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Abstract 
A new combinatorial interpretation of Raney numbers is proposed. We apply this combinatorial 
interpretation to solve several tree enumeration counting problems. Further a generalized Cata-
lan triangle is introduced and some of its properties are proved. 
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1. Introduction 
Interestingly Penson and Zyczkowski were the first who use the term Raney numbers [1] [2] and it is defined as  

( ),k

kn rrR n r
nkn r
+ 

=  +  
 where 2, 1, 1k n r≥ ≥ ≥ . Nevertheless, it is known that Raney’s lemma could be  

used in counting problem associated with Catalan numbers [3] and a bijection exists between Raney path and 
plan multitree [4]. 

These numbers do not form novel sequences, as the numbers were introduced earlier as a generalization of the 
binomial series [5]. Moreover, the sequence 

( )4 ,5 1,5,30,200,1425,10626,81900,647280,R n =   

is not included in OEIS database [6] before 2011. If we let 1r = , we obtain another known sequence, i.e.,  

Fuss-Catalan numbers [7] [8] which is defined as ( ) ( )
1
1 1k

kn
C n

nk n
 

=  − +  
. Although Fuss-Catalan numbers  
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were introduced earlier than Catalan numbers [9], the Catalan numbers are more popular and widely used than 
the Fuss-Catalan numbers (see [10] [11] for details). Due to its self similar structure, the applications of Catalan 
numbers could be found in many physical problems, e.g., lattice model [12], tree enumeration network [13], and 
Hankel matrices in coding theory [14]. A tree is a connected graph with no cycles and for which only one 
shortest path exists from one node to another. Tree enumeration is an important tool to study network. These 
networks always grow in a power-law behavior which is often found in social network, subway system [15], etc. 

In this paper, we introduce Raney numbers ( ),R k r  in the form of a non-linear recursion and then we pro- 
vide a combinatorial interpretation of Raney numbers. Using this combinatorial interpretation, we solve several 
tree enumeration counting problems in which we recover the well-known Fuss-Catalan numbers [16], Catalan 
triangles [17], and other less known numbers. Motivated by the connection between Raney numbers and Catalan 
triangles, a generalization of Catalan triangles is proposed and we prove some of their properties. Consequently 
these formulas generalize the properties of Catalan triangles. From the exact solution of these tree enumeration 
problems, we are able to find a sharp upper bound of the number of each tree enumeration problem. The upper 
bound is important in the contour method for lattice models and limit of the random graph. 

2. Raney Numbers 
Let ( )kC n  be the number of a k -ary trees with labeled n  vertices (Figure 1), where  

( ) ( )
1 , 2, 1.
1 1k

kn
C n k n

nk n
 

= ≥ ≥ − +  
 

The Raney numbers are defined as follows: 

( ) ( ) ( ) ( ) ( )
1 2

1 2, , 0 1, 0
r

k k k k r k
i i i n

R n r C i C i C i C n
+ + + =

= = ∀ >∑


                 (1) 

where { }1 2, , , 0ri i i ∈  . Therefore, the combinatorial interpretation is as follows: r  copies of k -ary tree 
with total number of n  vertices. 

Next, we let ( )ku x  be the generating function for ( )kC n , i.e., 

( ) ( ) ( ) ( )21 1 2 .n
k k k ku x C x C x C n x= + + + + +   

Then, the generating function of ( ),kR n r  is ( )r
ku x  and the Raney numbers satisfy the following formula 

[18]. 
Lemma 1. Let ( )r

ku x  be the generating function of the Raney numbers. Then, 

( )( ) .n r kn rrx u x
nkn r
+   =    +  

                                (2) 

Immediately, we obtain the following theorem.  
Theorem 1. The binomial forms of the Raney numbers are given by 

( ), .k

kn rrR n r
nkn r
+ 

=  +  
                                    (3) 

From theorem (1), it is not difficult to deduce some of the properties of Raney numbers.  
Corollary 1. For integer 1k > , we have 

( )0, 1;kR r =                                                (4) 
 

 
Figure 1. A binary tree with 3 nodes, where the bottom vertex is the 
root.                                                                 
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( ), ;k

kniR n i ki
n in
 

− =  − 
                                     (5) 

( ) ( ) ( )
11, ,1 ;
1 1k k

kn
R n k R n

nk n
 

− = =  − +  
                       (6) 

( )
1

, .
1k

kn n
R n n

n
+ − 

=  − 
                                      (7) 

Corollary 2. We can write ( )kC n  in a nonlinear recursion as: 

( ) ( ) ( ) ( ) ( )
1 2

1 21 , 0 1
k

k k k k k k
i i i n

C n C i C i C i C
+ + + =

+ = =∑


                  (8) 

where { }1 2, , , 0ki i i ∈  . 
We recover the formula by joining the k  copies of k -ary tree with n  vertices which is also equivalent to a 

k -ary tree with n  vertices and an additional root (see Figure 2): 

( ) ( ), 1,1 .k kR n k R n= +  

Using binomial form of ( ),kR n r , one can obtain the following result.  
Corollary 3. For a fixed integer 1k > , and 1n r≥ > , 

( ) ( ) ( )1, 1 , , 1k k kR n r k R n r R n r− + − = − −                        (9) 

where ( ), 0kR n r =  if n r< . 
For 2k = , we recover the identity of a generalized Ballot numbers: 

( ) ( ) ( )2 2 21, 1 , , 1 .R n r R n r R n r− + = − −                      (10) 

3. A Homogeneous k-Ary Tree 
Unlike the usual k -ary tree, we define a homogeneous k -ary tree as a graph with no cycles, in which each 
vertex emanates 1k +  edges (see Figure 3 for k = 4). We fix a vertex namely z  as the root. Unlike the 
ordinary root in a k -ary tree, this root has 1k +  successors while other vertices have k  number of successors. 
Any vertex could be chosen to be the root since the graph is homogenous. For a given n  vertices, we may find 
how many connected sub-tree rooted at z . This number is defined as ( )kD n . 

Theorem 2. For 1k > , we can write ( )kD n  in a nonlinear recursion of ( )kC n  as: 

( ) ( ) ( )
1

for 0.
n

k k k
r

D n C r C n r n
=

= − >∑                       (11) 

Proof. We decompose the problem by finding out the number of k -ary tree of n  number of one copy of  
k -ary tree with r  vertices, i.e., ( )kC r , and another copy of k -ary tree with n r−  vertices, i.e. ( )kC n r− .  
 

 
Figure 2. Joining 4 rooted Cayley tree of order 4 
where r = 4 and k = 4.                                       
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Figure 3. A homogenous graph where each 
vertex is connected to exactly 5 neighbours.                   

 
Since the former rC  must always include 0x , its range should be from 1 to n . Total ( )kD n  is just the sum 
of all ( ) ( )k kC r C n r−  using the addition and multiplication principles. 

Using Equation (8), we rewrite the formula above as 

( ) ( ) ( ) ( )
1 2 1

1 2 1
1

for 0.
k

n

k k k k k
r r r n

D n C r C r C r n
+

+
+ + + = −

= >∑


                   (12) 

This formula can also be obtained using 1k +  copies of k -ary tree together with 1n −  vertices and one 
center. 

We then find the binomial form of ( )kD n . 
Corollary 4. For 2k ≥ , ( )kD n  is expressed in binomial form as: 

( ) ( ) ( )
11, 1 0.

11 2k k

knkD n R n k n
nk n
 +

= − + = ∀ > −− +  
                    (13) 

Thus, ( )2

23
12

n
D n

nn
 

=  −+  
 and ( )3

32
12

n
D n

nn
 

=  −+  
 as in [19] and [20], respectively. For k = 4, ( )4D n   

coincides with one form of Raney numbers as mentioned above, i.e., ( )4 ,5R n . The numbers ( )kD n  generate 
a lot of new sequences. For example, the sequence of ( )5 ,6R n , i.e., 

1,6, 45,380,3450,32886,324632,3290040,34034715,357919100,  

is not found in the OEIS database [6]. 
From theorem (2), one can get 

( ) ( ) ( ) ( )
0

.
n

k k k k
r

D n C r C n r C n
=

= − −∑  

This formula can be also obtained easily by a different way: 
1) Count the number of trees by joining the 2 copies of aryk n−  tree, with total number of vertices n . 
2) Subtract those trees remunerate from y  but doesn’t contain z , that is, exactly the number ( )kC n . 
Let the generating function of ( )kD n  be ( )kw x . Then we have the following result. 
Corollary 5. For 1k >  and 0n ≥ , the generating function, ( )kw x  is 

( ) ( ) ( )2
k k kw x u x u x= −                                    (14) 

where ( )ku x  is the generating function of ( )kC n . 
Corollary 6. For 1k > , 
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( ) ( ) ( )
1

1, 1
n

k k k
r

C r C n r R n k
=

− = − +∑                          (15) 

or 

( ) ( ) ( )
1

,1 ,1 1, 1 .
n

k k k
r

R r R n r R n k
=

− = − +∑                       (16) 

Using the binomial inequality in [21] and the binomial forms of ( )kC n  and ( )kD n , the following in- 
equality can be easily proved. 

Corollary 7. For 2k > , 

( ) ( ) ( )
3 2

n
k

k k

k b
C n D n

n
⋅

≤ <                                 (17) 

where 
1

1

k

k
kb

k

−
 =  − 

 and 0n > . 

For sufficiently large k , a simpler form is produced as well, i.e., ( ) ( ) ( )
3 2

n

k k

k e
C n D n

n
⋅

≤ < . These results are 

conjectured in a weaker form in [20], i.e., ( ) ( ) ( )n

k k

k e
C n D n

n
⋅

≤ < . 

4. Catalan Triangle 
A Catalan triangle ( ),B n r  is defined as follows [9]: 

( ) ( ) ( ) ( )
1 if 1;

, 1, 1 2 1, 1, 1 if 1 ;
0 otherwise.

n r
B n r B n r B n r B n r r n

= =
= − − + − + − + ≤ ≤



 

The Catalan triangle satisfies [9]: 

( ) ( ) ( ) ( ) ( )
1

1

2 1 2 2 2 2

, , 1

, , 0 1 0
r

r

r
i i n
i i

B n r C i C i C i C n
+ + =

≥

= = ∀ >∑




                     (18) 

Using a property of Catalan numbers, ( ) ( ) ( )
1 2

2 2 1 2 2
1r

r
j j i

C i C j C j
+ = −

= ∑ , where 1 2, 0j j ≥ , we get another  

form of ( ),B n r , i.e., 

( ) ( ) ( ) ( )
1 2

2 1 2 2 2 2, ,
r

r
j j j n r

B n r C j C j C j
+ + + = −

= ∑


                        (19) 

where { }1 2 2, , , 0rj j j ∈  . From Equation (1), we immediately recover the Catalan triangle from the Raney 
numbers, i.e., ( ) ( )2, , 2B n r R n r r= − : 

( ) ( )2

2
, , 2 .

nrB n r R n r r
n rn
 

= − =  − 
                                 (20) 

We now consider the following problem as in [22]: Find out the number of all different connected sub-trees of 
a homogenous binary tree with n  number of vertices, containing the given r  number of fixed vertices (where 

2 2n r≥ − ). The condition, 2 2n r≥ − , is simply the number of vertices that covers the minimal component 
containing all r  vertices. The details of this problem and terminologies could be found in the original paper 
[22]. We denote the solution to this problem as r

nF . In this paper, we show that a solution to the case when the 
minimal component is “full”, is as below: 

( ) ( )2 2
2, ,

2 2
r

n
n rrF B n r r

n r n
− + 

= − + =  − + + 
 



C. H. Pah, M. R. Wahiddin 
 

 
6 

where n  is the number of given vertices and r  is the number of fixed vertices in each of the connected sub- 
tree. 

Now, we interpret and relate the problem above with the combinatorial interpretation of the Raney numbers 
through the following steps (see Figure 4): 

1) Given n  vertices;  
2) Fill up all the interior points, i.e., 2r − ; 
3) Fill up all the boundary points, i.e., r ; 
4) Then only 2 2n r− +  vertices are left; 
5) Since each boundary point has 2 neighbours which is not an interior point, we have 2r  boxes; 
6) If 2 2n r− +  vertices are given, then there are 2r  boxes of binary tree to be filled. 
As a result, the solution is 

( ) ( )
( ) ( )

2
2 2 2 2 2 222 2,2 .

2 2 2 2 22 2 2
n r r n rr rR n r r

n r r n rn r n
− + + − +   

− + = =   − + + − +− + +   
          (21) 

Furthermore, it is natural to define a generalized Catalan triangle, i.e., k -th Catalan triangle using Fuss- 
Catalan numbers instead of Catalan numbers as in Equation (19): 

( ) ( ) ( ) ( ) ( )
1

1

1 2

, , 1

, , 0 1 0,
r

r

k k k k r k
i i n
i i

B n r C i C i C i C n
+ + =

≥

= = ∀ >∑




               (22) 

where ( ), 0kB n r =  if n r< . 
From the property of Fuss-Catalan numbers, i.e., corollary (2) 

( ) ( ) ( ) ( )
1 2

1 2
1

,
k r

k r k k k k
j j j i

C i C j C j C j
+ + + = −

= ∑


  

where 1 2, , , 0kj j j ≥ , we find another form of ( ),kB n r , 

( ) ( ) ( ) ( )
1 2

1 2, ,
r

k k k k kr
j j j n r

B n r C j C j C j
+ + + = −

= ∑


                      (23) 

where { }1 2, , , 0krj j j ∈  . Again, from Equation (1), we immediately have 

( ) ( ), , .k k

knrB n r R n r kr
n rn
 

= − =  − 
                               (24) 

Lemma 2. Some properties of k -th Catalan triangles are as follows: 

( ) ( ),1 ,k kB n C n=                                      (25) 

( ), 1,kB n n =                                          (26) 

( ) ( ), 1 1 .kB n n n k− = −                                  (27) 
 

 
Figure 4. 4 boundary points (solid circles) 
connected to full minimal component.                       
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Using the binomial form of ( ),kB n r , one can show that: 
Lemma 3. For 1k >  and 2n r≥ ≥  

( ) ( ) ( )
221, 1 2 1, 1, 1 .

2k k k

kn kkr kB n r B n r B n r
n rkn k
− + − +

− − + − + − + =  −− +  
            (28) 

If 2k = , we recover 

( ) ( ) ( ) ( )2 2 2 2

2
1, 1 2 1, 1, 1 , .

nrB n r B n r B n r B n r
n rn
 

− − + − + − + = = − 
 

Based on the initial result, lemma (3), we prove the following assertion by mathematical induction with 
respect to m . 

Theorem 3. For fixed k , where 1k m≥ > , and 1n r≥ > , 

( )
0

1, 1 ,
m

k
i

m kn k mkr k mB n r i
i n rkn k m=

− +   − +
− − + =   −− +   

∑                     (29) 

where ( ), 0kB n r =  if n r< . 
Proof. Assertion is true for 2m = . Assume that it is true for m , we consider the following summations:  

( ) ( )

( )
0 0

1, 1 1,

1
.

1

m m

k k
i i

m m
B n r i B n r i

i i
k r k mkn k m kn k mkr k m

n r n rkn k m kn k m

= =

   
− − + + − +   

   
+ − +− + − +   − +

= +   − − −− + − +   

∑ ∑
 

( ) ( ) ( ) ( )

( )
( )

1

1 0
1, 1 1, 1 1, 1,

1 1
.

1

m m

k k k k
i i

m m
B n r B n r i B n r i B n r m

i i
kr k m kn k m

n rkn k m

−

= =

   
− − + − − + + − + + − +   

   
− + + − + + 

=  −− + +  

∑ ∑
 

( ) ( ) ( )

( )
( )

1
1, 1 1, 1 1,

1

1 1
.

1

m

k k k
i

m m
B n r B n r i B n r m

i i

kr k m kn k m
n rkn k m

=

    
− − + + − − + + − +    −    
− + + − + + 

=  −− + +  

∑
 

( ) ( ) ( )

( )
( )

1

1
1, 1 1, 1 1,

1 1
.

1

m

k k k
i

m
B n r B n r i B n r m

i
kr k m kn k m

n rkn k m

=

+ 
− − + − − + + − + 

 
− + + − + + 

=  −− + +  

∑
 

( ) ( )
( )

1

0

11 1
1, 1 .

1

m

k
i

kr k mm kn k m
B n r i

i n rkn k m

+

=

− + ++ − + +   
− − + =   −− + +   

∑  

Hence, the assertion is true for any 1m > . 
Corollary 8. For fixed k , where 1k m≥ > , and 1n r≥ > , we have 

0
.

m

i

m kn kn mr i kr m
i n r i n rn kn m=

+    + +
=    − − −+    

∑                                (30) 

For m k= , we have the following simple result: 
Corollary 9. For fixed 1k > , and 1n r≥ > , 

( ) ( )
0

, 1, 1 ,
k

k k
i

k
B n r B n r i

i=

 
= − − + 

 
∑                                    (31) 



C. H. Pah, M. R. Wahiddin 
 

 
8 

where ( ), 0kB n r =  if n r< .  

5. Binomial Transformation of k-th Catalan Triangle  
For 2r ≥  and n r≥ , we define a new number ( ) ( ),

r
k mH n  as: 

( ) ( ) ( ) ( ) ( ) ( )
1 1
1 1

, 1 1
=

, , 0, , , 1

= .
m r

m r

r
k m k k m k k r

j j l l n
j j k k

H n C j C j C l C l
+ + + + +

≥ ≥

⋅∑
 

 

                  (32) 

If 1 2 0mj j j= = = = , all the Fuss-Catalan numbers should start at 1, then we recover the previously 
defined k -th Catalan triangle. 

From the property of Fuss-Catalan numbers, ( ) ( ) ( ) ( )
1 2

1 2
1k r

k r k k k k
j j j i

C i C j C j C j
+ + + = −

= ∑


 , where  

1 2, , 0j j ≥ , we found another form of 
( ) ( ) ( ) ( ) ( ) ( )

1 1
1 1

, 1 1

, , , , , 0

.
m kr

r kr

r
k m k k m k k kr

j j l l n r
j j l l

H n C j C j C l C l
+ + + + + = −

≥

= ⋅∑
 

 

                 (33) 

From Equation (1), we immediately have 

( ) ( ) ( ) ( ) ( )0
, , ,r

k m k m kr k

kn mm krH n H n r R n r m kr
n rkn m+

+ +
= − = − + =  −+  

               (34) 

and for 0,m =  we recover the same formula for k -th Catalan triangle,  

( ) ( ), , .r
k m k

knrH R n r kr
n rn
 

= − =  − 
 

From theorem (3), ( ) ( ),
r

k mH n  is obtained as a result of binomial transformation of k -Catalan triangles.  
Corollary 10. For fixed 1k > , where 1k m≥ > , and 1n r≥ > , 

( ) ( ) ( ),
0

, ,
m

r
k k m

i

m
B n r i H n

i=

 
+ = 

 
∑                               (35) 

where ( ), 0kB n r =  if n r< . 

6. Conclusion 
In this paper, we have introduced the combinatorial interpretation of Raney numbers to solve various tree 
enumeration counting problems. The upper bound of any 1k +  order tree enumeration is generally found to be  
( )

3 2

nk e
n
⋅

. We have also shown how a new number ( ) ( ),
r

k mH n  may be derived from the binomial transformation  

of k -th Catalan triangles. 
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