

SF₆ Byproducts in High-Humidity Environment: An Experimental Evaluation between 200°C and 500°C

Yu Wang, Li Li, Weijian Yao

Electric Power Test Research Institute, Guangdong Power Grid Company, Guangzhou, China. Email: wangyu_0306@126.com

Received February 15th, 2011; revised April 6th, 2011; accepted April 15th, 2011.

ABSTRACT

In the occurrence of arc discharges, spark discharges, corona discharges and overheated faults in electrical equipment, SF_6 would be decomposed to complicated byproducts, such as SO_2 , H_2S and HF. Analyzing these byproducts is an effective method to judge the internal operation condition of electric equipment. In order to study characters of SF_6 byproducts at different temperature of overheated faults in the electric equipment, a series of overheated faults of electric equipment were simulated. SF_6 is very stable and not significantly decomposed at 200°C, 250°C and 300°C. SF_6 is significantly decomposed to SO_2 , H_2S and HF at 350°C. The concentration of SO_2 , H_2S and HF was 7.2, 1.6 and 1.9 $\mu L/L$ after heating for 5 hours in environment of SF_6 with 3616 $\mu L/L$ water, and it was increased to 23.0, 3.0 and 1.2 $\mu L/L$ 3 hours later. SF_6 is more easily to be decomposed and decomposed more rapidly at higher temperature. The concentration of SO_2 , H_2S and HF was 62.2, 15.6 and 3.6 $\mu L/L$ after heating for 5 hours in environment of SF_6 with 2.3 $\mu L/L$ after heating for 5 hours in environment of SF_6 and $2.3 \ \mu L/L$ after heating for 5 hours in environment of SF_6 with 36.6 $\mu L/L$ water, and it was increased to SF_6 with 4064 $\mu L/L$ water, and it was increased to 91.4, 25.2 and 2.3 $\mu L/L$ 3 hours later. SF_6 will be decomposed to format HF, which is strongly corrosive and whose concentration is likely to decrease when it is above a certain concentration.

Keywords: Sulfur Hexafluoride, Overheating Faults, Byproducts, Sulfur Dioxide, Sulfureted Hydrogen, Hydrofluoric Acid

1. Introduction

Sulfur hexafluoride (SF₆) is a colorless, orderless, nontoxic, and non-flammable gas. The gas is strongly electronegative and tends to attract free electrons. SF₆ is widely used as insulative gas in electric transmission and distribution equipment and its insulation property is about 2.5 times to those of air, which was traditionally used as isolative materials in electric equipment. The SF₆ electric equipment takes less area, has less operation noise and has no danger of fire, so SF₆ electric equipment elevates operation security.

In the occurrence of arc discharges, spark discharges and corona discharges, SF_6 would be reacted with little water, electrode and solid insulated material. SF_6 were decomposed to complicated gas and solid byproducts. Gas byproducts include carbon tetrafluoride (CF_4), thionyl sulfide (SO_2), sulfuryl fluoride (SO_2F_2), and sulfur dioxide (SO_2), and solid byproducts include aluminum fluoride, tungsten fluoride, and so on [1-9].

It is difficult to judge the internal operation condition

of electric equipment, while analyzing the concentrations of SF_6 byproducts is an effective method to judge the internal operation condition of electric equipment. There are many cases these years about how to judge faults by analyzing SF₆ byproducts, such as CF₄ and SO₂, in Guangdong, and many similar examples were reported in the literature as well [10,11]. In past successful examples, we can only judge the faults of electric equipment and the position of the faults in the electric equipment by analyzing SF_6 byproducts. There is still little experience about characters of SF₆ byproducts in different condition of different types of faults in the electric equipment. A series of overheated faults about different temperature of electric equipment were simulated. The paper reports different types of SF₆ byproducts and their concentrations about different condition of overheated faults in electric equipment.

2. Method

The experiments were simulated in a section of bushing

of a breaker, which can be found in Figure 1 in detail. The moisture of the SF₆ was between 3616 μ L/L and 5189 µL/L, and the temperature was 200°C, 250°C, 300°C, 350°C, 400°C, 450°C and 500°C, respectively. The pressure of SF_6 in the simulator was 0.3 Mpa. There was a contact, which can simulate overheated faults through 900A current, but the heat was not enough for simulation requirements. There was a heating rod and a controller that was binding with the contact as well. The device can strictly control the temperature of simulation. In each simulated temperature, SF_6 was taken by a 1.25 L steel bottle from the simulator every hour to analyze SF_6 byproducts, such as fluoride 1 (probable SF₄), fluoride 2 (probable S₂F₁₀), SO₂, H₂S, HF and CO. The analysis method can refer to the literature [12-17]. The chromatograph used in the simulation was Agilent 7890 N with a flame photometric detector and a Gaspro capillary column $(0.32 \text{ mm} \times 30 \text{ m})$.

3. Results and Discussion

Table 1-7 show SF₆ byproducts and their concentrations of overheated faults simulation at 200, 250, 300, 350, 400, 450 and 500°C in high humidity. Moisture of the SF₆ was 4049, 4098, 4218, 3616, 3642, 5789 and 4064 μ L/L respectively.

At 200, 250 and 300°C, the concentrations of fluoride 1 and fluoride 2 (probable SF_4 and S_2F_{10}) were not increasing significantly. The concentrations of SO_2 , H_2S , HF and CO were below detection limits. SF_6 is stable and not decomposed significantly at 200, 250 and 300°C. The concentrations of fluoride 1 (probable SF_4), fluoride 2 (probable S_2F_{10}) and SO_2 are not significantly increased with the time of heating.

Table 1. SF ₆ byproducts	of	overheated	faults	simulation	at
200°C (unit: μL/L).					

	Fluoride 1(probable SF ₄)	Fluoride 2 (probable S ₂ F ₁₀)
200°C brfore heating	3.4	9.0
200°C heating 1 hour	4.1	10.1
200°C heating 2 hours	3.3	8.3
200°C heating 3 hours	3.0	7.6
200°C heating 4 hours	2.9	7.3
200°C heating 5 hours	2.6	6.8
200°C heating 6 hours	2.7	6.9
200°C heating 7 hours	2.7	6.9
200°C heating 8 hours	2.7	7.0

Table 2. SF₆ by products of overheated faults simulation at 250°C (unit: $\mu L/L$).

	Fluoride 1 (probable SF ₄)	Fluoride 2 (probable S ₂ F ₁₀)
250°C brfore heating	3.1	7.9
250°C heating 1 hour	3.2	8.1
250°C heating 2 hours	3.4	8.4
250°C heating 3 hours	3.9	10.1
250°C heating 4 hours	4.5	10.6
250°C heating 5 hours	3.6	8.8
250°C heating 6 hours	3.3	8.0
250°C heating 7 hours	3.1	7.8
250°C heating 8 hour	3.0	7.6

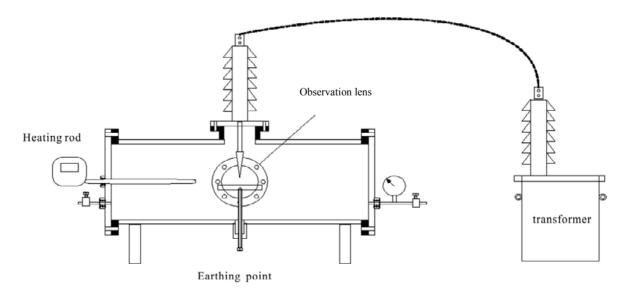


Figure 1. The experiment equipment.

400°C (unit: µL/L).

Table 3. SF₆ by products of overheated faults simulation at 300°C (unit: μ L/L).

	Fluoride 1 (probable SF ₄)	Fluoride 2 (probable S ₂ F ₁₀)
300°C brfore heating	2.8	7.2
300°C heating 1 hour	2.8	7.4
300°C heating 2 hours	2.8	7.3
300°C heating 3 hours	3.0	7.4
300°C heating 4 hours	4.5	10.7
300°C heating 5 hours	4.4	10.5
300°C heating 6 hours	3.5	8.8
300°C heating 7 hours	3.2	7.8

Table 4. SF₆ by products of overheated faults simulation at 350°C (unit: $\mu L/L$).

	Fluoride 1 (robable SF ₄)	Fluoride 2 (robable S ₂ F ₁₀)	SO_2	$\mathrm{H}_2\mathrm{S}$	HF
350°C brfore heating	7.0	18.9	N.D.	N.D.	N.D.
350°C heating 1 hour	6.9	19.2	N.D.	0.3	0.5
350°C heating 2 hours	5.6	15.4	N.D.	0.6	0.9
350°C heating 3 hours	5.8	16.1	N.D.	0.9	1.3
350°C heating 4 hours	5.7	16.0	N.D.	1.4	1.3
350°C heating 5 hours	5.7	15.9	7.2	1.6	1.9
350°C heating 6 hours	6.1	17.3	12.3	2.1	1.6
350°C heating 7 hours	5.8	16.3	18.6	2.4	1.6
350°C heating 8 hours	5.7	16.0	23.0	3.0	1.2

N.D.: not detected.

At 350°C, the concentrations of fluoride 1, and fluoride 2 (probable SF₄ and S₂F₁₀) were not increasing significantly. The concentration of SO₂, H₂S and HF was 7.2, 1.6 and 1.9 μ L/L after heating for 5 hours, and it was increased to 23.0, 3.0 and 1.2 μ L/L 3 hours later. The concentration of CO was below detection limits. SF₆ will decompose and produce 0.3 μ L/L H₂S and 0.5 μ L/L HF after heating for 1 hour, and will produce 7.2 μ L/L SO₂, 1.6 μ L/L H₂S and 1.9 μ L/L HF after heating for 5 hours. The concentration of HF decreased when its concentration increases up to 1.9 μ L/L. It may be because that HF was strongly corrosive and its corrosion to inner equipment made the concentration of HF decreasing. The

	Fluoride 1 (probable SF ₄)	Fluoride 2 (probable S ₂ F ₁₀)	SO_2	$\mathrm{H}_2\mathrm{S}$	HF
400°C brfore heating	3.8	8.4	N.D.	N.D.	N.D.
400°C heating 1 hour	3.4	7.4	N.D.	0.6	0.9
400°C heating 2.5 hours	3.2	7.4	N.D.	1.6	2.0
400°C heating 5 hours	3.5	7.6	17.6	3.3	2.4
400°C heating 7 hours	3.2	7.0	29.5	4.7	2.2
400°C					

Table 5. SF₆ byproducts of overheated faults simulation at

N.D.: not detected.

3.8

heating

8 hours

Table 6. SF₆ by products of overheated faults simulation at 450°C (unit: μ L/L).

8.2

26.1 5.3

1.6

	Fluoride 1 (probable SF ₄)	Fluoride 2 (probable S_2F_{10})	SO ₂	H ₂ S	HF
450°C brfore heating	2.4	4.8	N.D.	N.D.	N.D.
450°C heating 1 hour	2.4	4.8	N.D.	0.8	1.0
450°C heating 2 hours	2.4	4.6	13.3	1.5	1.5
450°C heating 3 hours	2.5	4.7	19.3	3.1	2.4
450°C heating 5 hours	2.4	4.5	21.3	4.8	2.7
450°C heating 7 hours	2.5	4.7	36.4	7.1	2.5
450°C heating 8 hours	2.9	5.5	40.6	8.4	2.4

N.D.: not detected.

	Fluoride 1 (probable SF ₄)	Fluoride 2 (probable S_2F_{10})	SO_2	H_2S	HF	СО
500°C brfore heating	5.9	15.6	N.D.	N.D.	N.D.	N.D.
500°C heating 1 hour	5.7	15.1	N.D.	4.6	3.4	N.D.
500°C heating 2 hours	5.5	14.7	33.4	7.0	3.7	N.D.
500°C heating 4 hours	6.0	15.7	50.8	12.6	3.5	N.D.
500°C heating 5 hours	5.8	15.2	62.2	15.6	3.6	N.D.
500°C heating 6 hours	5.7	15.0	68.3	18.4	3.3	0.2
500°C heating 7 hours	5.8	15.7	77.5	21.6	2.5	0.2
500°C heating 8 hours	15.1	35.7	91.4	25.2	2.3	0.9

Table 7. SF₆ by products of overheated faults simulation at 500°C (unit: $\mu L/L$).

N.D.: not detected.

conntrations of fluoride 1 (probable SF_4) and fluoride 2 (probable S_2F_{10}) are not significantly increased with the time of heating, while the concentration of SO_2 is significantly increased.

At 400°C, the concentrations of fluoride 1, and fluoride 2 (probable SF_4 and S_2F_{10}) were not increasing significantly. The concentration of SO₂ was 17.6 µL/L after heating for 5 hours, and it was increased to 26.1 μ L/L 3 hours later. The concentration of H₂S was 1.6 µL/L after heating for 2.5 hours, and it was increased to 5.3 μ L/L 5.5 hours later. The concentration of HF was 2.4 μ L/L after heating for 5 hours and it was decreased to $1.6 \,\mu\text{L/L}$ 3 hours later, the tendency of which was the same with that at 350°C. The concentration of CO was below detection limits. SF₆ will decompose and produce 0.6 μ L/L H_2S and 0.9 μ L/L HF after heating for 1 hour at 400°C, and will produce 17.6 μ L/L SO₂, 3.3 μ L/L H₂S and 2.4 μ L/L HF after heating for 5 hours. The concentrations of fluoride 1 (probable SF₄) and fluoride 2 (probable S_2F_{10}) are not significantly increased with the time of heating, while the concentration of SO₂ is significantly increased.

At 450 °C, the concentrations of fluoride 1 and fluoride 2 (probable SF_4 and S_2F_{10}) were not increasing signifi-

cantly. The concentration of SO₂ and H₂S was 13.3 and 1.5 μ L/L after heating for 2 hours, and it was increased to 40.6 and 8.4 μ L/L 6 hours later. The concentration of HF was 2.7 μ L/L after heating for 5 hours, and it was decreased to 2.4 μ L/L 3 hours later, the tendency of which was the same with that at 400°C. The concentration of CO was below detection limits. SF₆ will decompose and produce 0.8 μ L/L H₂S and 1.0 μ L/L HF after heating for 1 hour, and will produce 13.3 μ L/L SO₂, 1.5 μ L/L H₂S and 1.5 μ L/L HF after heating for 2 hours. The concentrations of fluoride 1 (probable SF₄) and fluoride 2 (probable S₂F₁₀) are not significantly increased with the time of heating, while the concentration of SO₂ is significantly increased.

At 500°C, the concentrations of fluoride 1 and fluoride 2 (probable SF_4 and S_2F_{10}) were not increasing significantly. The concentration of SO₂ was 33.4 μ L/L after heating for 2 hours, and it was increased rapidly to 91.4 μ L/L 6 hours later. The concentration of H₂S was 4.6 μ L/L after heating for 1 hour, and it was increased to 25.2 μ L/L 7 hours later. The concentration of HF was 3.7 μ L/L after heating for 2 hours and it was decreased to 2.3 μ L/L 6 hours later, the tendency of which was the same with that at 400°C and 450°C. The concentration of CO was below detection limits. SF₆ will decompose and produce 4.6 µL/L H₂S and 3.4 µL/L HF significantly after heating for 1 hour, and will produce $33.4 \mu L/L SO_2$ significantly after heating for 2 hours. The concentrations of fluoride 1 (probable SF_4) and fluoride 2 (probable S_2F_{10}) are not significantly increased with the time of heating, while the concentration of SO_2 is significantly increased.

4. Conclusions

SF₆ is very stable and not significantly decomposed at 200°C, 250°C and 300°C. SF₆ will decompose and produce 0.3 μ L/L H₂S and 0.5 μ L/L HF after heating for 1 hour at 350°C, and it will produce 7.2 µL/L SO₂, 1.6 μ L/L H₂S and 1.9 μ L/L HF after heating for 5 hours At 400°C, SF₆ will decompose and produce 0.6 µL/L H₂S and 0.9 µL/L HF after heating for 1 hour, and it will produce 17.6 μ L/L SO₂, 3.3 μ L/L H₂S and 2.4 μ L/L HF after heating for 5 hours. At 450°C, SF₆ will decompose and produce 0.8 µL/L H₂S and 1.0 µL/L HF after heating for 1 hour, and it will produce 13.3 μ L/L SO₂, 1.5 μ L/L H₂S and 1.5 μ L/L HF after heating for 2 hours At 500°C, SF₆ will decompose and produce 4.6 μ L/L H₂S and 3.4 μ L/L HF after heating for 1 hour, and it will produce 33.4 μ L/L SO₂, 7.0 μ L/L H₂S and 3.7 μ L/L HF significantly after heating for 2 hours. According to above simulated experiments, SF_6 is beginning to format significant SF_6 byproducts at 350°C, and it is more easily to be decomposed at higher temperature. SF₆ will be decomposed to

format HF, which is strongly corrosive and whose concentration is likely to decrease when it is above a certain concentration.

REFERENCE

- M. Averyt, "SF₆ By-products: Safety, Cleaning and Disposal Concerns," U.S.EPA's International Conference on SF₆ and the Environment, San Antonio, 29 November 2006.
- [2] J. L. Bessede and W. Krondorfer, "Impact of High Voltage SF₆ Circuit Breakers on Global Warming-Relative Contribution of SF₆ Losses," U.S.EPA's Conference, San Diego, 2-3 November 2000.
- [3] IEC60480, "Guidelines for the Checking and Treatment of Sulfur Hexafluoride (SF₆) Taken from Electrical Equipment and Specification for Its Reuse," 2nd Edition, 2004.
- [4] M. Mastroianni, "SF₆ Analysis is the Key to Maintenance," *Electrical World*, Vol. 194, No. 9, 1980, pp. 92-96.
- [5] I. Sauer, "Neutral Decomposition Products in Spark Breakdown of SF₆," *IEEE Transactions on Electrical Insulation*, Vol. 21, No. 2, 1986, pp. 111-115. doi:10.1109/TEI.1986.348932
- [6] IEC 62271-303-2008, "High-Voltage Switchgear and Controlgear–Part 303: Use and Handling of Sulphur Hexafluoride (SF₆)," 1st Edition, 2008.
- [7] X. X. Zhang, Y. Yao, J. Tang, C. X. Sun and L. Y. Wan, "Actuality and Perspective of Proximate Analysis of SF6 Decomposed Products Under Partial Discharge," in Chinese, *High Voltage Engineering*, Vol. 34, No. 8, 2008, pp. 664-669.
- [8] J. Tang, T. Li, L. Y. Wan, X. X. Zhang and Y. Yao, "Gaseous Decomposition Components Analysis System," in Chinese, *High Voltage Engineering*, Vol. 34, No. 4, 2008, pp. 1583-1588.

- [9] Y. Wang, Z. Li, W. J. Yao, X. S. Zhuang and C. J. Huang, "Situation and Analysis of SF₆ Byproducts of Gas Insulated Switchgear (220kV and above) in Guangdong Province," in Chinese, *High Voltage Engineering*, Vol. 35, No. 4, 2009, pp. 823-828.
- [10] Z. Q. Zhang and H. S. Lian, "Using SO₂ Detection for Failure Checking of SF₆ Electricity Equipment," in Chinese, *Electric Power*, Vol. 34, No. 1, 2001, pp. 77-80.
- [11] Y. Y. Wang, "Discussion of Analyzing Internal Faults of SF₆ Electric Equipment by SO₂ Concentrations," in Chinese, *Fujian Electric Power and Electrician*, Vol. 21, No. 1, 2001, pp. 56-57.
- [12] W. J. Yao and N. W. Cheng, "Detection of Fault Characteristic Gases in SF₆-Insulated Transformers," in Chinese, *Guangdong Electric Power*, Vol. 12, No. 4, 1999, pp. 20-21.
- [13] L. M. Song, Q. Wu and L. C. Li, "Chromatograph Analysis of Toxic Impurities in SF₆," in Chinese, *Liming Chemistry*, Vol. 3, 1992, pp. 18-21.
- [14] W. Z. Wang, F. P. Yue and S. G. Xia, "Application of GC-MS in Analyzing Trace Impurities in SF₆," in Chinese, *Electric Technology*, Vol. 4, 1981, pp. 3-4.
- [15] L. Wang, "Analysis Technology of Trace Impurities in SF₆ and Its Application in Purifying Decomposition Gas of Arc Discharge," in Chinese, *Electric Technology*, Vol. 6, 1988, pp. 10-14.
- [16] L. Wang and J. Z. Wang, "Preparation Technique of S₂OF₁₀ Gas Standard Sample and Determination Method of the Trace S₂OF₁₀ in SF₆," in Chinese, *Chinese Journal* of Chromatography, Vol. 17, No. 5, 1999, pp.55-57.
- [17] W. W. Cheng, G. L. Ma and Q. L. Zhu, "Gas Chromatographic Determination of Trace Bispentafluorosulfur oxide in Sulfur Hexafluoride Using a Post-Column Switching and Temperature Programming Method," in Chinese, *Chinese Journal of Analytical Chemistry*, Vol. 26, No. 12, 1998, pp. 1468-1470.