply 
magnetodynamic equation (5) by function of projection 
βi and integrate obtained equation over domain Ω, we get 

0 0

1 1
d d d

d d d

  d d d

t t

i
t r z

t t

i ex
t r z

t t
r z

i
t r z

A A
r r z t

z r z r r r

A
J r r z t

r t

M M
r r z t

z r


 











       
            

    

      

  

  

  

 (23) 

With Βi is function of selected projection 1/r. 
One can write (23) as 

0 0

1 1
d d d

d d d

t t

t r z

t t
z r

ex
t r z

A A A
r z t

r t z r z r r r

M M
J r z t

r z


 





        
              
       

  

  
(24) 

After integration, this expression can be rewritten as 
follows 

     

 

   

   

 
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P
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A

r t
r z

r r r

z t z t
A A

r r r r

r t r t
A A

r r r r

A t t r z J r z t
r

M M z t M M rz z r r

  
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 


 
 

 
 



         
 
  

    
 

     
     
   
 

        

   t         

(25) 

The Equation (25) discretized once is written as fol-
lows  

   

   

0

0

P P E E W W N N S S

p
p z ze w

p

r rn s

a A a A a A a A a A d

r z
A M M

r t

M M r


z

    

 
    

    

    (26) 

The indices P, W, N, E and S refer to the values of the 
nodes and indices p, w, n, e and s refer to the values of 
the faces of Volumes of control (See Figure 2). 

The coefficients aW, aN, aE, aS and d0 is given by 

     

 

0 0 0

0

0

,  ,  ,

,  ,

( ) .

E W N
e w ne w

P
S P E W N S

s Ps

ex

z z
a a a

r r r r r z

r r
a a a a a a

r z r t

d J t r z
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
 

 
  

n

r

z



  
     


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(27) 
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4. Results 

4.1. Measured Curves 

The determination of the magnetic quality of materials 
rests primarily on the nature of the systems of measure- 
ment used. The evolution of the standard in the field of 
the characterization of material is a significant factor for 
the taking into account of the physical nature of magnetic 
materials and the conditions of their uses. 

The reproducibility of measurement and the facility of 
handling are also factors which make it possible to 
choose the type of magnetic circuit to implement. Ac- 
cordingly our choice is related to the realization of 
framework SST (Single Sheet Tester) 500 mm × 500 mm 
(See Figure 3) [13]. The device planned for characteri- 
zation of sheets with not oriented grains must make it 
possible to take measurements by a simple introduction 
of the sample, iron silicon 3% not oriented inside a 
sleeve, with a perfect positioning and without deteriora- 
tion of the polar faces of the magnetic circuit of closing 
of flux. The characterization of materials studied done by 
determining the following quantities expressed in terms 
of characterization of the frame and measuring output 
Voltages measured by an oscilloscope: V2, VH1, and VH2.  

Figure 2. Control Volume in axi-symmetrical cylindrical 
coordinates. 
 

Once that the various formulations in finite Volumes 
integrating the model of hysteresis are established a me- 
thod of resolution of nonlinear problem must be chosen. 

The strategy incorporated here for concurrently solv- 
ing the nonlinear J-A material Equation (16), along with 
the spatially dependent field Equation (5), is the fixed- 
point method. 

The excitation peak field, which is submitted the sam- 
ple is obtained by interpolation from tensions measured 
at the terminals of two coils tangential H1 and H2 located 
at distances different from the sample 

The fixed-point method is the preferred method for 
implementing the complex mathematical material models 
in the finite volumes method (FVM) [1], since it is a sta- 
ble method and relatively easy to implement. In the case 
of the Table 2, the fixed-point iteration scheme for si-
multaneously solving the nonlinear field Equation (5), 
and the J-A state model (16) steps is shown. 

2 1 1 2

2 1 1 2

d ( ) d ( )d ( )

d d

d H t d H tH t

t d d t d d t
 

  d
     (28) 

 where 
Table 2. Iterative steps algorithm. 

1 1

0 1 1

d ( ) ( )

d
HH t V t

t n


S
             (29) 1. Initialization: t = 1 (time), i = 1(space), give   

2. Numerical code from control Volume 

2.1. Initialization:  iM

2.2.  
0

1i
i i

St



 

      
  

A
A J M A  

and 

2 2

0 2 2

d ( ) ( )

d
HH t V t

t n


S
             (30) 

i   

2.3. i i B A  

2.4. 
0

i
i is
s

B
H M


   

2.5.   11i i

The magnetic induction is obtained by time integration 
of the V2 (t) Voltage in secondary coil measuring B by 

 
fSN

V
tB

2

2
exp 4

  And 2 2
0

1
( ) d

T

V V t
T

  t    (31) 
i

s s sH H      H

i

 relaxation coefficient 

2.6.  i

s sM f H  from Jiles-Atherton hysteresis model 

2.7. Calculate the  direction of i

sM  

2.8. Calculate the precision   

2.9. If     convergence: 1t t   et  go to 2.1, 
else  go to 2.2 

where 
d1, d2: Distance to sample the coil Field 1, 2 (m). 
N2: Number of turns of the coil measuring B.  
n1, n2: Number of turns of the coil Field No1, 2.  
S: Section of the sample (m2).  

1i i 
1i i 

3. Results 

S1 , S2: Surface of the coil H1, H2 (m
2).  

VH1, VH2: power output of the coil H1, H2 (V). 
It is important to remark that the use of the inverse J-A   
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Figure 3. Single Sheet Tester (SST) 500 m × 500 m. 
 
model for the parameters identification has an additional 
advantage compared with the original model: the input of 
the inverse model is the magnetic induction waveform. 
Since the magnetic induction is obtained from integration, 
it is naturally filtered, with fewer oscillations than those 
of the magnetic field waveform. The noise present in the 
field waveform brings additional difficulties to the pa- 
rameters identification procedure. The obtained set of 
parameters is valid for models, original and inverse, al- 
lowing good agreement between measured and calcu- 
lated data [6]. 

4.2. Comparison with Simulation 

The test consists of a cylinder ferromagnetic with a 
length of 40 cm and 10 cm diameter characterized by a 
cycle of hysteresis (Ms = 1.2865 × 106, k = 195.68, c = 
495 × 10–3, a = 195.2, α = 1.75×10–4), the cylinder is 
surrounded by a coil of the same length traversed by a 
stream of density J = 105A/m2. 

The drivers which constitute the inductor have a di- 
ameter D = 1 cm and 50 cm length. The gap is E = 2 cm. 
The geometry of the system studied, it presents two 
symmetries, the first axially (oz) and the second accord- 
ing to the plan (or). We can then consider magnetic 
problem in a cylindrical coordinate system, a quarter of 
domain. For a numerical modeling the theoretical limits 
(with infinite, A = 0) are brought back to a finite distance 

which can vary according to the desired precision. In this 
study, these limits were fixed at a distance L = 50 cm of 
the studied device. The boundary conditions associated 
with the magnetic equation are the conditions of Neu- 
mann 0 nA  and the conditions of the Dirichlet A = 
0 of representing on Figure 4. 

 

 

Figure 4. Field of study of the axi-symmertical problem 
with the boundary conditions. 

Copyright © 2011 SciRes.                                                                               JEMAA 
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We defined in these geometry four points of reference 
on which we will determine the forms of wave of the 
magnetic potential vector. While being based on the sys- 
tem of axis (r, z) defined in Figure 3, the coordinates of 
these points are defined like: P1 (2.5, 2) cm, P2 (18, 5) 
cm, P3 (10, 4) cm and P4 (5, 6) cm. 

Figure 6 shows, for an operation frequency of 50 Hz, 
the experimental and simulated field curves of this mate- 
rial FeSi 3% when submitted to a 1.52 T peak value si- 
nusoidal induction. 

For the validation of the parameters obtained, one su- 
perimposed on the Figure 5, the cycle experimental and 
the cycle of simulation obtained starting from the identi- 
fied parameters. This superposition shows the degree of 

 

 

Figure 5. Measured and calculated B (H) loops at 50 Hz. 
 

 

Figure 6. Field measured and modeled at 50 Hz. 

 

Figure 7. Axial variation of the magnetic potential vector A. 
 
accuracy of the cycle identified by genetic algorithm. 

Additional resultants are given in Figure 7, where the 
axial variations of potential vector magnetic A. One no- 
tices well that the value of A is maximal on the level of 
the center of the inductor then decreases gradually until 
being cancelled in extreme cases of the field of study. 

5. Conclusions 

In this work, a finite Volume-based transient simulation 
method for investigating hysteresis effects using the J-A 
scalar hysteresis model has been extended to 2-D prob- 
lems. The identification of the parameters Jiles-Atherton 
model is a difficult process with to realize, but the use of 
the techniques of optimization by genetic algorithm 
makes it possible to free this difficulty. Results obtained 
by applying our model to the axisymmetric magnetody- 
namic device based on an inverse Jiles-Atherton model 
and a differential reluctivity has good performances with 
regard to numerical convergence and gives very satis- 
factory results on an SST’s frame. In the near future, the 
use of a dynamic model of magnetic hysteresis to study 
the behavior of material in the systems at high frequent- 
cies and the application to other devices will be under- 
taken. 
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