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Abstract 
Fractional integral of continuous functions has been discussed in the present paper. If the order of 
Riemann-Liouville fractional integral is v, fractal dimension of Riemann-Liouville fractional inte- 
gral of any continuous functions on a closed interval is no more than 2 − v. 
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1. Introduction 
In [1], fractional integral of a continuous function of bounded variation on a closed interval has been proved to 
still be a continuous function of bounded variation. The upper bound of Box dimension of the Weyl-Marchaud 
fractional derivative of self-affine curves has given in [2]. Previous discussion about fractal dimensions of frac-
tional calculus of certain special functions can be found in [3] [4]. 

In the present paper, we discuss fractional integral of fractal dimension of any continuous functions on a 
closed interval. 

If U is any non-empty subset of n-dimensional Euclidean space, nR , the diameter of U is defined as 
{ }sup : ,U x y x y U= − ∈ , i.e. the greatest distance apart of any pair of points in U. If { }iU  is a countable 

collection of sets of diameter at most δ that cover F, i.e. 1 ii
F U∝

=
⊂


 with 0 iU δ< ≤  for each i, we say that 
{ }iU  is a δ-cover of F. 

Suppose that F is a subset of nR  and s is a non-negative number. For any positive number define. 

( ) { }
1

inf :  is a -cover of ss
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Write 

( ) ( )
0

lims sF Fδδ→
=   

( )s Fδ  is called s-dimensional Hausdorff measure of F. Hausdorff dimension is defined as follows: 
Definition 1.1 [5] Let F be a subset of nR  and s is a non-negative number. Hausdorff dimension of F is 

( ) ( ){ } ( ){ }dim inf : 0 sup :s s
H F s F s F= = = = ∞   

If ( )dimHs F= , then ( )s F  may be zero or infinite, or may satisfy 

( )0 s F< < ∞  

A Borel set satisfying this last condition is called an s-set. 
Box dimension is given as follows: 
Definition 1.2 [5] Let F be any non-empty bounded subset of nR  and let ( )N Fδ  be the smallest number of 

sets of diameter at most δ  which can cover F. Lower and upper Box dimensions of F respectively are defined 
as 

( ) ( )
0

log
dim lim

logB

N F
F δ

δ δ→=
−

                             (1.1) 

and 

( ) ( )
0

log
dim lim

log
B

N F
F δ

δ
δ

→=
−

                             (1.2) 

If (1.1) and (1.2) are equal, we refer to the common value as Box dimension of F 

( ) ( )
0

log
dim lim

logB

N F
F δ

δ δ→=
−

                             (1.3) 

Definition 1.3 [6] Let ( ) [ ]0,1f x C∈  and 0v > . For [ ]0,1t∈  we call 

( ) ( ) ( ) ( )1

0

1 d
x vvD f x x t f t t

v
−− = −

Γ ∫  

Riemann-Liouville integral of ( )f x  of order v. 

2. Riemann-Liouville Fractional Integral of 1-Dimensional Fractal Function 
Let ( )f x  be a 1-dimensional fractal function on I. We will prove that Riemann-Liouville fractional integral of 
( )f x  is bounded on I. Box dimension of Riemann-Liouville fractional integral of ( )f x  will be estimated. 

2.1. Riemann-Liouville Fractional Integral of ( )f x  
Theorem 2.1 Let ( )vD f x−  be Riemann-Liouville integral of ( )f x  of order v. Then, ( )vD f x−  is bounded. 

Proof. Since ( )f x  is continuous on a closed interval I, there exists a positive constant M such that 

( )    f x M x I≤ ∀ ∈  

From Definition 1.3, we know 

( ) ( ) ( ) ( )1

0

1 d     0 1
x vvD f x x t f t t v

v
−− = − < <

Γ ∫  

For any x I∈ , it holds 
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( ) ( ) ( )
    0 1

1
v vM MD f x x v

v v v
− ≤ ≤ < <

Γ Γ +
 

( )vD f x−  is a bounded function on I. 

2.2. Fractal Dimensions of Riemann-Liouville Fractional Integral of ( )f x  
Theorem 2.2 Let ( )vD f x−  be Riemann-Liouville integral of ( )f x  of order v. Then, 

( ) ( )1 dim , dim , 2 ,     0 1v v
BH D f I D f I v v− −≤ Γ ≤ Γ ≤ − < <  

Proof. Let 0 1 2δ< < , and m is the least integer greater than or equal to 1 δ . If 1 10 a b δ≤ < ≤ , we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

1 1

1 1

1

1 1
1 1 1 10 0

1 1 1
1 1 10

d d

                                              d d .

b av vv v

a bv v v

a

v D f b D f a b t f t t a t f t t

b t a t f t t b t f t t

− −− −

− − −

 Γ − = − − − 

 = − − − + − 

∫ ∫

∫ ∫
 

For 1 i m≤ ≤ , let ( ) ( )1 ,maxi x i iM f xδ δ∈ −  
= , ( ) ( )1 ,mini x i im f xδ δ∈ −  

=  ( )max x IM f x∈=  If 

( ) ( )1 1 0v vD f b D f a− −− ≥ , it holds 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 11 11 vvv v vv D f b D f a b a M m b a m− − Γ + − ≤ − − + −   

If ( ) ( )1 1 0v vD f b D f a− −− < , it holds 

( ) ( ) ( ) ( ) ( )1 1 1 1 1 11 vv vv D f b D f a b a M m− −Γ + − ≤ − −  

We have 

( ) ( ) ( ) ( ) ( )1 1 1 1 1 1
1

1
vv v vD f b D f a b a M m M

v
δ− −− ≤ − − +

Γ +
 

Let 1 1n m≤ ≤ − . If ( )1 1 1n nn a b nδ δ+ +≤ ≤ ≤ + , we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 11 1
1 1 1 10 0

1 1
1 10
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                                                    d

                                   

n nn b n av vv v
n n n n

n v v
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δ δ

δ

δ δ

δ δ

+ ++ +− −− −
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− −
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If ( ) ( )1 1 0v v
n nD f b D f a− −
+ +− ≥ , it holds 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 11 vv v v v
n n n n n n n n nv D f b D f a b a M m b a m− −
+ + + + + + + + + Γ + − ≤ − − + −   

If ( ) ( )1 1 0v v
n nD f b D f a− −
+ +− < , it holds 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 11 2v vv v
n n n n n nv D f b D f a b a M m Mδ− −
+ + + + + +Γ + − ≤ − − +  

We get 

( ) ( ) ( ) ( ) ( )1 1 1 1 1 1
1 2

1
vv v v

n n n n n nD f b D f a b a M m M
v

δ− −
+ + + + + +− ≤ − − +

Γ +
 

There exists a positive constant C, such that 
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( ), 1 1 1,     v
v

D f
R i i C i mδ δ δ− + ≤ ≤ ≤ −    

If ( )vN D fδ
−  is the number of squares of the δ  mesh that intersects ( ),vD f I−Γ , by Proposition 11.1 of 

[1], we have 

( ) ( )
1

1 2

0
2 , 1v

m
v v

D f
i

N D f m R i i Cδ δ δ δ δ−

−
− − −

=

≤ + + ≤  ∑  

From (1.2) of Definition 1.2, we know 

( ) ( )
0

log
dim , lim 2 ,     0 1

log

v
v

B
N D f

D f I v vδ
δ

δ

−
−

→Γ = ≤ − < <
−

 

With Definition 1.1, we get the conclusion of Theorem 2.2. 
This is the first time to give estimation of fractal dimensions of fractional integral of any continuous function 

on a closed interval. 
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