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Abstract 
 
A design analysis of a mixing nozzle was performed using a combination of probabilistic and optimization 
techniques. A novel approach was utilized where probabilistic analysis was used to reduce the number of 
geometric constraints based on sensitivity factors. An optimization algorithm used only the most significant 
parameters to maximize mixing. A second probabilistic analysis was performed after optimization was com-
plete in order to quantitatively predict the effects of manufacturing tolerances on mixing performance. This 
process for automated design is attractive over full parameter optimization techniques due to the computa-
tional efficiency resulting from an intelligent reduction in evaluated variables. 
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1. Introduction 
 
Computational fluid dynamics (CFD) analyses, with 
software packages like Fluent™ (ANSYS, Inc.), have 
become accepted techniques for solving complex fluid 
flows using numerical implementation of fluid mechan-
ics principles. CFD-driven optimization has been ex-
plored by several researchers [1-3]. Peigin et al. has 
proposed a design tool that implements multi-constrained 
optimization of shape design driven by Genetic Algo-
rithms (GA) coupled with CFD. The benefit to GA is that 
they can handle a large number (20+) of design variables; 
however, with a large number of constraints, GA are 
computationally expensive. Peigin et al. reports 15-18 
hours for a single point optimization and on average 8-12 
optimization steps [1]. A similar multi-constrained opti-
mization strategy has been implemented on a ship’s hull. 
Again the downside is the time constraints, where they 
report approximately 10 days for 20 shape generations 
on a PC-based cluster [2]. Many researchers are using 
these GA’s in order to optimize a system with numerous 
variables.  

GA’s have also been used by Carroll (1996) for the 
modeling of complex chemical mixing systems. The GA 
was coupled with the Blaze II code [4]. The Blaze II code 
can address up to 500 chemical reactions and 40 species. 
It also contains 1-D fluid dynamic equations, with mixing 

terms derived from 2-D equations, that can be used to 
model axis symmetric and 2-D flow fields [4]. The GA 
used 5 parameters with either 32 or 16 discrete possibili-
ties resulting in approximately 2 million permutations. 
Even with a 2-D model and only 5 variable parameters 
the GA required 8 days of continuous runtime [3].  

The objective of the current project is to develop and 
implement a design analysis of a fluid mixing nozzle 
using a coupled optimization and probabilistic approach. 
Due to the potentially large computational times to run 
GA optimization, our approach is to reduce the number 
of constraints though probabilistic analysis in order to 
use single objective optimization techniques. This tech-
nique was applied to mixing nozzles for a generic chem-
ical mixing system. Based on the insight into the features 
that most affect performance provided by the probabilis-
tic analysis, optimization has the potential to improve 
design performance while also reducing the weight of the 
system. Additionally, a probabilistic analysis of the op-
timized design can confirm the original optimization 
parameters and provide insight into the effects of manu-
facturing tolerances of specific geometric variables. This 
will in turn, reduce manufacturing costs by determining 
which dimensions are important to the mixing perfor-
mance of the nozzle and which geometric tolerances can 
be loosened. A clear benefit to this design approach is 
that it allows for fast optimization by reducing the num-
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ber of constraints through probabilistic analysis, as well 
as, assessing the impact of manufacturing tolerances. 
 
2. Methodology 
 
Currently, there is no commercially available tool in in-
dustry to perform fluid mechanics analyses, optimization 
and probabilistic analysis in the proposed integrated 
manner.  There are however, software packages that can 
execute individual components of the process. Our ap-
proach is to use commercially available CFD, probabilis-
tic and optimization software and interface them together 
with custom scripting. The probabilistic software, or op-
timization routine, manages the CFD code by importing 
any number of variables within ranges and/or distribu-
tions set by the user. Figure 1 and 2 show a diagram 
linking the processes mentioned above. 
 
2.1. CFD Model 
 
The CFD software used for the simulations was Fluent™ 
Version 6.3.26 [5]. It is a widely used computational 
software package for modeling fluid flow and heat 
transfer in complex geometries. Easy mesh generation 
and ability to refine or coarsen the mesh autonomously 
based on the flow solution are just some of the features 
that make this CFD package extremely versatile and 

ideal for automation. Gambit® was the pre-processor 
used for the solid modeling and mesh generation.  

The algorithm employed was the pressure-based 
Navier-Stokes solution algorithm. Typically, this algo-
rithm is used for low velocity incompressible flows, 
which fits this case where the flow velocity is about 83 
m/s. The momentum equation provides the velocity field 
and the density is calculated from the equation of state. 
Other governing equations include energy and species 
conservation. The turbulence model chosen was the 
standard k-epsilon turbulence model. This model is ro-
bust and suitable for initial iterations, initial alternative 
design screenings, and parametric studies. The k-epsilon 
model will be ideal for the automated analysis where 
many different shapes will be analyzed. A no-slip boun-
dary condition was placed at the walls. The primary inlet 
utilized a user-defined function (UDF) that modeled a 
fully developed fluid flow.  

Definition of the boundary conditions is critical to 
both accuracy of the model and computational efficiency, 
the importance of which should not be under estimated 
when venturing into optimization and probabilistic anal-
ysis. Considerable attention was paid to identifying the 
best algorithmic parameters in order to achieve conver-
gence in the minimum number of iterations, reliably, and 
with physically correct solutions regardless of geometry. 
It is also noteworthy to mention that this process was  

 

 
Figure 1. Diagram of the probabilistic/optimization and CFD interface. Each program is linked by custom scripts. 
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Figure 2. Example flow chart of the probabilistic interface using the AMV Method.  
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carried out in parallel on 8 processors in order to reduce 
computational time. 
 
2.2. Probabilistic Model 
 
As uncertainty is inherent in physical systems, a proba-
bilistic analysis model input variables as distributions 
and then predicts a distribution of performance. Based on 
the distribution of performance, sensitivity and impor-
tance factors are used to identify critical parameters. The 
probabilistic software, Nessus®, implements a variety of 
probabilistic methods that vary in efficiency and accura-
cy of the solution. The most commonly used probabilis-
tic method is Monte Carlo [6]. The Monte Carlo method 
generates random values for each variable according to 
its distribution and then predicts the distribution of per-
formance through repeated trials. As the accuracy of the 
prediction is dependent on the number of trials per-
formed, the Monte Carlo method is computationally ex-
pensive. The mean-value (MV) family of methods are 
approximate, but considerably more efficient than the 
Monte Carlo method. They create a mean-based response 
function and compute the most probable point (MPP), 
which is the shortest distance from the origin to the limit 
state surface and represents the combination of stochastic 
variables resulting in a specific level of performance [6]. 
In this study, the Advanced Mean Value (AMV) method 
was applied, which uses a higher order approximation to 
determine the MPP [7]. The number of trials used for the 
AMV method is 1 + the number of variables + the num-
ber of probability levels desired [7]. While the AMV 
method is a discrete and approximate solution, it has 
shown excellent agreement with Monte Carlo analysis 
for monotonic system. This has been shown in other ap-
plications which utilize FE analysis with geometric per-
turbations and realistic loading conditions [8,9]. The 
major advantage of the AMV is that it requires a small 
number of trials, which saves significant computational 
time when the CFD analysis requires multiple iterations 
to reach convergence. Both of these probabilistic me-
thods provide sensitivity factors identifying and quanti-
fying the contributions of each variable on performance 
of the system.  

The AMV method was utilized early in the design 
process to identify the variables that contributed signifi-
cantly to the behavior of the system reducing the number 
of parameters required for performance optimization. By 
reducing the number of variables in the optimization, the 
computation time and required resources are dramatical-
ly reduced.  Instead of using a sensitivity study per-
turbing a single variable at a time, a probabilistic ap-
proach was used to allow for the interaction affects be-

tween the various input parameters. During the early 
stages of the design process, the emphasis was on iden-
tifying the important and unimportant variables. Follow-
ing optimization, AMV methods were employed to eva-
luate the effects of manufacturing tolerances on system 
performance. 
 
2.3. Optimization Model 
 
Numerical optimization techniques are designed to mi-
nimize an objective function subject to constraints, with 
many algorithms developed over the past several decades 
[10]. In general, the algorithms require a starting point, 
x0, and then iterate or step until there is no more progres-
sion, or the approximate solution falls within a user-de- 
fined tolerance. Typically, algorithms follow one of two 
types of strategies, line search or trust region. This study 
implemented a trust region [11] strategy in order to ac-
count for geometric changes that may result in the fluid 
domain acting non-linearly. A common problem in line 
searches is the fixed step size can causes them to miss a 
local minimum, where as the step size in the trust region 
search is not fixed and, therefore, has a better opportuni-
ty to find a minimum that is close to the current point. 

The success and efficiency of an optimization is con-
tingent on selection of an appropriate algorithm and an 
accuracy characterization of the problem. It was not 
known whether the variables would behave linear, 
non-linear, or convex, only that they could hold any val-
ue between the bounds. The optimization algorithm had 
to be suitable for a continuous objective function with 
variables that are constrained by simple bounds and can 
solve for linear, non linear and convex variables.  

A trust-region algorithm was implemented, which uti-
lizes an active-set algorithm, for the optimization analy-
sis. An active-set algorithm will employ linear tech-
niques to estimate the active-set at each iteration and 
then solve an equality constrained quadratic program to 
generate a step [12]. This method was used because it 
tends to yield more exact solutions and is less sensitive 
to the initial starting point than interior point methods. 
Another benefit, in our case, of the active-set algorithm 
is that it uses a gradient projection method when only 
bounds are applied to the constraints [13]. The gradient 
projection method attempts to speed up the solution 
process within the active-set, but is only utilized when 
the variables are bounded. It consists of two different 
stages. First, the search direction will be along the path 
of steepest decent from the current point. The second 
stage investigates the face of the feasible region using the 
active-set constraints [12]. This can significantly reduce 
the optimization time. 
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2.4. Interfacing Model 
 
To facilitate communication between the all of the soft-
ware packages, custom interfacing was developed to 
build CFD models with perturbed parameters and calcu-
late performance parameters from the analysis outputs. 
Interfacing was performed with components written in 
Matlab®, Dos and C. In addition, checks were performed 
to ensure mesh quality to prevent analyses that would fail 
or highly skewed elements, which may lead to conver-
gence issues. This is noteworthy because the automated 
process can potentially take days and even weeks to run 
and computational efficiency will be a driving factor, 
especially as more complex flows are examined. An im-
ported UDF specifies the physical boundary conditions 
for the specific system. Once the CFD simulation con-
verges to a solution for the flow field; it calculates the 
values of a user defined fluid property (i.e. mole fraction 
of interested species) via a UDF and prints the results to a 
file. A script is also utilized to calculate the performance 
parameter and print the results for analysis by either the 
probabilistic or optimization routines. The performance 
parameter used is Mixedness, which is defined by: 

_

_
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n M
−

= −
⋅
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The degree of mixing is measured by the ratio of the 
integral value for species mole fraction (Mf) across an 
exit plane divided by the homogeneous mole fraction 
(Mf_Homogeneous), where n is the number of nodes within 
the exit plane. Increased mixing of species in chemical 
systems should result in greater chemical efficiencies and 
better performance. This interfacing routine is continued 
until all of the probabilistic or optimization trials are 
completed. 
 
3. Problem Description 
 
3.1. CFD Model 
 
The combined probabilistic and optimization approach is 
demonstrated for a low flow, subsonic Hydrogen-Iodide 
Chlorine (HICl) Laser. As opposed to other chemical 
lasers the HICl Laser has yet to reach its expected per-
formance potentially due in part to a lack of homogene-
ous distribution of its excited chemical species.  

Additionally:  
1) the subsonic HICl Laser has simple mixing geome-

try, employing a repetitive nozzle array that allows the 
computational domain to be reduced based on simple 
lines of symmetry; 

2) the cross-flow injection geometry would be easy to 
perturb within the code; 

3) validation data exists for injection cross-flow at 
speeds similar to the HICl. 

The geometry for the subsonic HICl Laser consists of 
a rectangular flow channel (Figure 3(a)). There are four 
rows of secondary flow injection nozzles on the top and 
bottom plates of the cavity (Figure 3(b)). The primary 
inlet flow for the subsonic HICl Laser is a mixture of 
helium (He) and hydrogen (H2). The secondary flow 
through the nozzle plates has two different mixtures that 
are being injected into the primary flow. The first three 
rows inject a mixture of helium and hydrogen-iodide 
(HI), where the fourth injects a mixture of helium and 
nitrogen-trichloride (NCl3). Table 1 shows the boundary 
conditions applied during this design optimization run. A 
constant cross-sectional area was maintained on each 
inlet, but the aspect ratio was allowed to vary. 

It would be computationally expensive to model the 
entire flow channel for the CFD analysis; consequently, 
planes of symmetry are used again to reduce the size of  
 

 
Figure 3. (a) A section view of the laser cavity showing the 
secondary inlet nozzle plates, and (b) detailed view of one of 
the nozzle plates. Note: the system has two identical sets of 
nozzle plates. 
 

Table 1. Flow conditions for subsonic HICl laser. 

Initial Conditions and Constants 

Pressure 50 torr 

Outlet Velocity 83 m/s 

Temperature 300 K 

Gas Constant 62400 Torr-cm^3/K-mole 

Avogadro’s Number 6.02E+23 molecules/mole 
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the modeled fluid domain (Figure 4). The fluid domain 
was modeled and meshed using text commands within a 
journal file. This allowed for easy modification during 
the automated process. 

The algorithms, boundary conditions, and meshing 
strategies for the CFD simulation were validated using 
experimental data from subsonic (yet compressible flows) 
jets in cross flow [14]. Downstream velocity and temper-
ature profiles obtained from the CFD simulations showed 
good comparison (Figure 5) to the experimental data of 
Dizene et al. (2000). This effort highlighted the need to 
accurately describe the velocity profile at the entrance 
 

 
Figure 4. Schematic of the variables and geometry for the 
first probabilistic analysis. 
 

 
 

 
Figure 5. Velocity and Temperature profiles from experi-
mental data compared to CFD simulations of jet in cross- 
flow at X/D = 4. 

boundaries and confirmed that the dynamic adaptive grid 
technique and algorithms selected worked well in these 
types of fluid flow conditions. 
 
3.2. Probabilistic Model 
 
The initial probabilistic CFD analysis modeled eight 
geometric variables as distributions. The parameters 
were the size of the holes in two directions, the offset 
between the holes, and the hole placement, as illustrated 
in Figure 4. All of the parameters were modeled as nor-
mal distributions defined by mean and standard deviation 
(Table 2). Standard deviations were determined by the 
maximum range permissible by geometric limits. 
 
3.3. Optimization Model 
 
Optimization was then applied to determine the values of 
the variables within the constraints that maximized Mix-
edness. The four important variables, LHRx, LHRz, 
SHRx, and LHRz can be combined into two by keeping 
the cross sectional areas of the orifices constant. There-
fore, only two variables, LHRz and SHRz, need to be 
perturbed for the HICl Laser optimization. The objective 
function and constraints for the optimization is stated 
below: 

Maximize: M = f(LHRz, SHRz)         (2) 
Subject to: 0.0055 cm ≤ LHRz ≤ 0.023 cm 

0.010 cm ≤ SHRz ≤ 0.042 cm 
The optimization routine was used to determine the 

values of LHRz and SHRz in each analysis. The initial 
guess in the optimization algorithm were the mean val-
ues from the probabilistic analysis. The automated 
process updated the geometry, generated the mesh, per-
formed the CFD analysis and extracted the results to 
compute the Mixedness parameter. Since the maximum 
Mixedness is desired, the minimization of the ratio of HI  
 
Table 2. Probabilistic variables with respective mean, stan-
dard deviation, and distribution. 

Name Mean (mm) StDev (mm) Distribution 

LHRx 0.1125 0.067 Normal 

LHRz 0.1125 0.067 Normal 

SHRx 0.1 0.07 Normal 

SHRz 0.1 0.07 Normal 

OffsetH 0.2025 0.05 Normal 

L_2ndSet 1.5 0.33 Normal 

Prcnt1 0.0 0.3 Normal 

Prcnt2 0.0 0.3 Normal 

(3) 
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concentrations to the maximum concentration (the second 
term in Equation (1) was calculated. The optimization 
process continues until the Mixedness value has con-
verged to within a 0.01% tolerance. In addition, initial 
guesses near the lower and upper bounds of the design 
space were also evaluated to check for local minimums 
that may be on either side of the mean orifice dimensions. 
 
4. Results and Discussion 
 
4.1. Identification of Important Parameters 
 
Figure 6 shows the importance levels associated with 
each variable that was perturbed in the modeled geome-
try. The importance factors represent the design vector or 
value of each parameter that defines the MPP, which is 
proportionate to the output measure at the specified 
probability. As they are reported in the standard normal 
space, importance factors are relative measures and the 
sum of the squares for each measure will equal 1. The 
importance levels identify the variables that contribute 
the most to the reliability of the design; therefore, it is 
deduced from Figure 5 that the radii of the inlet orifices 
contribute the most to either increase or decrease of the 
response variable, Mixedness. The other important ob-
servation is that PRCNT1, PRCNT2, OFFSETH and 
L_2NDSET had little to no effect on the Mixedness of 
the system. Recall, they had the largest standard devia-
tion of all the variables. Now, the elimination of four of 
the eight variables within the geometry allows for the 
focus on only the radii of the orifices.  
 
4.2. Design Optimization 
 
All of the optimization analyses converged to the same  
 

 
Figure 6. Histogram of the Importance Levels due to the 
first probabilistic analysis. It can be seen that the orifices 
affect the Mixedness the most. 

value with the ratio of LHRz to SHRz equal to 0.6. This 
lower bound is both a computational and manufacturing 
limit due to the small size of the orifices. Figure 7 shows 
the contours of all the data taken from the three different 
optimization runs. The green area shows the larger Mix-
edness parameters and the path that the optimization al-
gorithm followed. The optimization required between 18 
and 29 analyses and from 5 to 9 optimization iterations.  

The contour plot of the optimization analysis shows 
the optimized solution and the various starting points 
(Figure 8). Since, the only information acquired was 
along the optimization path, little reliable information 
can be extracted from the other areas of the plot. This 
does, however; show the optimal orifice aspect ratio for 
LHRz and SHRz is approximately equal to 4 and 6, re-
spectively, and resulted in an increased Mixedness of 
nearly 10%. The major diameters of both orifices are 
parallel to the fluid flow.  

In order to ensure that the global optimum was found, 
a Monte Carlo simulation was performed using the 
probabilistic CFD model to characterize the design space 
used in the optimization analysis. The response surface 
(Figure 9) with 200 Monte Carlo trials and the optimiza-
tion results confirmed the findings of the optimization. 
Notably, the horizontal bands indicate that the LHRZ 
dimension has little effect on the fluid system. For ex-
ample, starting at the optimized location (SHRz = 0.010 
cm, LHRz = 0.006 cm), changes in LHRz within the  
 

 
Figure 7. Contour plot of the optimization analysis with 
data point of each iteration. The optimized geometry con-
verged near the lower bounds, where both orifices are ellip-
tical and the major diameter is parallel to the fluid flow. 
The red circles locate the three different starting points and 
the red box indicates the optimum. 
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Figure 8. Surface plot of the combined Monte Carlo and 
optimization simulations with data points. 
 

 
Figure 9. Histograms of the importance levels from the 
manufacturing sensitivity simulation.  
 
design space did not affect the Mixedness value by more 
than 1%. Knowledge of these relationships is helpful in 
the design and manufacturing processes. The LHRz ori-
fice can be a simple, circular geometry (which will be 
easier to create) and the mixing of the system will stay 
approximately the same compared to if it were elliptical. 
The response surface is non-monotonic over the optimi-
zation design space. The Monte Carlo results also reaf-
firm that the optimal configuration of the orifices, where 
the small orifice is located upstream to large orifice. 
 
4.3. Manufacturing Sensitivities 
 
Based on the optimized design, the probabilistic platform 
was used to investigate the variability in Mixedness due 

to the manufacturing tolerances. The most economical 
way to create these elliptical geometries at the small di-
mensions required is through a wire electrical discharge 
machine (EDM). In this analysis, the geometry from the 
optimization simulation with mean values for LHRz and 
SHRz equal to 0.006 and 0.010 cm, respectively, will be 
used. The tolerances on these dimensions are +/− 0.001 
cm, a tolerance that can typically be achieved by a wire 
EDM in a cost effective manner. The AMV method in-
corporated seven CFD simulations. The values for the 
AMV simulation are given below in Table 3. 

The results for the importance of the four parameters, 
LHRz, LHRx, SHRz, and SHRz, are show in Figure 1. 
These results illustrate the same trends as the whole sys-
tem. First, the LHRx, LHRz, and SHRx dimensions have 
virtually no importance on the Mixedness of the system. 
For the manufacturing design, the relaxation of toler-
ances on the LHRz dimensions would reduce the cost of 
fabrication and still maintaining a high Mixedness num-
ber. The importance of SHRz dimension does affect the 
system and the resulting Mixedness number. This result 
is liberal because the orifices’ aspect ratios did change 
slightly. Since the X and Z dimensions were not depen-
dent on each other, the X or Z radii could get larger or 
smaller while the other could do the same. Therefore, the 
results showed an increase in Mixedness, but if the as-
pect ratios were the same the Mixedness should not 
change. However, the Mixedness number reduces by 
~3% if the SHRz dimension is decreased by 0.001 cm 
and increases by ~3% if it is decreased by 0.001 cm. 
 
5. Conclusions 
 
The purpose of this research was to create and implement 
an efficient computational design tool to combine opti-
mization and probabilistic modeling to provide insight 
into how to improve chemical mixing systems perfor-
mance. This has provided insight into the sensitivities of 
several different parameters that affect chemical mixing 
systems. Baseline CFD models were created for subsonic 
and mixing nozzles. The interfacing tools designed 
worked with minimal interaction from the user. The au-
tomated process for the probabilistic analysis requires  
 
Table 3. Probabilistic variables for manufacturing sensitivi-
ties on the optimized orifice geometry. 

Name Mean StDev Distribution 

LHRZ 0.0060 0.00034 Normal 

LHRX 0.0265 0.00034 Normal 

SHRz 0.0636 0.00034 Normal 

SHRx 0.0100 0.00034 Normal 
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input variables and perturbations from the user (assum-
ing the geometry is created). Once all the inputs are spe-
cified, the interface carries out numerous evaluations of a 
fluid system. The optimization interface operated in 
much the same way. It required a starting point, as well 
as, constraints on the system. These actions were imple-
mented on a subsonic mixing nozzle and results were 
obtained. Finally, the parallel processing technique 
enabled complex flows to be optimized in a timeframe 
consistent with real-time design processes (i.e. less than 
one week). For the AMV probabilistic analysis with 8 
variables, the clock time was approximately 5 hours. The 
optimization process had a clock time on the order of 3-4 
days. All the computations took place on a HP xw8400 
Workstation with 2 - 2.33GHz Xeon Quad Core Proces-
sors and 4 GB RAM.  

It was discovered, using the above computational tools, 
that in a HICl laser mixing nozzle, elliptical orifices with 
the major diameter parallel to the flow direction in-
creased the mixing within the system by roughly 10%. 
Haven and Kurosaka (1997) similarly found through 
experimentation that the injection port geometry had a 
powerful influence on penetration in the near field [15]. 
For this case the optimum aspect ratio of the larger ori-
fice to be approximately 6 and showed that the small 
injection orifice should be placed in front of the larger in 
a staggered alignment pattern.  

The second evaluation phase of this work explored the 
impact of manufacturing tolerances on Mixedness. It was 
shown that the tolerance on SHRz plays the largest role 
on mixing quality, and that the shape of the small di-
ameter secondary injection orifice does not have a great 
effect on the Mixedness. In fact, the Mixedness only de-
creases by 0.7% 
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Nomenclature 
 
L_2ndSet = length to second set of orifices 
LHRx = first orifice x-direction’s radius 
LHRz = first orifice z-direction’s radius 
Mf = mole fraction 
Mf_Homogeneous = homogeneous mole fraction across down-
stream plane 

N = number of nodes 
OffsetH = Distance between first and second orifices 
within each set 
Prcnt1,2 = percent offset between centers of first and 
second orifices 
SHRx = second orifice x-direction’s radius 
SHRz = second orifice z-direction’s radius 

 


