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Abstract 
Glow discharge was utilized to add oxygen functional groups to the graphene platelets sample pro- 
duced in chemical exfoliation synthesis. It was concluded based on Raman spectra that the gra-
phene sample treated with the glow discharge preserves specific graphene features while no 
transformation to amorphous carbon is happening. SEM and EDS results indicated the increases of 
oxygen content in the graphene sample after the exposure to the glow discharge. Raman spectra 
also support the fact that the graphene platelets have been decorated with oxygen as the result of 
the glow discharge treatment. 
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1. Introduction 
Graphene is a flat, atomic-scale, honeycomb lattice [1], which is made of carbon atoms with a flat hexagonal 
atomic structure [2]. It is the world’s first 2D material which extends only in length and width. This gives gra-
phene a set of unique properties which has caught a lot of researcher’s attentions [3]. It can dramatically im-
prove the thermal and electrical conductivity of the medium it is added to, and significantly increases strength 
[4]. However, graphene is inherently inert and it does not always bond properly with the matrix on its own. In-
stead, graphene flakes tend to agglomerate resulting in its non-uniform distribution in final composite. In order 
to prevent this, functional groups must be added to the graphene [5] [6]. Other applications requiring graphene 
functionalization include membrane seperation and dehydration of organic or water mixture [7]-[9], etc. Ultra 
thin Graphene oxide membrane separation realizes high-flux, high-sensitivity mixture separation at low energy 
cost. Pristine multi-layered graphene oxide coated onto a thin film nano-fibrous composite (TFNC) mat forms a 
high flux membrane for organic or water dehydration. This is because once oxygen is added, there will be 
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breaking of C-C bonds and releasing of C atoms, introducing defects; and oxygen groups can swell the interlayer- 
spacing. 

There are several methods to functionalize graphene and the most widely utilized is chemical functionaliza-
tion [11]. This method is accompanied with numbers of disadvantages such as utilization and production of 
non-environmental friendly chemicals as well as adding an extra step to the synthesis process [12]. Another ap-
proach is to use plasma-based functionalization [13], which is benefited by increasing reactivity of the species. 
In addition, plasma-based functionalization enables functionalization as part of the synthesis process and it is 
also environmentally friendly. Different types of discharges such as microwave-excited surface-wave plasma 
[14], DC, RF plasmas were used to functionalize nanostructures [15]. SWCNTs were successfully functiona-
lized with F, NH [16] [17], etc. In addition, the advantages of the plasma-based functionalization compared to 
wet chemical reactions were concluded. Other methods of graphene functionalization include ultraviolet oxida-
tive treatment [18], ozone treatment [19]-[21], and photochemical oxidation [22].   

However, there was no significant research done on plasma-based graphene functionalization. This work is 
focused on studying the benefits of glow discharge utilization for decorating graphene with oxygen functional 
groups (see Figure 1). 

2. Experimental Setup and Procedure 
The experiment was conducted inside a stainless steel chamber (45 cm in diameter and 64 cm in length) pumped 
with mechanical pump to the residual air pressure of about 10−1 torr. A piece of copper wire with the diameter of 
0.3 mm was used as the substrate and a little pitch of graphene flakes prepared by chemical exfoliation method 
(N006-P Polar Graphene Powder by Angstron Materials Inc) was placed on the substrate. Adjustable AC vol-
tage up to ~550 V was applied to the copper substrate with respect to chamber walls as shown schematically in 
Figure 2. 
 

 
Figure 1. Graphene functionalized with O and OH groups [10].                                                                
 

 
Figure 2. Experimental setup.                                                                                          



X. Fang et al. 
 

 
3 

The glow discharge of alternative current was ignited when amplitude of the applied AC voltage exceeds U ~ 
320 V [23]. The experiments were conducted at U ~ 476 V and exposure time was 90 s. The glow discharge was 
concentrated around the substrate with graphene as shown in Figure 3. 

The samples were characterized of using SIGMA VP-02-44 SEM equipped with OXFORD INCA x-act 
ADD0048 EDS and Horiba LabRAM Raman HR 800 spectrometer. Five randomly chosen points on the each 
sample were observed for averaging. 

3. Results and Discussions 
SEM images of treated and untreated samples are shown in Figure 4. No changes of morphology in the samples 
after the treatment were found. EDS results are shown in Table 1. It was observed that the average oxygen 
weight content (averaged over 5 randomly chosen points) was 2.31% before the exposure. After exposure to the 
glow discharge, the oxygen percentage rose to 4.74% which is an increase by 105.2%. The admixture of copper 
in the samples was found to be less than 1%. 

As a next step it was determined using Raman Spectrometer whether flakes treated in plasma are still gra-
phene, as opposed to amorphous carbon. This characterization procedure was performed with a Horiba RAMAN 
spectrum at room temperature. Figures 5(a)-(c) show Raman spectra of untreated and treated graphene sample. 
Three intense features D, G, G’ peaks could be observed along the spectra at around 1355 cm−1, 1575 cm−1 and 
2700 cm−1. The D peak is associated with the amount of defects in sp2 bonds [24] and G peak is related to doubly 
degenerate E2g mode [25]-[27]. G’ peak has nothing to do with G peak while its shape could be used to deter-
mine the number of layers of the graphene flakes. It can be seen the spectra for both treated and untreated flakes  

 

 
Figure 3. Glow discharge generated between two electrodes.               

 

  
Figure 4. SEM images of N006-P Polar Graphene Powder which were observed under EDS (a) before and (b) after the ex-
posure to the glow discharge.                                                                                         
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Figure 5. RAMAN spectra of (a)-(b) untreated N006-P Polar Graphene Powder and (c)-(d) plasma-treated N006-P Polar 
Graphene Powder.                                                                                                  

 
Table 1. EDS material weight percentage of carbon and oxygen before and after exposure to the glow discharge.                      

Weight% Element Point 1 Point 2 Point 3 Point 4 Point 5 

Before Exposure 
Carbon 97.82% 97.36% 97.16% 97.80% 98.31% 
Oxygen 2.18% 2.64% 2.84% 2.20% 1.69% 

After Exposure 
Carbon 94.50% 93.63% 96.82% 96.14% 95.21% 
Oxygen 5.50% 6.37% 3.18% 3.86% 4.79% 

 
were similar, and the ratio of I(G’)/I(G) still remains 0.5. 

The main difference on the Raman spectra was presence of small D’ peak on the plasma treated sample as 
shown on the zoomed to the range 1250 - 1700 cm−1 spectra shown in Figure 5(d). After the employment of the 
glow discharge, one can see that averaging of many RAMAN spectra indicate presence of small D’ peak on 
treated sample. Presence of D’ is indicator of graphene oxide according to Baraket et al. [28]. 

From the results above, one could tell there is a significant increase of oxygen content after the exposure to 
the glow discharge, while the graphene flake structure did not undergo significant change. After determining the 
elemental makeup of the graphene structure.  

Future experiments will have to address influence of exposure duration and discharge voltage on the efficien-
cy of functionalization and extend characterization of the functionalized graphene (e.g. XPS, XRD, AFM etc.). 

4. Summary 
We have shown that plasma-based glow discharge technique can be used for oxygen functionalization of gra-
phene platelets. It is important to point out that the graphene sample did not changed into amorphous carbon af-
ter the exposure. SEM, EDS and Raman diagnostics inform about effective oxygen functionalization. Oxygen 
content was increased by factor of 2 after plasma exposure of 90 seconds. In addition, Raman spectra show 
presence of small D’ peak, which also indicates elevated presence of oxygen in the plasma treated sample. More 
detailed investigation of treatment conditions (voltage, time) is required in future in order to improve controlla-
bility of the glow discharge graphene modification. 
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