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Abstract 
 
The present problem is concerned with the deformation of an infinite fibre-reinforced generalized thermoe-
lastic medium with hydrostatic initial stress under the influence of mechanical force. The normal mode anal-
ysis is used to obtain the analytical expressions of the displacement components, force stress and temperature 
distribution. The numerical results are given and presented graphically for Green-Lindsay [1] theory of 
thermoelasticity. Comparisons are made in the presence and absence of hydrostatic initial stress and aniso-
tropy. 
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1. Introduction 
 
The classical theories of thermo-elasticity involving 
infinite speed of propagation of thermal signals, con- 
tradict physical facts. During the last three decades, non- 
classical theories involving finite speed of heat trans- 
portation in elastic solids have been developed to remove 
this paradox. In contrast to the conventional coupled 
thermo-elasticity theory which involves a parabolic-type 
heat transport equation, these generalized theories 
involving a hyperbolic-type heat transport equation are 
supported by experiments exhibiting the actual occur- 
rence of wave-type heat transport in solids, called sound 
effect. The extended thermo-elasticity theory proposed 
by Lord and Shulman [2] incorporates a flux-rate term 
into Fourier’s law of heat conduction, and formulates a 
generalized form that involves a hyperbolic-type heat 
equation admitting finite speed of thermal signals. 
Muller [3] in a review of the thermodynamics of a 
thermoelastic solid, proposed an entropy production 
inequality, with the help of which he considered res- 
trictions on a class of constitutive equations. A gene- 
ralization of this inequality was proposed by Green and 
Laws [4]. Green and Lindsay [4] developed temperature- 
type-dependent thermo-elasticity (TRDTE) theory by 

introducing relaxation time factors that does not violate 
the classical Fourier’s law of heat conduction and this 
theory also predicts a finite speed for heat propagation. 

Barber [5] studied thermoelastic displacements and 
stresses due to a heat source moving over the surface of a 
half plane. Sherief [6] obtained components of stress and 
temperature distributions in a thermoelastic medium due 
to a continuous source. Dhaliwal et al. [7] investigated 
thermoelastic interactions caused by a continuous line 
heat source in a homogeneous isotropic unbounded solid. 
Chandrasekharaiah and Srinath [8] studied thermoelastic 
interactions due to a continous point heat source in a 
homogeneous and isotropic unbounded body. Sharma et al. 
[9] investigated the disturbance due to a time-harmonic 
normal point load in a homogeneous isotropic thermoe- 
lastic half-space. Sharma and Chauhan [10] discussed 
mechanical and thermal sources in a generalized ther- 
moelastic half-space. Sharma et al. [11] investigated the 
steady-state response of an applied load moving with 
constant speed for infinite long time over the top surface 
of a homogeneous thermoelastic layer lying over an 
infinite half-space. Deswal and Choudhary [12] studied a 
two-dimensional problem due to moving load in gene- 
ralized thermoelastic solid with diffusion. 

Fibre-reinforced composites are used in a variety of 
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structures due to their low weight and high strength. A 
continuum model is used to explain the mechanical 
properties of such materials. In the case of an elastic 
solid reinforced by a series of parallel fibres it is usual to 
assume transverse isotropy. In the linear case, the 
associated constitutive relations, relating infinitesimal 
stress and strain components, have five materials con- 
stants. The analysis of stress and deformation of fibre- 
reinforced composite materials has been an important 
subject of solid mechanics for last three decades. Pipkin 
[13] and Rogers [14,15] did pioneer works on the subject. 
Craig and Hart [16] studied the stress boundary-value 
problem for finite plane deformation of a fibre-reinforced 
material. Sengupta and Nath [17] discussed the problem 
of surface waves in a fibre- reinforced anisotropic elastic 
media.. Singh and Singh [18] discussed the reflection of 
plane waves at the free surface of a fibre-reinforced 
elastic half-space. Singh [19] discussed the wave propa- 
gation in an incompressible transversely isotropic fibre- 
reinforced elastic media. Singh [20] studied the effects of 
anisotropy on reflection coefficients of plane waves in 
fibre-reinforced thermoe- lastic solid. Kumar and Gupta 
[21] investigated a source problem in fibre-reinforced 
anisotropic generalized thermoelastic solid under acoustic 
fluid layer. 

The development of initial stresses in the medium is 
due to many reasons, for example, resulting from dif- 
ferences of temperature, process of quenching, shot 
pinning and cold working, slow process of creep, 
differential external forces, gravity variations, etc. The 
earth is assumed to be under high initial stresses. It is, 
therefore, of much interest to study the influence of these 
stresses on the propagation of stress waves. Biot [22] 
showed the acoustic propagation under initial stress, 
which is fundamentally different from that under a 
stress-free state. He has obtained the velocities of 
longitudinal and transverse waves along the co-ordinates 
axis only. 

The wave propagation in solids under initial stresses 
has been studied by many authors for various models. 
The study of reflection and refraction phenomena of 
plane waves in an unbounded medium under initial 
stresses is due to Chattopadhyay et al. [23], Sidhu and 
Singh [24] and Dey et al. [25]. Montanaro [26] inves- 
tigated the isotropic linear thermoelasticity with hydro- 
static initial stress. Singh et al. [27], Singh [28] and 
Othman and Song [29] studied the reflection of ther- 
moelastic waves from a free surface under a hydrostatic 
initial stress in the context of different theories of 
generalized thermoelasticity. Ailawalia et al. [30] inves- 
tigated deformation in a generalized thermoelastic me- 
dium with hydrostatic initial stress. Ailawalia [31] 
obtained the components of displacement, stresses, tem- 

perature distribution of thermoelastic solid half-space 
under hydrostatic initial stress subjected to ramp-type 
heating and loading for G-N theory (type III). 

The present paper is concerned with the investigations 
related to effect of hydrostatic initial stress in fibre- 
reinforced generalized thermoelastic medium. Effects of 
hydrostatic initial stress and anisotropy are shown 
graphically on normal displacement, normal force stress 
and temperature distribution for Green-Lindsay [1] 
theory of thermoelasticity. 
 
2. Basic Equations and Their Solutions 
 
We consider a homogeneous thermally conducting trans- 
versely fibre-reinforced medium with hydrostatic initial 
stress of infinite extent with cartesian coordinates system 
( ), ,x y z . To analyze the displacement components, 
stresses and temperature distribution at the interior of the 
medium, the continuum is divided into two half spaces 
defined by  

1) half space I <x ∞ , < 0y−∞ ≤ , z < ∞ , 

2) half space II <x ∞ , 0 <y≤ ∞ , z < ∞ , 
if we restrict our analysis to the plane strain parallel to 
xy -plane with displacement vector ( )1 2= , ,0u uu , then 
the field equations and constitutive relations for such a 
medium in the absence of body forces and heat sources 
are written as, 

( )
2 2

1 2
2

2 2
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2

1 = ,
2

L T L

L
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2 1
12 = ,

2 2L L
u up pt
x y

µ µ
∂ ∂   − + +   ∂ ∂   

     (5) 

2 1
21 = ,

2 2L L
u up pt
x y

µ µ
∂ ∂   + + −   ∂ ∂   

      (6) 

( ) ( )1 2
22 2 0= 2 1 .T

u ut p T
x y t

λ α λ µ β ϑ
∂ ∂ ∂ − + + + + − + ∂ ∂ ∂ 

 

(7) 
where  

( ) ( )
( ) ( )

1 1 2

2 1 2

= 2 3 4 2 ,

= 2 2 .
L T

T

β λ α µ µ β α λ α α

β λ α α λ µ α

+ + − + + +

+ + +
 

and , , , ,L Tλ α β µ µ  are material constants, * *
1 2,K K  are 

coefficients of thermal conductivity, 1 2,α α  are coeffi- 
cients of linear expansion, 0 0,τ ϑ  are thermal relaxation 
times, 1 2,u u  are the components of displacement vector, 
ρ  is the the mass density, T  is the temperature change 
of a material particle, 0T  is the reference uniform 
temperature of the body and *C  is the specific heat at 
constant strain.  

For simplification, we shall use the following non- 
dimensional variables  

{ } { } { }
**

1
1 2 1 2

1 1

0 1

, = , ,  { , } = , ,

= ,  = ,

o

ij
ij

o

cx y x y u u u u
c T

tTT t
T T

ρ ωω
β

β
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′ ′
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1 1 0 0 0 0

1 0

= ,  = ,  = ,  = ,  = ,pt t t t p
T

ω ω τ ω τ ϑ ω ϑ
β

′ ′ ′ ′ ′  (8) 

where  

( ) * 2
2 * 1
1 *

1

2 4 2
= ,  = .L T C cc

K
λ α µ µ β ρ

ω
ρ

+ + − +
 

Substituting non-dimensional variables into Equations 
(1)-(3), we obtain (after dropping the primes)  

2 2 2 2
1 2 1 1

1 2 02 2 21 = ,
u u u uTa a

x y t xx y t
ϑ
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    (11) 

3. Normal Mode Analysis 
 
The solution of the considered physical variable can be 
decomposed in terms of normal modes as the following 
form  

( ) ( ) ( )* * * *
1 2 1 2, , , , , = , , , e .t ax

ij ijT u u t x y t T u u t y ω ι+       (12) 

where ω  is the complex time constant and a  is the 
wave number in x -direction.  

Using (12), Equations (9)-(11) take the form 
2 2 2 * * *

2 1 4 2 5 = 0,a D a u a Du a Tω − − + −     (13) 

* 2 2 * *
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Eliminating *
2u  and *T  from Equations (13)-(15), 

we obtain  

( )6 4 2 *
1 2 3 1 = 0,u yλ λ λ ∇ + ∇ + ∇ +       (17) 

where  
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(21) 
The solution of Equation (17) has the form  

( ) ( ) ( )
3 3
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=1 =1
= , e , e ,k y k yn n

n n
n n

u y M a Q aω ω− +∑ ∑  (22) 
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2
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where ( ),nM a ω , ( ),nQ a ω  are some parameters 
depending on a  and ω . 2

nk  are the roots of the 
characteristic Equation(17). 

Substituting from Equations (22)-(24) into (13)-(15), 
we obtain the following relations 

1= ,  = 1,2,3n n nM H M n′           (25) 

2= ,  = 1,2,3n n nM H M n′′           (26) 

1= ,  = 1,2,3n n nQ H Q n′ −           (27) 

2= ,  = 1,2,3n n nQ H Q n′′            (28) 
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H
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(29) 
Thus the solution of Equations (1)-(3)are  
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(32) 
Normal mode analysis of the stress yields the 

following, 
( ) ( )
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t p H M H Qω ι ω ι− + +− + +∑ ∑  

(33) 

( ) ( )
3 3

21 5 5
=1 =1

= e e e e ,k y k yt ax t axn n
n n n n

n n
t H M H Qω ι ω ι− + +−∑ ∑  (34) 

( ) ( )
3 3

11 3 3
=1 =1

= e e e e ,k y k yt ax t axn n
n n n n

n n
t p H M H Qω ι ω ι− + +− + +∑ ∑  

(35) 

( ) ( )
3 3

12 4 4
=1 =1

= e e e e .k y k yt ax t axn n
n n n n
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4. Boundary Conditions 
 
In order to determine the parameters ( )= 1,2,3nM n  
and ( )= 1,2,3nQ n , we consider the following boundary 
conditions at = 0y  

( ) ( ) ( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

22 22 1

21 21

1 1

2 2

1) ,0 , ,0 , = e ,

2) ,0 ,0 = 0,  
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5) ,0 = ,0 ,

6) ,0 = ,0 .
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t x t x

u x u x

u x u x

T x T x

T Tx x
y y

ω ι++ −

+ −

+ −

+ −

+ −

+ −

− −

−

∂ ∂
∂ ∂

        (37) 

where 1P  is the magnitude of mechanical force.  
Using Equations (30)-(34) in boundary condition (37), 

we get six equations with six unknown parameters 
( )= 1,2,3nM n  and ( )= 1,2,3nQ n  as 

( )
3 3

6 6 1
=1 =1

= e ,t ax
n n n n

n n
H M H Q P p ω ι− +− − +∑ ∑    (38) 

3 3

5 5
=1 =1

= 0,n n n n
n n

H M H Q+∑ ∑         (39) 

3 3

=1 =1
= 0n n

n n
M Q−∑ ∑             (40) 

3 3

1 1
=1 =1

= 0,n n n n
n n

H M H Q+∑ ∑         (41) 
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3 3

2 2
=1 =1

= 0,n n n n
n n

H M H Q−∑ ∑          (42) 

3 3

2 2
=1 =1

= 0.n n n n n n
n n

k H M k H Q+∑ ∑        (43) 

Solving Equations (38)-(43), the parameters  
( )= 1,2,3nM n  and ( )= 1,2,3nQ n are derived as fol- 

lows: 
31 2

1 2 3

5 64
1 2 3

= ,  = ,  = ,

= ,  = ,  = .

M M M

Q Q Q

∆∆ ∆
∆ ∆ ∆

∆ ∆∆
∆ ∆ ∆

 

where , ,  = 1,2, ,6i i∆ ∆   are defined in the appendix.  
 
5. Particular Cases 
 
5.1. Isotropic Generalized Thermoelastic  

Medium with Hydrostatic Initial Stress 
 
Substituting = =L Tµ µ µ , * * *

1 2= =K K K ,  
1 2= = Tα α α  and ( )1 2= = 3 2 Tβ β λ µ α+ , = = 0α β  

in Equations (30)-(36), we obtain the corresponding 
expressions of displacement, stress, and temperature dis- 
tribution in isotropic generalized thermoelastic medium 
with hydrostatic initial stress.  
 
5.2. Fibre-Reinforced Generalized Thermoelastic  

Medium 
 
Letting 0p → , the expressions (30)-(36) reduce to the 
case of fibre-reinforced generalized thermoelastic me- 
dium.  
 
5.3. Isotropic Generalized Thermoelastic  

Medium 
 
Substituting = =L Tµ µ µ , * * *

1 2= =K K K ,  
1 2= = Tα α α  and ( )1 2= = 3 2 Tβ β λ µ α+ , = = 0α β  

and letting 0p → , the expressions (30)-(36) reduce to 
an isotropic generalized thermoelastic medium.  

For all the cases discussed above the components of 
displacement, stresses and temperature distribution for 
the region < 0y−∞ ≤ , are obtained by inserting  

1 2 3= = = 0M M M  in Equations (30)-(36).  
Similarly in the region 0 <y≤ ∞ , the components 

are obtained by inserting 1 2 3= = = 0Q Q Q  in Equa- 
tions (30)-(36). 
 
6. Special Cases of Thermoelastic Theory 
 
6.1. Equation of Coupled Thermoelasticity 
 
The equations of the coupled thermoelasticity (C-T 

theory) are obtained when  
*

1 1 0 0= = 1,  = = = 0.n n t τ ϑ        (44) 
 
6.2. Lord-Shulman Theory 
 
For the Lord-Shulman (L-S theory)  

*
1 0 1 0 0= = = 1,  = = 0,  > 0.n n n t ϑ τ    (45) 

 
6.3. Green -Lindsay Theory 
 
For Green-Lindsay(G-L theory),  

*
1 0 1 0 0= = 1,  = 0,  = 0,  > 0.n n n t ϑ τ≥   (46) 

where 0 0,ϑ τ  are the two relaxation times. 
 
6.4. Equations of Generalized Thermoelasticity 
 
The equations of the generalized thermoelasticity with- 
out energy dissipation (the linearized G-N theory of type 
II ) are obtained when  

*
1 0 1 0 0> 0,  = 0,  = 1,  = = 0,  = 1,n n n t ϑ τ  (47) 

Equations (1) and (2) are the same and Equation (3) 
takes the form  

2 2 2 2
* * * 1 2
1 2 0 1 22 2 2 2= .

u uT T TK K C T
x yx y t t

ρ β β
 ∂ ∂∂ ∂ ∂ ∂

+ + + ∂ ∂∂ ∂ ∂ ∂  
 

(48) 

where *n  is constant with the dimension of 1
s

 
 
 

 and  

* *
1 2,K K  are characteristic constants of this theory. 

 
7. Numerical Results 
 
With a view to illustrating the analytical procedure 
presented earlier, we now consider a numerical example 
for which computational results are given. The results 
depict the variations of normal displacement, normal 
force stress and temperature distribution in the context of 
G-L theory. For this purpose, we take the following 
values of physical constants as Singh [20] 

3 10 2

10 2 10 2

= 2660Kg m , = 5.65 10 Nm ,

= 2.46 10 Nm , = 5.66 10 Nm ,T L

ρ λ

µ µ

−

− −

×

× ×
 

* 3 1 1

10 2 10 2

= 0.787 10 JKg deg ,

= 1.28 10 Nm , = 220.90 10 Nm ,

C
α β

− −

− −

×

− × ×
 

* 3 1 1 1
1
* 3 1 1 1
2

= 0.0921 10 Jm deg s ,

= 0.0963 10 Jm deg s ,

K

K

− − −

− − −

×

×
 

4 1
1

4 1 o
2 0

= 0.017 10 deg ,

= 0.015 10 deg , = 293 K.T

α

α

−

−

×

×
 



P. AILAWALIA  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                 ENG 

627 

The computations are carried out on the surface 
= 1.0y  at = 0.1t . The graphical results for normal 

displacement 2u , normal force stress 22t  and tem- 
perature distribution T  are shown in Figures 1-3 with 

= 1.5p , 0 1=ω ω ιω+ , 0 = 2.3ω , 1 = 0.1ω , = 2.1a  
for a  

1) Fibre-reinforced generalized thermoelastic medium 
with hydrostatic initial stress (FRGTEHIS) by solid line. 

2) Fibre-reinforced generalized thermoelastic medium 
without hydrostatic initial stress (FRGTEWHIS) by solid 
line with centered symbol (*).  

3)Isotropic generalized thermoelastic medium with 

hydrostatic initial stress (IGTEHIS) by dashed line.  
4) Isotropic generalized thermoelastic medium without 

hydrostatic initial stress (IGTEWHIS) by dashed line 
with centered symbol (*). 

These graphical results represent the solutions ob- 
tained by using the generalized theory with two relaxa- 
tion times (G-L theory) by taking 0 = 0.02τ , 0 = 0.03ϑ . 
 
8. Discussions 
 
The values of normal displacement for the case of 
FRGTEHIS increase sharply in the range and then  

 

 
Figure 1. Variations of normal displacement u2 with horizontal distance x for mechanical force: (________) FRGTEHIS __ Fi-
bre-reinforced generalized thermoelastic medium with hydrostatic initial stress, (---------) FRGTEWHIS- Fibre-reinforced 
generalized thermoelastic medium without a hydrostatic initial stress, (*

___
*
_____

*) IGTEHIS __ isotropic generalized thermoe-
lastic medium with a hydrostatic initial stress, (*----*----*) IGTEWHIS __ isotropic generalizedv thermoelastic medium without 
hydrostatic initial stress. 
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Figure 2. Variations of normal force stress t22 with horizontal distance x for mechanical force: (________)FRGTEHIS, 
(---------)FRGTEWHIS, (*

___
*
_____

*)IGTEHIS, (*----*------ *) IGTEWHIS. [see Figure 1 for explanation of symbols]. 
 
oscillate with distance. In case of IGTEHIS, the varia- 
tions of normal displacement are very less in magnitude 
and for FRGTEWHIS, IGTEWHIS, these variations are 
quite uniform and at a particular point these variations 
are opposite in nature i.e. when one is on the zenith and 
the other one is on the lowest point. These variations are 
shown in Figure 1. 

It is observed from Figure 2 that the variations of 
normal force stress for FRGTEHIS, FRGTEWHIS, 
IGTEHIS are similar in oscillating manner. The variation 
of normal force stress for IGTEWHIS is highly 
oscillating in nature in comparison to the variations 
obtained for FRGTEHIS, FRGTEWHIS, IGTEHIS. 

The deformation of the body effects the change in 

temperature to a large extent as compared to normal 
displacement and normal force stress which is evident 
from Figure 3. Among all the mediums, the variation of 
temperature distribution is least oscillating for IGTEHIS. 
 
9. Conclusions 
 
1) The affects of anisotropy and hydrostatic initial stress 
are observed on all the quantities. 

2) The variations of the temperature distribution are 
more oscillatory in nature than those of of normal force 
stress and normal displacement . 

3) The variations for L-S and G-L theory of ther- 
moelasticity are close, although the authors have de-   
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Figure 3. Variations of temperature distribution T with horizontal distance x for mechanical force: (________)FRGTEHIS, 
(---------)FRGTEWHIS, (*

___
*
_____

*) IGTEHIS, (*----*-----*)IGTEWHIS. [see Figure 1 for explanation of symbols]. 
 
picted the graphical results only for G-L theory. 
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Appendix 
 

( ) ( ) ( )
( ) ( ) ( )
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H H H H H H H H H
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 ∆ − + − + − 
 ⋅ − + − + − 
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