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Abstract 
In this article, we study the generalized Bernoulli learning model based on the probability of suc-
cess =αi ip n  where 1 2 ,i n= ，，  1 20 < < < < n n≤α α α  and n  is positive integer. This gives 
the previous results given by Abdulnasser and Khidr [1], Rashad [2] and EL-Desouky and Mahfouz 
[3] as special cases, where ip i n=  2 2

ip i n=  and p p
ip i n=  respectively. The probability 

function ( )nP W k=  of this model is derived, some properties of the model are obtained and the 
limiting distribution of the model is given.  
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1. Introduction 
In industry, training programmes are conducted with the aim of training new workers to do particular job 
repeatedly every day. It is assumed that a particular trainee will show progress proportional to the number of 
days he attends the program, otherwise his ability will be different from one day to another, see [1] [4]. 

Let n  be the length of a programme in days and l  the number of repetitions of the job per day a trainee has 
to do. If a trainee is responding to the instructions, it would be reasonable to assume the probability that he will 
do a single job right, i.e. the probability of success on the thi  day is ip i n= , see Abdulnasser and Khidr [1],  

and hence the probability that he will do x  jobs correctly out of l  jobs on the thi  day is 
l
x

 
 
 

 ( )xi n  

http://www.scirp.org/journal/ojmsi
http://dx.doi.org/10.4236/ojmsi.2015.31003
http://dx.doi.org/10.4236/ojmsi.2015.31003
http://www.scirp.org
mailto:b_desouky@yahoo.com
mailto:fshiha@yahoo.com
mailto:alia.ma16@yahoo.com
http://creativecommons.org/licenses/by/4.0/


B. S. El-Desouky et al. 
 

 
27 

( )11 xi n −− , 0,1, ,x l=   and 0,1, ,i n=  . 
When a trainee is not responding to the instructions, ip  will be a constant p , 0 1.p< <  To test whether a 

trainee is responding or not, we test if ip  is varying or sustaining a constant value .p  This can be done by 
computing the total number of jobs that have been done correctly over the whole period of the program. 

Let ,
l
n iX  stand for the number of jobs done correctly out of l  jobs on thi  day, 1, 2, , ,i n=   1, 2,l =   

and 1
nl

n iW
=

= ∑  ,
l
n iX , l

nl W nl≤ ≤ . In case ip p= , 0 1p< < , the distribution of l
nW  will be ( ),B nl p . 

In this article, we study a generalization of Bernoulli learning model based on probability of success 
i ip nα=  where n  positive integer, iα  are real numbers, 1, 2, , ,i n=   and 1 20 n nα α α< < < < ≤  and 

n  is positive integer. This gives the previous results given in [1]-[3] as special cases, where ip i n=  
2 2

ip i n=  and p p
ip i n=  respectively. In Section 2, the probability function ( )nP W k=  of this model and 

some properties of the model are obtained. In Section 3, we derive the limiting distribution of the model. Finally, 
in Section 4, we discuss some special cases. 

2. The Generalized Bernoulli Learning Model 
Theorem 1. The distribution function of nW  is  

( ) ( ) ( )1, 1
1 ,

nk
n n

m k

s n n m m
P W k

km
α

=

+ + −  
= = −  

 
∑                             (1) 

where 1
,

1
,

n

n n i
i

W X
=

= ∑  ( )1
, 1,n i iX B nα≈ . 

Proof. To derive the distribution of Bernoulli learning model based on the sum of the independent random 

variable { }1
, 1

,
n

n i i
X

=
 1, 2, ,i n=  , 

where the probability of success is i ip nα=  we define the event iE  as the event 1
,n iX , 1, 2, ,i n=   see [5], 

and the sum  

( ) ( )

( )

( ) ( )

1 2
1

1 2
1

1 2
1 2

1 1

1

1 1 1
, , ,

1

1 1

, , , ,

            1, 1, , 1

1            

            1 1, 1 ,

k
k

k
k

k
k

k k

i i i
i i n

n i n i n i
i i n

ii i
i i ik

i i n i i n

k k

P n k P E E E

P X X X

n n n n

s n n k nα

αα α
α α α

≤ < < ≤

≤ < < ≤

≤ < < ≤ ≤ < < ≤

=

= = = =

= =

= − + + −

∑

∑

∑ ∑





 





 

 

where ( ),s n kα  the generalized Stirling number of the first kind (Comtet numbers), defined by Comtet in [6] [7] 
as follows  

( )( ) ( ) ( )0 1 1
0

,
n

k
n

k
x x x s n k xαα α α −

=

− − − = ∑  

where ( )0 1 1, , , nα α α α −=  , for more details, see [8] and [9]. 
Employing the inclusion-exclusion principle, see [5], we get  

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1
1 ,

1

1 1, 11
                 1

1

1, 1 1
                 1 ,

1

n m k
n

m k

mn m k
m

m k

nk
m

m k

m
P W k P n m

k

s n n mm
k n

s n n m m
kn

α

α

−

=

−

=

=

− 
≥ = −  − 

− + + −− 
= −  − 

+ + − − 
= −  − 

∑

∑

∑

 

then  
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( ) ( ) ( )1

1

1, 1 1
1 1 ,

nk
n m

m k

s n n m m
P W k

kn
α+

= +

+ + − − 
≥ + = −  

 
∑  

hence  
( ) ( ) ( )1n n nP W k P W k P W k= = ≥ − ≥ +  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1

1

1

1

1, 1 1, 11 1
1 1

1

1, 1 1, 11 1
                 1 1

1 1

                                  1

n nk k
n m m

m k m k

nk k
k m

m k

k

m k

s n n m s n n mm m
P W k

k kn n
s n n k s n n mk m

k kn n

α α

α α

+

= = +

= +

= +

+ + − + + −− −   
= = − − −   −   

+ + − + + −− −   
= − + −   − −   

+ −

∑ ∑

∑

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1

1

1, 1 1

1, 1 1, 1 1 1
                 1 1

1

1, 1 1, 1
                 1 1 ,

n

m

nk k
k m

m k

nk k
k m

m k

s n n m m
kn

s n n k s n n m m m
k kn n

s n n k s n n m m
kn n

α

α α

α α

= +

= +

+ + − − 
 
 

+ + − + + −  − −     = − + − +    −     
+ + − + + −  

= − + −  
 

∑

∑

∑

 

this yields (1).                                                                              
Lemma 1.  

( )
1

,
n

n
i

nW
i

E W
n
α

µ
=

= = ∑                                     (2) 

( )
1 2

1 2

2

2
1 1 1

1Var 2 .
n n

n i i i i
i i n i i

W n
n

α α α α
≤ < ≤ = =

  = + −     
∑ ∑ ∑                           (3) 

Proof. Consider the pair of inverse relation, see [10]  

( ),     1 .m k

k m k m
m k m k

m m
a b b a

k k
+

= =

   
= = −   

   
∑ ∑                             (4) 

Then using (1), let  

( ) ( ) ( )1, 1
1 .k

n mk
m k

s n n km
g P W k

k n
α

=

+ + − 
= = = −  

 
∑  

Hence from (4), we get  

( ) ( )1, 1 1 ,kk
m

m k

m
s n n k n g

kα
−

=

 
+ + − = −  

 
∑                             (5) 

and setting 1k = , we have  

( ) ( )11, .
n

nm
m k

s n n n mg E Wα
−

=

+ = − = −∑                                (6) 

But we have, see [7]   

( ) ( )
1 2

1 21
, 1 .

n k
n k

n k
i i i

i i i n
s n kα α α α

−
−

−

≤ < < < ≤

= − ∑


                             (7) 

Thus ( )
1

1,
n

i
i

s n nα α
=

+ = −∑  and this yields (2). 

If putting 2k =  in (5), we get  

( ) ( ) ( )( ) ( )22 2

2 2 2 2

1 1 1 1 11, 1 ,
2 2 2 2 2 2

n n n n

n nm m m m
m m m m

m mm
s n n n g g m g mg E W E Wα

−

= = = =

− 
+ − = = = − = − 

 
∑ ∑ ∑ ∑  
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using (7), we have ( )
1 2

1 21
1, 1 i i

i i n
s n nα α α

≤ < ≤

+ − = ∑ , then  

( )( ) 1 2
1 2

2 2

1 1
2 ,

n
i

n i i
i i n i

E W n
n
α

α α−

≤ < ≤ =

= +∑ ∑  

hence  

( ) ( )( ) ( )( )22Var n n nW E W E W= −  

( )
1 2

1 2

2
2

1 1 1
Var 2 ,

n n
i i

n i i
i i n i i

W n
n n
α α

α α−

≤ < ≤ = =

 = + −  
 

∑ ∑ ∑  

this yields (3).                                                                            
  

3. Limiting Distribution of the Bernoulli Learning Model   
In this section we study the limiting distribution of the Bernoulli learning model based on the probability with 
success .i nα   

Theorem 2. Let 1
,

1

n

n n i
i

W X
=

= ∑  where ( )1
, 1,n i iX B nα≈  and 1

,n iX  are independent random variables. Then 

( )2lim exp 2
nZn

M t
→∞

=  where n

n

n W
n

W

W
Z

µ
σ
−

=  i.e. nZ  is ( )0,1N  as .n →∞   

Proof. The moment generating function of nZ  is  

( ) ( )e ,
Wn

Wn
n n W n nn

Wn

t

Z W W WM t M M t
µ

σ
µ

σ

σ

 
 −
 
 

−= =  

and the moment generating function of nW  is  

( ) ( ) 1
,

1
e ,     ,    hencen Wn

n n

nW t
W W n n i

i
M t E W Xσσ

=

 = = 
  ∑  

( ) ( )1
11

01 1 1

1
e e 1 e ,     thenn i W W Wn n n

n n

x xn n nX t xt ti i i i
W W

xi i i

n
M t E

x n n n n
σ σ σα α α α

σ
−

== = =

  −       = = − = +                   
∑∏ ∏ ∏,   

( ) ( )
1

e 1 e 1 ,
Wn

Wn n
n

t n
t wi

Z
i

M t
n

µ

σ σα
 
 −
 
 

=

 = + − 
 

∏  

therefore, we have  

( ) ( ) ( ) ( )

( ) ( )

1

1 1 1

1

1 1 1

1

1
ln ln 1 e 1 e 1

1
               

!

1               
2!

Wn nn
n n

n n

nn

n

n

n n

k kn ntW W ti i
Z W

i i kW W

kjk kn WW i

i k jW

n
W i

iW W

t t
M t

n k n

tt
k n j

t t t
n

σµ µα α
σ

σ σ

σµ α
σ

µ α
σ σ

−∞

= = =

−∞ ∞

= = =

=

− − −   = + + − = + −   
   

 − −    = +       
 

−
= + +

∑ ∑∑

∑∑ ∑

∑

( )

2
22 3 2 3

2 3 2 2 3
1

22

2 2
1 1

1 1 1
3! 2! 3!2

1               1 ,
2!

nn n n n

n

n n n

n
i

i WW W W W

n n
W i i i

i iW W W

t t t t
n

t t t O n
n n n

α
σσ σ σ σ

µ α α α
σ σ σ

=

= =

   
+ + − + + + +      

   
−  

= + + − + 
 

∑

∑ ∑

  
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by using (2) and (3), we obtain  

( ) ( )
2

ln 1 ,     hence
2nZ
tM t O n= +  

( ) ( )2lim exp 2
nZn

M t t
→∞

≅                                      (8) 

which is the moment generating function of standard normal distribution ( )0,1 .N                         

4. Some Special Cases   
In this section we discuss some special cases as follows. 

i) Setting the probability of successes i
ip
n

=  we have the results derived in [1], as special case 

Theorem 3. The distribution of 1
nW  is given by [1]  

( ) ( ) ( )1 1, 1
1 ,     1, 2, , ,

nk
n m

m k

s n n m m
P W k k n

kn=

+ + −  
= = − = 

 
∑                (9) 

where ( ),s n k  are the usual stirling numbers of the first kind, see [10]. 
Also, they obtained the limiting distribution of learning model, mean and variance as follows.  

Theorem 4. Let 1

1
,

n

n i
i

W X
=

= ∑  where ( )1,iX B i n≈  and X ’s are independent random variables. Then 

2 2lim e
n

t
Zn

M
→∞

=  where n

n

n W
n

W

W
Z

µ
σ
−

=  i.e. nZ  has ( )0,1N  as .n →∞   

Lemma 2.  

1 1

2
21 1,     .

2 6n nW W

n n
n

µ σ+ −
= =                                (10) 

ii) Setting the probability of successes 
2

i
ip
n

 =  
 

 we have the results derived in [2], as special case  

Theorem 5. The distribution of 1
nW  is given by [2]  

( ) ( )
( )

( ) ( )( )
2 1

11
2

0

11 1, 1,2 1 .
n knn k

n m
m k l

m
P W k s n l s n n k l

k n

+ −
+ +

= =

  = = − + + + − −  
  

∑ ∑           (11) 

Lemma 3.  
( )( ) 4

2
3

1 2 1 4 1,     and    .
6 30n nW W

n n n
n n

µ σ
+ + +

= =  

iii) Setting the probability of successes 
p

i
ip
n

 =  
 

 we have the results derived in [3], as special case  

Theorem 6.  

( ) ( ) ( )1, 1
1 ,

nk p
n pm

m k

s n n mm
P W k

k n=

+ + − 
= = −  

 
∑                          (12) 

where 1
,1

n
n n iiW X

=
= ∑ , ( )1

, 1, p p
n iX B i n≈  and ( ), ,ps n k  p-Stirling numbers, see [11] [12].  

Theorem 7. Let 1 1
,

1

n

n n i
i

W X
=

= ∑  where ( )1
, 1, p p

n iX B i n≈  and 1
,n iX  are independent random variables. 

Then 
2 2lim e

n

t
Zn

M
→∞

=  where n

n

n W
n

W

W
Z

µ
σ
−

=  i.e. nZ  has ( )0,1N  as .n →∞   
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Lemma 4.  

( )
1

,     and
n

pn

W n p
i

iE W
n

µ
=

= = ∑  

( )
1 2

2

1 22
1 1 1

1Var 2 .
n n

p p p p p
n p

i i n i i
W i i n i i

n ≤ < ≤ = =

  = + −     
∑ ∑ ∑  

5. Conclusion 
Our main goal of this work is concerned with studying the extension of generalized Bernoulli learning model 
with probability of success i ip nα=  1, 2, , ,i n=   1 20 n nα α α< < < < ≤  and n  is positive integer. 
Some previous results, see [1]-[3], are concluded as special cases of our result, that is for ip i n=  2 2

ip i n=  
and p p

ip i n=  respectively. The mean and variance of the model are obtained. Finally, the limiting distri- 
bution of the general model is derived. This model has many applications in industry, specially for training pro- 
grammes. 
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