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Abstract

Fractional integral of continuous functions has been discussed in the present paper. If the order of
Riemann-Liouville fractional integral is v, fractal dimension of Riemann-Liouville fractional inte-
gral of any continuous functions on a closed interval is no more than 2 - v.
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1. Introduction

In [1], fractional integral of a continuous function of bounded variation on a closed interval has been proved to
still be a continuous function of bounded variation. The upper bound of Box dimension of the Weyl-Marchaud
fractional derivative of self-affine curves has given in [2]. Previous discussion about fractal dimensions of frac-
tional calculus of certain special functions can be found in [3] [4].

In the present paper, we discuss fractional integral of fractal dimension of any continuous functions on a
closed interval.

If U is any non-empty subset of n-dimensional Euclidean space, R", the diameter of U is defined as
lU|=sup{|x—y|:x,yeU}, ie. the greatest distance apart of any pair of points in U. If {U;} is a countable
collection of sets of diameter at most ¢ that cover F, i.e. Fc U;Ui with 0< |Ui| <o foreach i, we say that
{U,} isad-cover of F.

Suppose that F is a subset of R" and s is a non-negative number. For any positive number define.

i=1

H; (F)=inf {i|Ui|s :{U;} is a 5-cover of F}

How to cite this paper: Liang, Y.S. (2015) Upper Bound Estimation of Fractal Dimensions of Fractional Integral of Conti-
nuous Functions. Advances in Pure Mathematics, 5, 27-30. http://dx.doi.org/10.4236/apm.2015.51003



http://www.scirp.org/journal/apm
http://dx.doi.org/10.4236/apm.2015.51003
http://dx.doi.org/10.4236/apm.2015.51003
http://www.scirp.org
mailto:liangyongshun@gmail.com
http://creativecommons.org/licenses/by/4.0/

Y. S. Liang

Write
HS(F):IimHg(F)

60

H; (F) is called s-dimensional Hausdorff measure of F. Hausdorff dimension is defined as follows:
Definition 1.1 [5] Let F be a subset of R" and s is a non-negative number. Hausdorff dimension of F is

dim,, (F)=inf {s:7°(F)=0} =sup{s:H°(F )=}
If s=dim, (F),then 7°(F) may be zero or infinite, or may satisfy
0<'HS(F)<00

A Borel set satisfying this last condition is called an s-set.

Box dimension is given as follows:

Definition 1.2 [5] Let F be any non-empty bounded subset of R" and let N (F) be the smallest number of
sets of diameter at most § which can cover F. Lower and upper Box dimensions of F respectively are defined

as
. . logN;; (F)

dim, (F)=Ilim, ,———~= 11

_B( ) —6-0 —IOg§ ( )

and

—_ —  logN, (F)

dims (F)=Ilimsoo ————= 1.2

B( ) om0 —logs (1.2)

If (1.1) and (1.2) are equal, we refer to the common value as Box dimension of F

logN, (F

dim, (F) =lim, ., 129N (F) (1.3)

—logs

Definition 1.3 [6] Let f(x)eCy,, and v>0.For te[0,1] we call

[04]

D f () = —— [ (x=1)"* f (t)t

r(v)

Riemann-Liouville integral of f (x) of order v.

2. Riemann-Liouville Fractional Integral of 1-Dimensional Fractal Function

Let f (x) be a 1-dimensional fractal function on I. We will prove that Riemann-Liouville fractional integral of
f (x) isbounded on I. Box dimension of Riemann-Liouville fractional integral of f (x) will be estimated.

2.1. Riemann-Liouville Fractional Integral of f (x)

Theorem 2.1 Let D' f(x) be Riemann-Liouville integral of f(x) of orderv. Then, D™ f (x) isbounded.
Proof. Since f (x) is continuous on a closed interval |, there exists a positive constant M such that

|f(x)|£M vx el
From Definition 1.3, we know

D™ f(x) :—.[X(x—t)v’1 f(t)dt O<v<l

Forany xel,itholds
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|D‘Vf(x)|s M X' < M

0 1
v(v) STven) T

D™ f(x) isabounded function on I.
2.2. Fractal Dimensions of Riemann-Liouville Fractional Integral of f (x)
Theorem 2.2 Let D™ f (x) be Riemann-Liouville integral of f (x) of order v. Then,
1<dim, T(D™f,1)<dimel (D™ f,1)<2-v, O<v<1
Proof. Let 0< & <1/2, and m is the least integer greater than or equal to 1/5.1f 0<a <b, <&, we have
-v —v by = a v
F(W)[D7f (6)-D1 (a)]=(]; (5. -1) 1f<t>dt—J;<a1—t> Lr(t)at)
a -1 v-1 by v-1
= [ (=t = (3 -t | f ()dt+ [ (b -1) £ (1)t

For 1<i<m,let M, = max f(x), m =min f(x) M=max,, f(x) If

xe[ (i-1)5,i5] xel

D™ f(b)-D"f(a)=0,itholds
T(v+1)[ D f (b)-Df ()] <(b—a) (M, —m)+ (b —a)m,

If Df(b)-D"f(a)<0,itholds

T(v+1)[Df (b)-Df (&)< (b —a)" (M, —m,)

xe[ (i-1)5,i5]

We have

D7 (b,) D™ (a)| < (b =) (My=m; )+ Ms”

(v+1)

<b

n+l — “n+l —

PO (b,) =D F (3) = [} (160, =) F(R)dt= [} (05 4., 1) £ (D)
= [[(n B )" (06 3" ] (1)
+Jnn:+an+1[( S+, ~ )Vﬁl—(n5+an+1—t)“} f (t)dt

+ j”"‘*b"“( ns+b,, —t)" f(t)dt.

no+an,q

Let 1<n<m-1.I1f n6<a <(n+1)5, we have

If Df(b,,)-D"f(a,,)=0,itholds

v

F(V+1)|:D7V f (bn+1)_ D f (an+1):| = (bn+1 _an+1)v (Mn+1 - mn+1) +(br\1/+1 a'n+1)mn+1

If Df(b,,)-D"f(a,,)<0,itholds

\Y

1—‘(v-i_]')|D7Vf (bn+l) D f ( n+l) (bn+l _an+1)v (Mn+1 - mn+1)+(25) M

We get
-V -V 1 v v
|D f(bm—l) D f( n+1) F(V+1)(bn+1_an+l) (Mm—l n+1)+2M5

There exists a positive constant C, such that
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R . [i6,(i+1)s]<Cs", 1<i<m-1

If N,(D f) is the number of squares of the & mesh that intersects T'(D™'f,1), by Proposition 11.1 of
[1], we have

N, (D™ f)<2m+ 5-1mz_1RD,vf [i6,(i+1)5]<Cs"?
i=0

From (1.2) of Definition 1.2, we know

_ IogNJ(D‘“f)

di_mBF(D’Vf,I)zlimho <2-v, O<v<l

—logs

With Definition 1.1, we get the conclusion of Theorem 2.2.
This is the first time to give estimation of fractal dimensions of fractional integral of any continuous function
on a closed interval.
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