
J. Software Engineering & Applications, 2009, 2: 116-121
doi:10.4236/jsea.2009.22017 Published Online July 2009 (www.SciRP.org/journal/jsea)

Copyright © 2009 SciRes JSEA

Model Interpretation Development: Analysis Design of
Automatic Control System

Guohua Wu, Wenning Liu, Qiuhua Zheng, Zhen Zhang

Hangzhou Dianzi University, Hangzhou, China.
Email: wugh@hdu.edu.cn

Received February 16th, 2009; revised April 10th, 2009; accepted April 14th, 2009.

ABSTRACT

Currently the development of automatic control system is mainly based on manual design. This has made the develop-
ment process complicated and has made it difficult to guarantee system requirement. This paper presents a Model in-
terpretation development architecture built on meta-models and model interpretation. In this modeling and developing
process, different meta-models or domain models may be constructed in terms of various system requirements. Inter-
preters are used to transform the meta-model into relevant domain model and generate some other formats from do-
main models, typically with different semantic domains. An interpretation extension interface is introduced, which can
be accelerated to develop the model interpreter. This development architecture can improve system reusability and en-
hance development efficiency. Finally, an example is introduced to explain the advantage of method.

Keywords: Meta-Model, Model Interpretation, Model-Based Design

1. Introduction

Developing embedded automatic control software is a
complicated and time-consuming task nowadays. The
growing complication of building and validating soft-
ware is a challenge for developers of the embedded
software application. The traditional development method
based on manual coding is time consuming. Software
developers and domain engineers are often from differ-
ent fields, and the communication between them is dif-
ficult. For acquiring relevant requirement and function,
software developer must learn special domain knowledge.
However, the requirement may be change during the
development process, which will prolong the develop-
ment cycle. In addition, the development of software and
hardware is separated, and it is hard to guarantee
real-time interaction and verification at target platforms.
In order to develop Automatic control software effec-
tively, we must reach two goals: firstly, entire software is
developed by different domain developer. Secondly,
software reusability of automatic control software should
be considered.

In the order to solve the problems caused by the tradi-
tional approach, the paper presents a method based on
model interpretation development for the automatic con-
trol system. The meta-model created by modeling tool is
considered as domain-specific modeling language through
meta-model interpretation. It is a generic model that can

be used to customize application models. Then, it can
analyze the domain model and configure parameters and
required information. Model interpreter generates output
artifacts from domain models, such as code and config-
urable files. Using theses artifacts together, it can im-
plement embedded automatic control software applica-
tion development. In comparison to the traditional ap-
proach, it will shorten the cycle of development, reduce
the cost of product development and improve the reus-
ability of software components.

2. Model Interpretation Developments for
Automatic Control Systems

2.1 Overview of Development Architecture

Model Driven Architecture (MDA) [1] is a model-based
software modeling approach introduced by Object Man-
ager Group (OMG). MDA contains two different models:
Platform-Independent Model (PIM) and Platform-Specific
Model (PSM), and it emphasizes the mapping relation-
ship between them. Model Integrated Computing (MIC)
[2] is also a modeling framework for the embedded sys-
tem, which is based on models and generation. But this
method is not suitable for certain domains, especially for
automatic control systems.

mailto:wugh@hdu.edu.cn

 Model Interpretation Development: Analysis Design of Automatic Control System 117

Figure 1. Model interpretation development architecture

Model interpretation development is a technology that
is well conformable for the rapid design and implemen-
tation of a system. Model interpretation development
employs domain-specific models to represent system
software, its environment, and their relationship. Model
interpretation development have two cores: First, it ex-
tends the scope and purpose of modeling in system, and
improves the functions of model interpretation through-
out the entire development of system process, i.e., design,
verification, emulation, code generation. As a result, it
can develop the system driven by model. Second, it
adopts the domain-oriented concept to analyze com-
monness and variety character of the domain system,
establishing the meta-model and the domain model to-
wards this domain so that it can support uniform devel-
opment process. This method provides three functions. 1)
It provides the development idea and tools for do-
main-specific and creating modeling language familiarly
for domain experts. It will be customized quickly based
on actual requirement for experts. 2) It separates the
module applicable to the embedded automatic control
system from multi-aspects design hierarchy. 3) It can
relate model paradigm to related format models auto-
matically in hardware-independent platforms, thus short-
ening the period of software development.

The advantage to using model interpretation develop-
ment is the ability to analyze and design a complex sys-
tem or software at a high level of abstraction and to con-
struct the extension interface to facilitate the design of
the model interpretation. Figure 1 shows the architecture
of development. The developer collects the related do-
main information from information libraries and con-
structs the meta-model of needed domain using existing
modeling tools. This is the first step. The developer cus-
tomizes the paradigm of meta-model, the paradigm de-
fines the entities and associations in the given domain.
Related models are assembled into classes. Each class
has its own model hierarchy. Paradigm has a fixed set of
class. Then, they can design the domain model employ-

ing meta-model interpreter, transform these models into
essential code, configurable files and verification infor-
mation documentation using model generator engines,
i.e., model interpreter. For example, this model generator
engine can translate GME [3] models into UPPAAL [4]
models and these models can be simulated in UPPAAL
model, Finally, output information documentation or
artifacts deploy some component libraries to synthesize
the software or documents customer want to use con-
veniently.

2.2 Creation of Meta-Model

Developer can construct any of meta-model in a domain
employing the meta-modeling language, e.g., meta-model
in vehicle, or navigation. Meta-model layer is the foun-
dational and core layer in the implementation of do-
main-specific environment. Figure 2 shows the meta-
model paradigm created by GME [5]. In this figure, the
root model is the Compound <<Model>>. This com-
pound contains ProcessingNode <<Model>>, which
means that it has all of the properties from the Process-
ingNode. In the meantime, the Compound and the Primi-
tive are inherited from ProcessingNode which contains
Signal <<Atom>>. The signal genrates two types of node:
Inputsignal <<Atom>> and Outputsignal <<Atom>>.
The two types of node represent input and output of sig-
nal respectively. The input and output are connected by
Transmission <<Connection>>.

This figure also presents a relationship of state transi-
tion. The State <<Model>> has its own models and con-
tains two types of node: Initstate <<Atom>> and Final-
State <<Atom>>, which are represented by InitState and
FinalState respectively and are associates with each other
by Transition <<Connention>>. There is a special node
called StateNode <<Model>>. It is inherited from Primi-
tive and State and has all of the properties from the
ProcessingNode and State. StateNode has a SignalMap
<<Connection>>. This means that Signal can connect
with State. This diagram denotes that state can transform
into another state by invoking the correlative signal of
sensor in the real environment.

2.3 Domain Model Design

The designer of domain model should be familiar with
this domain and it’s essential consideration that develop-
ers communicate with domain experts in time.

Domain models are used to represent the strategy to be
implemented by the run-time system. Many different
types of models may be used to represent different
automatic control systems. Initially, we have chosen to
focus on an improved hierarchical model structure nota-
tion and to give domain models for a system as under-
standable components with well-defined interfaces. The
“signal” that forms these components permits data to be
exchanged between components. The signal flow defines

Copyright © 2009 SciRes JSEA

118 Model Interpretation Development: Analysis Design of Automatic Control System

Copyright © 2009 SciRes JSEA

Figure 2. Screenshot of the resource meta-model created using GME

eral, it is not obvious how it can be implemented [7]. the order of processing for an application. Each compo-
nent in the signal and state flow graph receives data from
other components, performs some data exchange, and
then outputs new data to other system components.

The model interpreter is usually implemented in three
ways [8].

1) Direct implementation. The generator acts on the
mapping between abstract syntax of input model and
abstract syntax of the target model. The structure of input
tree is the data structure that corresponds to the output
tree of compilers, and the structure of target tree corre-
sponds to the output tree of compilers. Naturally, in the
simplest of cases, the output artifacts can be directly
generated from the input tree.

2.4 Model Interpretation

Model interpreters [6] i.e. model generators play a cru-
cial key in model interpretation development. They act
on the transformation engine in software development.

Model interpreters are used to transform the informa-
tion captured in the models into the artifacts required by
the chosen analysis tools or run-time system. Model
generators have two functions:

1) To transform models into the input file and infor-
mation of analysis tools or to transform the analysis re-
sults back into the modeling language.

2) To transform models into needed code, static data
structure, and configuration files, etc. These can form the
executable software system running on some integration
platforms (OS, component integration framework, etc.).
Figure 3 shows the relationship between models and gen-
erators.

The model interpretation process is somewhat similar
to the back-end of compilers. The models capture infor-
mation in a structured form, typically in the form of hi-
erarchically organized objects. This graph of objects may
be traversed, perhaps transformed, and used to generated
output. While the process is very easy to describe in gen- Figure 3. Relationship between models and generators

 Model Interpretation Development: Analysis Design of Automatic Control System 119

2) Visitor –based approach
A visitor object implements the actions to be per-

formed all sorts of nodes in the input tree, while the tree
nodes receive the visitor object and call the appropriate,
special node operation on it. The visitor pattern allows
the concise and scalable implementation of generators,
both for the translation and the output phase. Generators
using this approach are very simple, understandable and
have successfully applied in different modeling envi-
ronment.

3) Meta-generators. A better technique would allow
the mathematically precise definition of the generator’s
internal operation and the code generation of the genera-
tor from correlation model.

Although the pattern-based approach is better than di-
rect implementation, essentially speaking, it belongs to
the category of direct implementation. Based on meta-
generator approach, the mechanism of internal inter-
preter can be abstracted, which can be more structured in
development. Common parts of interpreter can be gener-
ated automatically by meta-generator; developers can
focus on the mapping between input and output data.

A generator can be created in terms of a graph tra-
versal which describes in what order the nodes of the
input tree should be visited. Additionally, a set of trans-
formation rules should be added. Acquiring data struc-
ture and traversing input tree of models is a significant
process for the development of model interpreter.

In order to be more effective, we use interpretation
extension interface (IEI) to improve the effectiveness of
developing interpreter. Interpretation extension interface
extracts most of the functions. Configuration and analy-
sis of the functions are time-consuming. The interface
provides the extensibility to conform with both do-
main-specific modeling simulations or analyses and do-
main-independent traversal, code framework generation
or graph transformation [9,10]. Such a structure based on
the method of meta-generator must encapsulate functions
or algorithms that are useful in a wide variety of univer-
sal environments. However, an IEI is not just a set of
functions. Rather, in the way of predefined pattern, it is a
flexible component that can be extended and enhanced
based on design requirement.

Common basic parts of domain-independent structures
depend on which types the IEI can operate or select.
Domain-specific functions or detailed implementations
are completed by interpretation extension interface. An
IEI can be constructed that utilizes unified interface
specifications.

Interpretation extension interface enables a designer to
implement the skeleton of domain-specific model inter-
preter. The different functions of implementation are
abstracted by a categorized common interface. The input
models required by a given analytic domain can be de-
termined by selecting the type of the implementation of

an IEI and extracted the information (e.g., traversal, code
framework, graph transformation) from the model using
the APIs which provides by the modeling tools. The en-
capsulated algorithms or functions are invoked at spe-
cific times during the interpretation process, under such a
condition that the traversal information, generated code
will be invocated when various assigned events occur
during an actual interpreter run. Figure 4 shows high-
level design of the interpretation extension interface.

IEI can provide extended interface to the developer of
interpreter so that they can be convenient to design the
appropriate interpretation for software development or
model analysis. Furthermore, GME offers interface
based on the component object model (COM) technol-
ogy, which can facilitate for developer dependent on the
IEI to design and construct model interpreter rapidly.
Figure 5 shows development of GME interpreter hierar-
chy.

Figure 4. High-level design of the interpretation extension
interface

Figure 5. Visiting GME interpreter interface hierarchy

Copyright © 2009 SciRes JSEA

120 Model Interpretation Development: Analysis Design of Automatic Control System

3. Case Study

Using the approach discussed above, a simple example
of Washer model graph illustrates the interpretation ca-
pability of model design. Figure 6 is a screen shot of
Washer model graph. It illustrates the domain models
built in the graphical user interface of GME.

According to the meta-model defined above, an im-
plementation model has been created by GME. These
implementation models define and design the structure
of system components and the associations between
them.

The example contains six states and signals. The sig-
nals are a source actor denoted as “sensor” and the states
are a sink denoted as “Actuator”.

Each signal model will send one signal to inform the
state model to change its action so that Washer can
switch to the next step to execute the operation. Figure 7
illustrates a sample output code after executing the inter-
pretation extension interface in the model paradigm
about this example model. Model interpreter will parse
the required parameters or information from the resource

Figure 6. Screenshot of Washer model graph application

Figure 7. Screenshot of output code from generator

model of component and configure the simulator [11].
The C files specified as part of the application model,
also can be compiled with the compiler of plat-
form-independent. The simulation results can be veri-
fied degree of satisfaction of the performance.

The configuration file also can be output, and then the
generated code and configuration file are read and parsed
by the runtime platform. The runtime platform configures
system requirements and other data structures based on
this configuration file and code file. For the sake of sim-
plicity, executed functions are given in code in Figure 7.

Finally, the generated C code would be checked by the
compiler during compilation on the runtime platform.
The generated code is compiled, linked and synthesized.
The developer will develop software artifacts by using
the C code.

4. Conclusions and Future Work

This paper presents model interpretation development
architecture for the automatic control system and uses a
tool chain to support the convenient and rapid develop-
ment. The case study has shown that this method can
improve system reusability, reduce the cost of products,
and gain the expected effect.

In the future, we should do the following work. 1)
Domain meta-model needs to be more effective. We
should design more understanding models in this domain,
communicating with domain experts for accumulating
experience. 2) Model interpretation extension interface
needs to enhance the functionality of resources traversal,
code generation and model transformation. We will pro-
vide broad coverage of the analysis techniques present in
the software architecture. This is the core work in our
research. 3) A research tool kit should be emulated, veri-
fied, tested and analyzed in the development of auto-
matic control system so that it can integrate more related
tools to support automatic assemblage. This is an oner-
ous task.

5. Acknowledgements

This work is supported by National Fundamental Re-
search Program of China under Grant NO.A1420080190.

REFERENCES

[1] Object Management Group, “Model driven architecture:
A technical perspective,” 2001.

[2] J. Davis, “Model integrated computing: A framework for
creating domain specific design environments,” The 6th
World Multi-Conference on Systemic, Cybernetics and
Informatics, Orlando, pp. 14-18, 2002.

Copyright © 2009 SciRes JSEA

 Model Interpretation Development: Analysis Design of Automatic Control System 121

Copyright © 2009 SciRes JSEA

[3] A. Ledeczi, et al., “The generic modeling environment,”
Workshop on Intelligent Signal Processing, Budapest,
Hungary, May 17, 2001.

[4] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a
nutshell,” International Journal on Software Tools for
Technology Transfer.

[5] GME 2000 User’s Manual, available from http://www.
isis.vanderbilt.edu.

[6] G. Edwards, N. Medvidovic, et al., “Model interpreter
frameworks: A foundation for the analysis of domain-
specific software architectures,” [J] Journal of Universal
Computer Science, Vol. 14, No. 8, pp. 1182-1206, 2008.

[7] G. Karsai, “Structured specification of model interpret-
ers,” IEEE Conference and Workshop on Engineering of
Computer-Based Systems, Proceedings ECBS’99, 1999.

[8] G. Karsai, J. Sztipanovits, A. Ledeczi, et al., “Model-in-
tegrated development of embedded software [J],” Pro-
ceedings of the IEEE, 2003.

[9] K. Chen, J. Sztipanovits, S. Abdelwahed, and E. Jackson,
“Semantic anchoring with model transformations,” pp.
115-129, 2005.

[10] M. Wimmer, M. Strommer, et al., “Towards model trans-
formation generation by-example,” in Proceedings of
HICSS-40 Hawaii International Conference on System
Sciences, Hawaii, USA, 2007.

[11] A. Agrawal et al., “MILAN: A model based integrated
simulation framework for design of embedded systems,”
ACM SIGPLAN Workshop on Languages, Compilers, and
Tools for Embedded Systems, Snowbird, Utah, June 2001.

