
Social Networking, 2015, 4, 1-16 
Published Online January 2015 in SciRes. http://www.scirp.org/journal/sn 
http://dx.doi.org/10.4236/sn.2015.41001   

How to cite this paper: Khan, B., Dombrowski, K., Curtis, R. and Wendel, T. (2015) Estimating Vertex Measures in Social 
Networks by Sampling Completions of RDS Trees. Social Networking, 4, 1-16. http://dx.doi.org/10.4236/sn.2015.41001  

 
 

Estimating Vertex Measures in Social  
Networks by Sampling Completions of RDS 
Trees 
Bilal Khan1, Kirk Dombrowski2, Ric Curtis2, Travis Wendel3 
1Department of Math and Computer Science, John Jay College (CUNY), New York, USA  
2Department of Sociology, University of Nebraska-Lincoln, Lincoln, USA 
3St. Ann’s Corner of Harm Reduction, Bronx, USA 
Email: bkhan@jjay.cuny.edu, kdombrowski2@unl.edu, rcurtis@jjay.cuny.edu, twendel@sachr.org  
 
Received 3 December 2014; accepted 17 December 2014; published 13 January 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
This paper presents a new method for obtaining network properties from incomplete data sets. 
Problems associated with missing data represent well-known stumbling blocks in Social Network 
Analysis. The method of “estimating connectivity from spanning tree completions” (ECSTC) is spe- 
cifically designed to address situations where only spanning tree(s) of a network are known, such 
as those obtained through respondent driven sampling (RDS). Using repeated random comple- 
tions derived from degree information, this method forgoes the usual step of trying to obtain final 
edge or vertex rosters, and instead aims to estimate network-centric properties of vertices proba- 
bilistically from the spanning trees themselves. In this paper, we discuss the problem of missing 
data and describe the protocols of our completion method, and finally the results of an experiment 
where ECSTC was used to estimate graph dependent vertex properties from spanning trees sam- 
pled from a graph whose characteristics were known ahead of time. The results show that ECSTC 
methods hold more promise for obtaining network-centric properties of individuals from a li- 
mited set of data than researchers may have previously assumed. Such an approach represents a 
break with past strategies of working with missing data which have mainly sought means to com- 
plete the graph, rather than ECSTC’s approach, which is to estimate network properties them- 
selves without deciding on the final edge set. 
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1. Introduction 
Respondent-Driven Sampling (RDS) has become a popular technique for providing statistically meaningful data 
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on hard to reach populations by using peer-referral methods. Data obtained using RDS that can be subjected to 
mathematical modeling, which can in turn provide the sorts of confidence intervals and measurable design 
effects expected of social science research [1]-[4]. The popularity of RDS stems in part from its efficacy in 
addressing many of the current data collection challenges facing social network researchers working with 
marginal populations, including that RDS is relatively inexpensive, does not depend on complete in-group 
rosters, and does not require collecting identifiers of interviewees. Importantly, the RDS method is predicated on 
the existence of a social network among the study population. Initial “seeds” from the study population are 
given recruiting coupons to distribute to members of their personal network, links they deem eligible for 
participation in the study. Qualified recipients who volunteer for the study are paid for an interview and in turn 
given (usually 3) recruiting coupons of their own. In addition, to the interview fee, respondents are paid a 
recruiting incentive for their referrals who eventually qualify for and participate in the study. Where individual 
network degree exceeds the number of recruiting coupons given to each respondent, a measure of randomness 
among an individual’s network links is assumed, and over numerous iterations, this randomness can produce an 
equilibrium sample among the target population. Ordinarily, RDS recruitment requires 6 or more “waves” of 
recruitment to achieve sample equilibrium and confidence intervals on a par with those normally expected from 
random sampling, though often this requires a sample size roughly twice that of typical sampling methods. The 
virtue of this strategy is the ability of RDS to access to populations normally beyond the reach of ordinary 
random sampling methods (such as random digit dialing), and to do so anonymously, and quickly. 

Yet given the prominent role that social networks play in the RDS methodology, the recruitment/sampling 
strategy produces very little social network information. This is for three reasons: 1) all interview participants 
are given the same number of coupons, usually far fewer than their degree, meaning that referral turnout gives 
little indication of individual network neighborhood, 2) the random-walk method necessary for achieving 
representativeness intentionally disregards questions of the range of network degrees, questions of directionality, 
and edge strength variation, and 3) because individuals are prevented from appearing as referrals once they have 
already been interviewed, RDS produces spanning trees that lack cycles. 

Despite all this, RDS methods do provide some network data for populations among which normal social 
network research methods remain problematic or prohibitively expensive-networks of drug users, sex workers, 
marginal youth, and other hard to reach populations where name generators are either not useful or not welcome, 
and increasingly subject to restriction on the basis of human subjects protection. The network connections that 
appear in the RDS edge set are the result of peer referral yet can be collected anonymously (via coupon number), 
and thus normally meet IRB guidelines. Unfortunately, limited methods now exist for imputing structural 
information in settings where there is missing social network data, as is the case from RDS surveys. 

As Huisman [11] has recently pointed out, missing data and sampling problems are acute in social network 
analysis, as the absence of a small number of edges or vertices can seriously distort research results (though see), 
while the extent of the missing data is often unknown. Together with a long list of others [5]-[11] [37] [44] 
considerable attention has been paid to the manifold factors that limit the reliability of incomplete network 
data-factors such as network boundary specifications, inherently incomplete data collection methods, imposed 
limits on vertex degree in data collection, and various forms of response error (including especially non-res- 
ponse). Butts [44] has recently discussed issues of data collection reliability, following a series of articles by 
Bernard and Killworth and colleagues [12]-[16] (see also [17]). Ethical issues around name generators in sen- 
sitive contexts and the rising costs of complete network surveys only make matters more worse [18] [19]. The 
only example we know of that addresses RDS data type spanning trees specifically is by Handock and Gile [20] 
[21], who consider the network over the set of actors to be the realization of a stochastic process and present a 
framework with which to model the process parameters while compensating for network sampling design and 
missing data patterns. 

Here we propose a second method for dealing with the missing data inherent in RDS spanning trees. Rather 
than attempting to replace missing data, or quantify the effects of missing data, we begin by considering the 
network to be a fixed structure about which we wish to make inferences based on partial observation. Spe- 
cifically, we evaluate the constraints implied by very limited information about the marginals of the adjacency 
matrix and a small subset of its entries, and assess the extent to which these constraints can be used to re- 
construct the relative values of network-centric vertex measures. In the following paper, we describe a set of 
experiments undertaken to ascertain the extent to which network level statistics can be generated from the 
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limited sorts of data normally produced by RDS samples. The method of “estimating connectivity from span- 
ning tree completions” (ECSTC, pronounced ek-stuh-see) proposed here seeks to recover network-centric 
measures for individuals within RDS samples, given only very limited information about links within the 
ambient network in which the survey is conducted. The method does not seek to construct concrete networks 
that most plausibly impute missing network links from the limited input data. Rather, if ECSTC can estimate 
network-centric vertex measures in spite of the missing links peculiar to data generated through RDS, then 
combining ECSTC with RDS might potentially provide a way around the high cost of conventional social 
network survey methods. 

2. ECSTC 
The method of “estimating connectivity from spanning tree completions” (ECSTC) begins with the edge set 
determined in the course of referrals made during the RDS process, together with individual network degree 
information determined in each subject survey. The residual difference between these two quantities represents 
the number of undiscovered edges at each vertex. The ECSTC method randomly adds these missing edges to the 
RDS tree until each vertex has gained the requisite degree1. Stated equivalently, ECSTC takes as its input very 
limited information: a small set of entries within a network’s adjacency matrix, together with the matrix’s mar- 
ginals. It then samples from the space of all adjacency matrices that are consistent with the partial information 
provided. In assigning missing edges to form complete networks, the intention is not to assert a final edge set. 
Rather, ECSTC seeks only to estimate network-centric vertex measures—foregoing the attempt to deduce the 
network’s structure in any final manner. It does this by producing large numbers of random graph completions 
consistent with what is known about vertex degrees. Each randomly completed network is then analyzed to 
determine network variable(s) at each vertex; here we consider the betweenness centrality, Burt’s measure of 
aggregate constraint, and effective size of each vertex. The completion process is then repeated on the same 
RDS tree, and the vertex properties once again measured for each of the completions. The values obtained from 
multiple independent completions are used to obtain a mean value for each variable (for each vertex) and the 
standard deviation is calculated to estimate variability across different completions. The ECSTC method is des- 
cribed in greater detail in Section 4. 

Our strategy for evaluating the ECSTC method makes use of computational experiments on known, albeit 
idealized, topologies drawn from a class of theoretically plausible Barabasi-Albert (BA) networks2. For purposes 
of this trial, we use multiple instances of randomly generated BA graphs of 100 and 500 vertices. Unlike most 
tests of techniques aimed at addressing the problem of missing network data, we do not begin by removing a 
random subset of vertices or edges (or both). Rather, we begin by simulating an RDS sample the known graph, 
by which a list of vertices and a fraction of their connecting edges are discovered. We take an idealized view of 
the RDS method, by assuming that coupon referral tracks real network ties of equivalent edge strength, that 
subjects distribute coupons randomly among their network neighbors, recursively, until the referral chains all 
reach vertices with no undiscovered neighbors3. 

To begin the RDS simulation, one “seed” vertex is chosen randomly from among the vertices, to serve as the 
starting point of the simulated RDS. We assume that at each progressive step in the RDS simulation, accurate 
information is obtained from the surveyed subject (vertex) regarding its network size and actual neighbors. Each 

 

 

1As described in more detail below, no loops or parallel edges were allowed during the random completion process, meaning that, potential- 
ly, the completion could get stuck, resulting in one or several vertices with residual, unrealized edges necessary to complete their degree, but 
no available targets for those edges. In practice, however, such occasions were extremely rare, as predicted by Bayati, Kim, and Saberi [42] 
[43], and were addressed by re-initiating the completion process. 
2While Barabasi-Albert (BA) graphs represent an idealized model, they represent viable topology for many of the social networks for which 
RDS methods are normally applied. A recently completed metastudy of 15 STD/HIV related network studies by Rothenberg and Muth 
found that fat tailed, right-skewed degree distributions with log-linear decay coefficients around 2 might be considered the “basic underlying 
pattern” for risk networks as such [22] (pp. 110-111). While actual risk networks such as those analyzed by Rothenberg and Muth may or 
may not be formed by “preferential attachment” (in the sense of Barabasi-Albert), the overall distribution of edges across a network of these 
sizes, as produced by BA algorithms, would seem an apt model on which to test RDS completion techniques for real world risk networks of 
similar scale. 
3Some have found limits in the ability of the RDS method to meet these assumptions, based, they suggest, on such factors as the tight loca- 
tional clustering of the population, the relatively low level of the incentives offered [23] (pp. i12-3); (See also [33] and [24] for similar con- 
clusions) or attempts to game the remuneration system ([25]; though see [26] [27], and the other contributors to the same issue; see [28] for 
further discussion). 
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surveyed vertex is then “given” three coupons4. 
We chose three coupons because this is the current standard practice in most RDS studies, though the pro- 

posed method is impervious to this parameter setting. This node “distributes” the three coupons to up to three of 
its as-yet undiscovered neighbors, which it chooses uniformly at random. This process continues to exhaustion, 
which is to say until we reach a state where no further steps to unsampled nodes are possible. In practice, we 
find that a relatively high proportion, though not necessarily all of the vertices are encountered in this way. In 
addition, terminal nodes in the referral tree tend to be low degree nodes, though occasionally terminal nodes 
may have higher degree if all their neighbors have already been sampled at previous stages of the RDS 
simulation. The ECSTC method is then used to generate multiple independent completions of the RDS tree, as 
described previously. The network-centric vertex measures of betweenness centrality, Burt’s constraint, and 
effective size, and computed for each vertex within each completion, and the mean of these values serves as the 
ECSTC-derived estimate of the per-vertex measures. ECSTC-derived estimates are then compared with the true 
values of the network-centric measures, where the latter is readily computed using the ambient graphs on which 
the RDS simulation itself was conducted. Plots of the estimated versus actual measures of each vertex (for each 
variable) are made, and serve as the basis of conclusions concerning the extent to which the relative magnitudes 
of ECSTC-derived estimates reflect the relative magnitudes of the true values of the measures. 

The preceding process is repeated for different RDS trees, in order to determine the sensitivity of our con- 
clusions to the random choices involved in any particular RDS tree. The entire process is then repeated for 
different graphs in order to determine the sensitivity of the conclusions to the choice of particular BA network. 

3. Network-Centric Vertex Measures 
For purposes of this experiment, three common network measures were chosen to test the efficacy of the 
ECSTC method: effective size of a vertex, betweenness centrality, and Burt’s constraint coefficient. We chose 
Burt’s constraint and effective size as they represent related but quite different “neighborhood” measures for 
social network analysis. Betweenness centrality was chosen to assess the method’s performance on measures 
affected gu global network geometry (rather than just the neighborhood of the measured vertex). We note, 
however, that any other measure defined for a (combinatorial) graph could be substituted in place of these three 
(e.g. triad census or other more complex topological functions). Since each round of the ECSTC process pro- 
duces a “completed” network, all that is needed is to compute the measure of interest for the each of the com- 
pletions produced in successive ECSTC rounds; the mean of these computed values then serves as an estimate of 
the true measure. 

3.1. Effective Size (ES) 
The first function examined in the experiment is the effective size of a vertex. Like Burt’s constraint coeffiecient 
(discussed below), this is a measure of local or neighborhood topology intended to make clear the importance of a 
vertex to the connectivity of its neighbors (and is thus a measure of mediation or influence). Effective size is simply 
the degree of a vertex minus the average of the degrees of its k = 1 neighbors with respect to one another. Being 
largely dependent on degree information, and averaging across k = 1 neighbors, this function was thought beforehand 
as likely to be the most amenable to ECSTC methods. In the experiment, effective size ( )ES v  is calculated as:  

( ) , , ,
1

v v u v w u w
u v w Vv

ES v S s s s
S ≠ ≠ ∈

= − ∑                                  (1) 

 

 

4Speaking specifically of RDS, Platt, Wall, and Rhodes point out:  
Adjusting the RDS sample to obtain population estimates depends on the ability to recruit a random population within a subject’s social 

networks and a positive probability of recruiting everyone in that network. The possibility that the network is highly dependent on the incen- 
tive raises the question whether the latter condition obtains. This is particularly relevant when the definition of the population of study is 
fluid or artificially constructed by the research as with IDUs and sex workers. It should also be noted that the collection of information de- 
scribing network characteristics which allows RDS analysis to produce population estimates requires the respondent to recall detailed in- 
formation on the composition of their network, including its size and each member's relationship with the recruiter. This process carries a 
large potential for error [30] (pp. i50-1).  

For this reason, the authors discounted the correction and estimation features of RDS, limiting much of what is normally reported by oth- 
ers as the main advantage of the methodology. Importantly, Heckathorn notes that independent analyses of the accuracy of reported infor- 
mation on network size has shown RDS gathered data to be “strongly associated” [29] (p. 163), citing [31] and [32]; see also [34], noting 
that many of these issues are what Johnston calls “implementation challenges” [33]. 
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where vS  is the sum of all edge values s  incident on vertex v  and ,u ws  is the 0/1 value of an edge between 
any two vertices u  and w , where u v w≠ ≠ . 

3.2. Betweenness Centrality (BC) 
Betweenness centrality is defined by Wasserman and Faust [35] as the sum of the likelihoods of a vertex to lie 
along any of all geodesic paths in a given graph, and has been expanded upon to provide both internal and 
comparative measures of mediation and brokerage [36]. Betweenness centrality was found by Costenbader and 
Valente [37] to be among the most systematically poor performers in coping with missing data in actual net- 
works, including symmetrized versions of the same networks. In their experiment, betweenness centrality 
showed a high correlation between error and sampling level, such that as levels of missing data went up, errors 
in the betweenness centrality of a particular vertex went up proportionally. This is perhaps not surprising given 
the dependence of the measure on whole graph characteristics [38]. In the current experiment, the betweenness 
centrality BC  of a given vertex v  is defined as:  

( ) ( )st

s v t V st

v
BC v

σ
σ≠ ≠ ∈

= ∑                                       (2) 

where stσ  is the number of geodesic paths from s  to t , and ( )st vσ  is the number of geodesic paths from 
s  to t  through vertex v . 

3.3. Constraint (CON) 
Burt’s constraint is a measure of the extent to which a vertex is linked to alters who are in turn linked to one 
another [39]. It is defined as the sum of all dyadic constraints of a vertex, where the dyadic constraint for any 
edge from ego to alter is defined as the square of the sum of the proportional strength of that the edge (from ego 
to alter) and the product of the proportional strengths of the two edges that connect ego to alter via some third 
vertex, and where the proportional strength of a tie is the value of that arc divided by the sum of the value of all 
arcs incident with the same vertex. As explained by Burt, this measure is intended to weigh both the importance 
of a particular edge given the connectivity of vertex, and the number of structural holes incident with that edge. 
In our case, where edge strengths were assumed to be equal, the proportional strength of an edge is simple the 
inverse of the degree of the vertex. In the experiment, the constraint ( )CON u  of a particular vertex u  is 
defined as: 

( )
2

,
ij iq qj

v V v u q
CON u p p p

∈ ≠

 
= + ⋅ 

 
∑ ∑                                   (3) 

where j q i≠ ≠ , and ijp  is the proportional strength of the tie between i  and j , while ,iq qjp p  are the 
proportional strength of the ties between q  and ji,  respectively. Burt’s constraint was chosen as a test of the 
ECSTC method to determine the extent to which complex neighborhood structures could be accurately re- 
covered, given the sparseness of neighborhood level inputs in the observed data. Because the absence of ties (as 
well as their presence) plays a significant role in the calculation of this measure, it was supposed that constraint 
would remain among measures that are most sensitive to missing edges, and thus an appropriate test of the 
method to cope with more detailed micro-level network topologies than are discovered by measures of effective 
size. In relative terms, this measure stands opposite betweenness centrality in its dependence on entirely local 
determinants, but remains quite different from effective size in that it depends as much on the accurate place- 
ment of missing edges as well as those present. 

4. Mathematical Model 
Denote by ( )1 2, , , kθ θ θM  a generative model for constructive sampling of finite graphs, parameterized by 

1 2, , , kθ θ θ . Although our approach is more widely applicable, in this paper we focus solely on the Ba- 
rabasi-Albert (BA) model ( )0, ,BA n m aM  with parameters: n  the number of vertices, m  the number of 
edges that each new vertex requires during preferential attachment, and 0a  the non-negative offset added to the 
degree of every vertex during the computation of attachment probabilities. We consider ( )0, ,BA n m aM  to be 
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the induced distribution over the space of n-vertex unlabeled undirected graphs5. 
Let ( ),G GG V E=  be the underlying social network, randomly chosen from ( )0, ,BA n m aM . Denote by 
:G Gd V →   the function which specifies the degree of each vertex in G . Let :G GVµ →   be the vertex 

measure of interest, e.g. fix Gµ  to be Effective Size (ES), Betweenness Centrality (BC), or Constraint (CON), 
as measured relative to G . 

The next two subsections present the ECSTC procedure precisely, using which the function Gµ  may be 
estimated from just Gd ; we also present evaluation strategies for assess the quality of the generated estimates. 

4.1. Estimation Process 

To begin, we note that uniformly sampling spanning trees of a general graph G  is, in general, not an easy 
computational task [40]; most approaches to the problem require sampling from random walks covering G  
[41]. To circumvent this, we consider the following process that samples a maximal bounded degree subtrees 

( ),T TT V E=  from G . 
1) Pick a seed vertex s , uniformly at random from GV ; initialize { }( ),T s= ∅ . 
2) Now starting at s , recursively perform breadth-first search by expanding each frontier vertex to include 

edges leading to at most ∆  of its yet-undiscovered neighbors. 
The above process implicitly defines a distribution ( ),T G ∆  on a set of ( )1∆ +  degree-bounded subtrees of 

G . We note that the bounded-degree constraint in the constructive definition of ( ),T G ∆  ensures a balance 
between “deep trees” that would be generated from a pure depth-first search, and the “fat trees” that would be 
generated from an (unbounded degree) pure breadth-first search. Certainly ( ),T G ∆  is not, in general, a uni- 
form distribution over the spanning trees of G , since it may assign a non-zero probability to trees that do not 
span all of G’s vertices, and it may assign zero probability to some actual spanning trees of G . However, 
( ),T G ∆  has the advantage that it is effectively computable, and more importantly, when G  is a social 

network, one can sample from ( ),T G ∆  using well-established distributed protocols like respondent-driven 
sampling (RDS), which effectively mimic the aforementioned sampling procedure. Accordingly, we refer to 
( ),T G ∆  as the Space of ∆-bounded RDS trees in G . 
Let ( ),T TT V E=  be a tree sampled from the distribution ( ),T G ∆ , and define :T Td V →   to be the 

function assigning to each vertex its degree in T . We shall define a distribution ( ), GC T d  over what are, 
loosely speaking, the set of imputations of T  in view of G’s known degree sequence Gd . More specifically, 
( ), GC T d  will be a distribution over a family of undirected unlabeled graphs; each graph C  in the family 

enjoys these three properties:  
1) The number of vertices in C  is TV .  
2) Degrees of vertices in C  agree with Gd .  
3) The graph C  contains T  as a subgraph.  
( ), GC T d  in defined implicitly by the following constructive procedure which samples from the distribution:  

C1. Initialize ( ),C CC V E=  by taking C TV V=  and C TE E= . Initialize :C CVδ →   by setting 
( ) ( )C Tv d vδ =  for all Cv V∈ .  

In the next step (C2), the vertex set CV  will remain unchanged, the edge set CE  will be repeatedly aug- 
mented, and the map Cδ  will be correspondingly updated. 

C2. Repeat Steps (a)-(c) until Cu V∀ ∈ , ( ) ( )G Cd u uδ= :  
(a) Define a probability distribution over the vertices v  in TV , by taking 

( )
( ) ( )( )
( ) ( )( )

0

0

max ,0
max ,0

C

G C

G C
u V

a d v v
P v

a d u u
δ

δ
∈

+ −
=

+ −∑
                                  (4) 

(b) Choose vertices 1 2,v v  from TV  via P .  
(c) If 1 2v v≠  and ( )1 2,v v  is not in CE , then:  
Add the edge ( )1 2,v v  to CE ; 
increment the values of ( )1C vδ  and ( )2C vδ 6. 

 

 

5We remark that sampling graphs from the BA distribution requires specifying an ordering of the vertices, and the sampled graph inherits 
implicit vertex labels from this ordering. In addition, the event of attachment is inherently “directed” in the sense that the new vertex is dis- 
tinguishable in its role from the vertices to which it is attaching. In what follows, we appeal to the forgetful functor from the category of 
vertex-labeled directed graphs to the category of undirected unlabeled graphs. 
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C3. Output C.  
The output of the above process implicitly defines a distribution ( ), GC T d  on a set of all graphs having 

degree sequence Gd  and containing T  is a subgraph. We refer to this distribution as the Space of completions 
of tree T  relative to the degree sequence Gd . 

Steps C2 (a)-(c) above are a sort of “preferential completion”, since the algorithm chooses vertices 1v  and 
2v  in a way that is linearly biased based on the number of edges they are missing. Note that constructing C  

from T  does not require knowledge of the edge structure of G , but rather only the degrees of G’s vertices. 
Repeating the aforementioned processes we obtain ( ) { }1 2, , ,p

pT T T T=  , a size-p collection of ∆-bounded 
RDS trees ( ),

i ii T TT V E=  in G , drawn independently with replacement from ( ),T G ∆ . For each tree iT , we 
obtain ( ) { },

1 2, , ,i k i i i
kC C C C=  , a set of k  completions of iT  (relative to Gd ), drawn independently with 

replacement from ( ),i GC T d . We denote the set of vertices discovered in the course of this, as ( )p iTT
V V=



. 
Relative to a particular ( )pT , let ( ) { }1,2, ,S v p⊆   be the (indices of) trees in ( )pT  wherein v  appeared, 
i.e. ( )

iTi S v v V∈ ⇔ ∈ . 
Network-centric vertex measure estimates. Given a specific completion C  (in which a vertex v  appears), 

the vertex measure ( )G vµ  can be estimated by computing it over the structure of C  (in place of the structure 
of G ); this provides an estimate :C CVµ →  . Given that we have kp  completions, the vertex measure Gµ  
can be estimated by computing its mean value (over the k  completions of each of the ( )S v  trees which 
contain v ), denoting this estimate as: 

( ) ( )
( ) ( )

( )
1

1 1 .ip
j

kdef

CT
i S v j

v v
kS v

µµ µ
∈ =

 
=  

 
∑ ∑                                   (5) 

4.2. Evaluation Strategies 
Let ( )pT  be the p  trees sampled from ( ),T G ∆ , and 1 , ,i i

kC C  be k  completions of iT  sampled from 
( ),i GC T d . We evaluate the extent to which Gµ  is well-approximated by ( )pT

µµ  using two distinct measures 
of estimate quality: 

1) The correlation r  is taken to be the Pearson coefficient of the point set 

( ) ( ) ( )( ) ( ){ } 2, p pG T T
u u u Vµ µµ ∈ ⊂   

in which each point maps the true vertex measures ( )G uµ  to the ECSTC-based estimate ( ) ( )pT
uµµ .  

2) The misclassification ε  is the percentage (between 0 and 100) of pairs of vertices ( ),u v  for which 
( ) ( )G Gu vµ µ<  but ( ) ( ) ( ) ( )p pT T

u vµµ µµ≥ . Because vertex measures frequently play a part in assessing the 
relative rank of individuals in a social network (with respect to the particular measure), the misclassification rate 
captures the probability that incorrect conclusions about relative rank are reached when the estimate ( )pT

µµ  is 
used in place of the true measure Gµ . 

5. Experiments 
In this section, we seek to experimentally determine the effects of increasing the number of RDS trees p  and 
the number of completions per tree k , on the quality of generated estimates (in terms of r  and ε  defined 
above). The general paradigm for such experiments starts by choosing a network measure(s) and family F  of 
networks on which the ECSTC method of estimating the measure(s) is to be evaluated Here we consider 
Barabasi-Albert networks of size 100, so ( )0100, 1, 1BA n m a= = = =F M ; later in the paper we consider net- 
works of size 500 to test the scalability of the technique. The network measures we investigate are ES, BC, and 
CON. Fix p  (the number of trees), and k  (the completions per tree) which ECSTC will use in the com- 
putation of its estimates. 

The following constitutes a single experimental trial:  

 

 

6Note that the conditions in Step (c) ensure that no loops or parallel edges are formed during the completion process. The completion process 
(a)-(c) could potentially get stuck, resulting in one or more vertices with residual, unrealized edges necessary to complete their degree but no 
available targets for those edges. Such occasions were very rare, as predicted by Bayati, Kim, and Saberi [42] [43], and were resolved by re- 
placement—that is, by reinitiating the sampling procedure to obtain a different completion. 
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• Draw a random graph G  from F .  
• Choose RDS trees 1, , pT T

 from ( ), 3T G ∆ = .  
• For each iT , select k  completions from ( ),i GC T d .  
• Use the kp  completions to compute measure estimate ( ) ( )pT

vµµ  for each vertex v .  
• Compute estimate quality measures r  (correlation) and ε  (misclassification).  
To illustrate, fix 1p =  as the number of trees and 10k =  as the number of completions. Figure 1 shows a 

100 vertex Barabasi-Albert (BA) graph G  sampled from ( )100,1,1BAM . Figure 2 shows three graphs, one for 
each of the network measures considered. Each vertex v  is plotted as a bar that relates the actual measure to 
the estimated measure (y-coordinate). The bar corresponding to vertex v  has x-coordinate ( )G vµ ; it central y 
coordinate is at ( ) ( )pT

vµµ , and the length of the vertical error bar is the standard deviation of the set 
( ) ( ) ( ){ }1 1 1

1 2 10
, , ,

C C C
v v vµ µ µ

 of estimates generated by each of the 10 completions. The value of r  is given 
for each plot in the upper right hand corner, and a best fit line is drawn through the centers of the error bars. 
Figure 3 shows analogous results for 10 completions of a single BA network with 500 vertices. Together, 
Figure 2 and Figure 3 show that for all three network measures, the ECSTC method is able to produce a high 
correlation with the actual values using only completions of a single spanning tree samples. 

To counter the possibility that these results might by due to chance (either in the choice of graph, or the 
choice of tree, or the choice of completions), we evaluated the robustness of the results by conducting 25t =  
trials, and computing the mean ( )r  and standard deviation (std r ) of the 25 values of correlation obtained, 
and analogously, the mean ( )ε  and standard deviation (std ε ) of the 25 misclassification values. Such a 
sensitivity analysis was considered for different settings of k  (between 1-50 completions), and p  (between 1 - 
50 trees). The results concerning r  are presented in Table 1, while results related to ε  are the subject of 
Table 2. The tables indicate the close fit of the estimated scores to the actual scores for graphs over 25 distinct 
trials. These patterns in these tables are described next section; the conclusions drawn there are also valid for the 
corresponding tables (not shown) derived from experiments on networks of size 500. 

Experiment Results 
Correlation as a function of number of completions: For a fixed number of trees, the mean correlation across all 
vertices improves. The high values support the idea that the ECSTC method is able to successfully recover 
significant data across a range of network measures, with increased numbers of completions improving the fit of 
the estimated values to the actual ones. For several network measures, at high numbers of completions, correla- 
 

 
Figure 1. A 100 vertex BA graph.                                                                         
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                 Figure 2. ECSTC on a 100 node network.                                 
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               Figure 3. ECSTC on a 500 node network.                                  
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Table 1. Correlation (mean and standard deviation) over 25 trials.                                                 

Measure: BC 

r  1 comps 10 comps 30 comps 50 comps 

1 trees 0.954 0.977 0.979 0.979 

10 trees 0.979 0.981 0.981 0.982 

30 trees 0.981 0.982 0.982 0.982 

50 trees 0.981 0.982 0.982 0.982 

 
std r  1 comps 10 comps 30 comps 50 comps 

1 trees 0.009 0.002 0.002 0.001 

10 trees 0.002 0.000 0.000 0.000 

30 trees 0.001 0.000 0.000 0.000 

50 trees 0.001 0.000 0.000 0.000 

 
Measure: ES 

r  1 comps 10 comps 30 comps 50 comps 

1 trees 0.995 0.997 0.997 0.997 

10 trees 0.997 0.998 0.998 0.998 

30 trees 0.997 0.998 0.998 0.998 

50 trees 0.998 0.998 0.998 0.998 

 
std r  1 comps 10 comps 30 comps 50 comps 

1 trees 0.001 0.000 0.000 0.000 

10 trees 0.000 0.000 0.000 0.000 

30 trees 0.000 0.000 0.000 0.000 

50 trees 0.000 0.000 0.000 0.000 

 
Measure: CON 

r  1 comps 10 comps 30 comps 50 comps 

1 trees 0.937 0.963 0.965 0.965 

10 trees 0.963 0.965 0.966 0.966 

30 trees 0.964 0.966 0.966 0.966 

50 trees 0.965 0.966 0.966 0.966 

 
std r  1 comps 10 comps 30 comps 50 comps 

1 trees 0.012 0.002 0.001 0.001 

10 trees 0.003 0.000 0.000 0.000 

30 trees 0.001 0.000 0.000 0.000 

50 trees 0.001 0.000 0.000 0.000 
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Table 2. Misclassification (mean and standard deviation) over 25 trials.                                               

Measure: BC 

ε  1 comps 10 comps 30 comps 50 comps 

1 trees 11.404 9.596 9.762 9.895 

10 trees 9.814 11.088 11.389 11.561 

30 trees 10.667 11.596 11.812 11.784 

50 trees 10.869 11.735 11.895 11.868 

 
std ε  1 comps 10 comps 30 comps 50 comps 

1 trees 1.035 0.641 0.589 0.592 

10 trees 0.476 0.414 0.281 0.264 

30 trees 0.439 0.271 0.176 0.167 

50 trees 0.462 0.233 0.161 0.174 

 
Measure: ES 

ε  1 comps 10 comps 30 comps 50 comps 

1 trees 8.447 7.872 7.842 7.843 

10 trees 7.862 7.838 7.838 7.838 

30 trees 7.839 7.838 7.838 7.838 

50 trees 7.838 7.838 7.838 7.838 

 
std ε  1 comps 10 comps 30 comps 50 comps 

1 trees 0.460 0.070 0.034 0.036 

10 trees 0.051 0.000 0.000 0.000 

30 trees 0.003 0.000 0.000 0.000 

50 trees 0.000 0.000 0.000 0.000 

 
Measure: CON 

ε  1 comps 10 comps 30 comps 50 comps 

1 trees 13.836 11.617 11.521 11.584 

10 trees 11.652 11.593 11.579 11.578 

30 trees 11.550 11.578 11.575 11.575 

50 trees 11.598 11.575 11.575 11.575 

 
std ε  1 comps 10 comps 30 comps 50 comps 

1 trees 1.085 0.303 0.190 0.126 

10 trees 0.358 0.020 0.009 0.008 

30 trees 0.112 0.006 0.000 0.000 

50 trees 0.043 0.000 0.000 0.000 
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tion approaches 1. This holds true across a range of variables, with strong correlations between actual and 
estimated values apparent for betweenness centrality, effective size, and Burt’s constraint. These observations 
are mitigated in those instances where high numbers of trees were included. There, the correlation values (for 50 
trees, for example) were already so high that the use of multiple completions added only very marginal gains. 
The standard deviation of correlation values across 25 independent trials shows a similar trend. Where the 
number of trees is held steady (and low), increasing numbers of completions produces a lower standard de- 
viation across trials, meaning that high numbers of completions tend to mitigate sensitivity to initial starting 
conditions, and the vaguaries of the starting point of the sampling tree. 

Correlation, as a function of multiple trees: Where the number of completions is held steady (and low), the 
effect of producing multiple trees has a similar effect to producing multiple completions, improving the fit 
between estimated and actual. Here too, where high numbers of completions are included, the fit is already so 
tight that there is only a marginal improvement provided by raising the number of trees. The standard deviation 
of correlation values across 25 independent trials shows a similar trend. Where the number of trees is held 
steady (and low), increasing numbers of completions produces a lower standard deviation across trials, meaning 
that high numbers of completions tend to mitigate sensitivity to initial starting conditions. 

Misclassification, as a function of number of completions. As with correlation, increasing the numbers of 
completions shows an improvement in the fit between estimated and actual values, with high numbers of 
completions resulting in a lower percentage of misclassified vertex pairs. This holds true across effective size, 
Burt’s constraint, though not for betweeness centrality. Here, a high number of completions did not result in a 
steady decrease in the number of misclassified pairs. Across 25 trials, the standard deviation of misclassification 
decreased as the number of completions increased. This held true across all three network measures. We note 
here, though, that where high number of trees were available, the improvement provided by high numbers of 
completions was negligible, as the the standard deviation across trials was already approaching 0. 

Misclassification, as a function of multiple trees. Here the observation that pertained to correlation is reversed. 
The inclusion of multiple trees did not significantly improve (i.e. lower) the percentage of misclassifications, 
and in the case of betweenness centrality, the percentage of misclassifications actually increased with the in- 
clusion of more sampling trees of the same ambient graph. 

These observations, overall, suggest that multiple completions carry much the same results as multiple spann- 
ing tree samples of the same network, and at times produce better results. They also have the effect of mi- 
nimizing sensitivity to initial starting conditions, as examined across 25 distinct trials. Beyond this, for these 
(idealized) conditions, the ECSTC method proved capable of recovering significant amounts of network data, in 
close correlation with the values that obtain in the original network. 

6. Discussion and Future Work 
As above, the purpose of this experiment was to test the potential and begin to assess the validity of the ECSTC 
method for obtaining network properties from fairly sparse data sets, especially the sorts of spanning tree data 
sets normally produced by Respondent-Driven Sampling methodologies. The high conformity of the estimated 
values to the known values surprised the authors. These results are encouraging, showing that the method is 
capable under the circumstances described here of estimating accurately the values of a known but only partly 
sampled graph, with relatively small levels of variation in that estimate or dependence on initial conditions. 

A major concern for the authors was the sensitivity of the method to any single random walk. Given the 
relationship between this method and RDS research protocols—where ordinarily only a single random walk 
sample is taken—we worried that stochastic factors inherent in the walk itself (randomness that plays a large 
role in RDS’s ability to reach sampling equilibrium in a population) would bias the results of the completions. 
Again this appears, at first attempt, not to be the case. The high concurrence of results over multiple sampling 
walks of the same networks, and the generally low standard deviation of the variation of those results across 25 
distinct trials, means that we can have some confidence that the ECSTC method is not overly sensitive to 
peculiarities of any particular sampling walk. 

Not surprisingly, the method was not equally successful across all measures, nor equally successful among 
those it was able to estimate closely. It worked best (closest fit and smallest individual error) for effective size. 
The authors were very surprised at the ability of the method to recover Burt’s constraint measure, with a very 
high Pearson’s r score, and low mean standard deviation. We expected the technique to fare worse on this 
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measure. Despite past results showing that betweenness centrality to be among the least resiliant measure in the 
face of missing data, these scores were actually quite good as well, indicating that the mean values of these 
distributions (of estimates) were, in general, quite close to the actual values. These results were consistent over 
the course of 25 trials. 

There remains much work to be done, as discussed below. But if the results shown here for the Barabasi- 
Albert distribution are consistent across other topologies and sampling scenarios, then the ECSTC method may 
prove a valuable extension of the Respondent-Driven Sampling method, allowing researchers to recover at least 
some broad topological data from the sampling trees produced by RDS. This would address two problems that 
social network researchers commonly face: the cost of large surveys where all participants must be asked about 
all others, and the problem of anonymity and informed consent. RDS trees are samples that do not attempt to ask 
respondents about others in the sample, other than the sorts of degree and ego-network questions necessary for 
tracking their own sampling. Likewise, the coupon referral method normally used in RDS allows for anonymous 
tracking of links, not necessitating the use of names or rosters. 

Several important limits to our results must be discussed, however. Because the spanning tree samples stop 
when they reach a vertex with no additional undiscovered edges, this means that low degree nodes of degree one 
are likely to be known quite accurately for a higher proportion of their edge set (obviously), and that low degree 
nodes will have a lower proportion of their edges appear as “missing” in the sample. The result is that we have 
much higher levels of accuracy from the initial spanning tree for low degree vertices. In a BA graph, these make 
up the majority of the network, such that we begin the completion protocol with much of the periphery of the 
network fairly well known. This means that ECSTC method does most of its work, in the current instance of a 
BA graph, among the more highly connected vertices. This may be why betweenness centrality estimation 
remained accurate despite the fact that, in general, less than 50% of the edges are discovered in the sampling 
walks. 

An issue for our results is that we assumed that we were able to record accurate degree information at each 
step of the walk, even though we did not discover the full set of edges to which that degree corresponded. A 
legitimate question is, to what extent such a measure is normally accurate in network interviews [44] [45]? This 
question goes beyond the current discussion but will be taken up directly in a subsequent paper that relates the 
ESCTC method to the RDS methodology as it is used among actual social networks and where corrections for 
degree misestimation are dealt with in more detail. Likewise, this experiment dealt only with symmetrized edges, 
and an assumption of uniform edge type and edge strength. This leaves aside a host of important features of 
RDS samples, and social networks in general. It also assumes many things that we know not to be true about 
RDS trees, including the fact that people often do not chose randomly among their personal network [46], and at 
times choose people outside their network for reasons of convenience or mutual economic benefit (as referrals 
and interviews are paid). These considerations would, obviously, compromise the significance of the method 
described here. 

Acknowledgements 
The authors would like to thank the referees for many helpful suggestions and comments through which the 
paper was improved considerably. This research was supported by NIH/NIDA grants RO1DA034637-01, 
1RC1DA-028476-01/02, NSF Social Behavioral Sciences grant SMA-1338485. The opinions, findings, and con- 
clusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect 
those of the National Institute of Health/National Institute on Drug Abuse. The analyses discussed in this paper 
were carried out at the labs of the New York City Social Networks Research Group (www.snrg-nyc.org). Special 
thanks to Samuel Friedman, Karen Terry, Jacob Marini and Susy Mendes in the John Jay Office for the Ad- 
vancement of Research, and Colleen Syron, Emily Channell, Robert Riggs, David Marshall, Nathaniel Dom- 
browski, and the other members of the SNRG team. We would like to acknowledge that initial funding for a 
pilot version of this project was provided by the NSF Office of Behavioral, Social, and Economic Sciences, 
Anthropology Program Grant BCS-0752680. 

References 
[1] Heckathorn, D.D. (1997) Respondent-Driven Sampling: A New Approach to the Study of Hidden Populations. Social 

Problems, 44, 174-199. http://dx.doi.org/10.2307/3096941 

http://www.snrg-nyc.org/
http://dx.doi.org/10.2307/3096941


B. Khan et al. 
 

 
15 

[2] Heckathorn, D.D. (2002) Respondent-Driven Sampling II: Deriving Valid Population Estimates from Chain-Referral 
Samples of Hidden Populations. Social Problems, 39, 11-34. http://dx.doi.org/10.1525/sp.2002.49.1.11 

[3] Salganik, M.J. and Heckathorn, D.D. (2004) Sampling and Estimation in Hidden Populations Using Respondent-Drive 
Sampling. Sociological Methodology, 34, 193-239. 

[4] Salganik, M.J. (2006) Variance Estimation, Design Effects, and Sample Size Calculations for Respondent-Driven 
Sampling. Journal of Urban Health: Bulletin of the New York Academy of Medicine, 83, i98-i112. 

[5] Borgatti, S.P., Carley, K.M. and Krackhardt, D. (2006) On the Robustness of Centrality Measures under Conditions of 
Imperfect Data. Social Networks, 28, 124-136. http://dx.doi.org/10.1016/j.socnet.2005.05.001 

[6] Burt, R.S. (1987) A Note on Missing Social Network Data in the General Social Survey. Social Networks, 9, 63-73. 
http://dx.doi.org/10.1016/0378-8733(87)90018-9 

[7] Stork, D. and Richards, W.D. (2002) Non-Respondents in Communication Network Studies. Group and Organization-
al Management, 17, 193-209. http://dx.doi.org/10.1177/1059601192172006 

[8] Ghani, A.C., Donnelly, C.A. and Garnett, G.P. (1998) Sampling Biases and Missing Data in Explorations of Sexual Part- 
ner Networks for the Spread of Sexually Transmitted Diseases. Statistics in Medicine, 17, 2079-2097. 
http://dx.doi.org/10.1002/(SICI)1097-0258(19980930)17:18<2079::AID-SIM902>3.0.CO;2-H 

[9] Kossinets, G. (2006) Effects of Missing Data in Social Networks. Social Networks, 28, 247-268. 
http://dx.doi.org/10.1016/j.socnet.2005.07.002 

[10] Huisman, M. and Steglich, C.E.G. (2008) Treatment of Non-Response in Longitudinal Network Studies. Social Net- 
works, 30, 297-308. http://dx.doi.org/10.1016/j.socnet.2008.04.004 

[11] Huisman, M. (2009) Imputation of Missing Network Data: Some Simple Procedures. Journal of Social Structure, 10, 
1-29. 

[12] Killworth, P.D. and Bernard, H.R. (1976) Informant Accuracy in Social Network Data. Human Organization, 35, 
269-286. 

[13] Killworth, P.D. and Bernard, R.H. (1979) Informant Accuracy in Social Network Data III: A Comparison of Triadic 
Structure in Behavioral and Cognitive Data. Social Networks, 2, 19-46. 
http://dx.doi.org/10.1016/0378-8733(79)90009-1 

[14] Bernard, H.R. and Killworth, P.D. (1977) Informant Accuracy in Social Network Data II. Human Communication Re- 
search, 4, 3-18. http://dx.doi.org/10.1111/j.1468-2958.1977.tb00591.x 

[15] Bernard, H.R., Killworth, P.D. and Sailer, L. (1979) Informant Accuracy in Social Network Data IV: A Comparison of 
Clique-Level Structure in Behavioral and Cognitive Network Data. Social Networks, 2, 191-218. 
http://dx.doi.org/10.1016/0378-8733(79)90014-5 

[16] Bernard, H.R., Killworth, P., Kronenfeld, D. and Sailer, L. (1984) The Problem of Informant Accuracy: The Validity 
of Retrospective Data. Annual Review of Anthropology, 13, 495-517. 
http://dx.doi.org/10.1146/annurev.an.13.100184.002431 

[17] Brewer, D.D. and Webster, C.M. (2000) Forgetting of Friends and Its Effects on Measuring Friendship Networks. So- 
cial Networks, 21, 361-373. http://dx.doi.org/10.1016/S0378-8733(99)00018-0 

[18] Borgatti, S.P. and Molina, J.L. (2003) Ethical and Strategic Issues in Organizational Social Network Analysis. Journal 
of Applied Behavioral Science, 39, 337-349. http://dx.doi.org/10.1177/0021886303258111 

[19] Harris, J.K. (2008) Consent and Confidentiality: Exploring Ethical Issues in Public Health Social Network Research. 
Connections, 28, 81-96. 

[20] Handcock, M.S. and Gile, K. (2007) Modeling Social Networks with Sampled or Missing Data. CSSS Working Paper, 
University of Washington, Seattle. 

[21] Gile, K. and Handcock, M.S. (2006) Model-Based Assessment of the Impact of Missing Data on Inference for Net-
works. CSSS Working Paper, University of Washington, Seattle. 

[22] Rothenberg, R. and Muth, S.Q. (2007) Large-Network Concepts and Small-Network Characteristics: Fixed and Varia-
ble Factors. Sexually Transmitted Diseases, 34, 604-612. 

[23] Simic, M., Johnston, L.G., Platt, L., Baros, S., Andjelkovic, V., Novotny, T. and Rhodes, T. (2006) Exploring Barriers 
to “Respondent Driven Sampling” in Sex Worker and Drug-Injecting Sex Worker Populations in Eastern Europe. 
Journal of Urban Health, 83, 6-15. http://dx.doi.org/10.1007/s11524-006-9098-6 

[24] Robinson, W.T., Risser, J.M.H., McGoy, S., Becker, A.B., Rehman, H., Jefferson, M., Griffin, V., Wolverton, M. and 
Tortu, S. (2006) Recruiting Injection Drug Users: A Three-Site Comparison of Results and Experiences with Respon- 
dent-Driven and Targeted Sampling Procedures. Journal of Urban Health, 83, 29-38. 
http://dx.doi.org/10.1007/s11524-006-9100-3 

http://dx.doi.org/10.1525/sp.2002.49.1.11
http://dx.doi.org/10.1016/j.socnet.2005.05.001
http://dx.doi.org/10.1016/0378-8733(87)90018-9
http://dx.doi.org/10.1177/1059601192172006
http://dx.doi.org/10.1002/(SICI)1097-0258(19980930)17:18%3C2079::AID-SIM902%3E3.0.CO;2-H
http://dx.doi.org/10.1016/j.socnet.2005.07.002
http://dx.doi.org/10.1016/j.socnet.2008.04.004
http://dx.doi.org/10.1016/0378-8733(79)90009-1
http://dx.doi.org/10.1111/j.1468-2958.1977.tb00591.x
http://dx.doi.org/10.1016/0378-8733(79)90014-5
http://dx.doi.org/10.1146/annurev.an.13.100184.002431
http://dx.doi.org/10.1016/S0378-8733(99)00018-0
http://dx.doi.org/10.1177/0021886303258111
http://dx.doi.org/10.1007/s11524-006-9098-6
http://dx.doi.org/10.1007/s11524-006-9100-3


B. Khan et al. 
 

 
16 

[25] Scott, G., et al. (2008) They Got Their Program, and I Got Mine? A Cautionary Tale Concerning the Ethical Implica- 
tions of Using Respondent-Driven Sampling to Study Injection Drug Users. International Journal of Drug Policy, 19, 
42-51. http://dx.doi.org/10.1016/j.drugpo.2007.11.014 

[26] Broadhead, R.S. (2008) Notes on a Cautionary (Tall) Tale about Respondent-Driven Sampling: A Critique of Scott’s 
Ethnography. International Journal of Drug Policy, 19, 235-237. http://dx.doi.org/10.1016/j.drugpo.2008.02.014 

[27] Ouellet, L.J. (2008) Cautionary Comments on an Ethnographic Tale Gone Wrong. International Journal of Drug Poli-
cy, 19, 238-240. http://dx.doi.org/10.1016/j.drugpo.2008.02.013 

[28] Fry, C.L. (2010) Ethical Implications of Peer-Driven Recruitment: Guidelines from Public Health Research. The 
American Journal of Bioethics, 10, 16-17. http://dx.doi.org/10.1080/15265160903585610 

[29] Heckathorn, D.D. (2007) Extensions of Respondent-Driven Sampling: Analyzing Continuous Variables and Control-
ling for Differential Recruitment. Sociological Methodology, 37, 151-207. 
http://dx.doi.org/10.1111/j.1467-9531.2007.00188.x 

[30] Platt, L., Wall, M., Rhodes, T., Judd, A., Hickman, M., Johnston, L.G., Renton, A., Bobrova, N. and Sarang, A. (2006) 
Methods to Recruit Hard-to-Reach Groups: Comparing Two Chain Referral Sampling Methods of Recruiting Injecting 
Drug Users across Nine Studies in Russia and Estonia. Journal of Urban Health, 83, 39-53. 
http://dx.doi.org/10.1007/s11524-006-9101-2 

[31] Wang, J.C., Carlson, R.G., Falck, R.S., Siegal, H.A., Rahman, A. and Li, L.N. (2005) Respondent-Driven Sampling to 
Recruit MDMA Users: A Methodological Assessment. Drug and Alcohol Dependence, 78, 147-157.  
http://dx.doi.org/10.1016/j.drugalcdep.2004.10.011  

[32] Ramirez-Valles, J., Heckathorn, D.D., Vázquez, R., Diaz, R.M. and Campbell, R.T. (2005) From Networks to Popula-
tions: The Development and Application of Respondent-Driven Sampling among IDUs and Latino Gay Men. AIDS 
and Behavior, 9, 387-402. http://dx.doi.org/10.1007/s10461-005-9012-3 

[33] Johnston, L.G., Malekinejad, M., Kendall, C., Iuppa, I.M. and Rutherford, G.W. (2008) Implementation Challenges to 
Using Respondent-Driven Sampling Methodology for HIV Biological and Behavioral Surveillance: Field Experiences 
in International Settings. AIDS and Behavior, 12, 131-141. http://dx.doi.org/10.1007/s10461-008-9413-1 

[34] Abdul-Quader, A.S., Heckathorn, D.D., Sabin, K. and Saidel, T. (2006) Implementation and Analysis of Respondent 
Driven Sampling: Lessons Learned from the Field. Journal of Urban Health, 83, 1-5.  
http://dx.doi.org/10.1007/s11524-006-9108-8 

[35] Wasserman, S. and Faust, K. (1994) Social Network Analysis: Methods and Applications (Structural Analysis in the 
Social Sciences). Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511815478 

[36] Brandes, U. (2008) On Variants of Shortest-Path Betweenness Centrality and Their Generic Computation. Social Net-
works, 30, 136-145. http://dx.doi.org/10.1016/j.socnet.2007.11.001 

[37] Costenbader, E. and Valente, T.W. (2003) The Stability of Centrality Measures When Networks Are Sampled. Social 
Networks, 25, 283-307. http://dx.doi.org/10.1016/S0378-8733(03)00012-1 

[38] Borgatti, S.P. and Everett, M.G. (2006) A Graph-Theoretic Perspective on Centrality. Social Networks, 28, 466-484. 
http://dx.doi.org/10.1016/j.socnet.2005.11.005  

[39] Burt, R.S. (1992) Structural Holes: The Social Structure of Competition. Harvard University Press, Cambridge, MA.  
[40] Wilson, D.B. (1996) Generating Random Spanning Trees More Quickly than the Cover Time. Proceedings of the 28th 

Annual ACM Symposium on Theory of Computing, Philadelphia, 22-24 May 1996, 296-303.  
[41] Broder, A. (1989) Generating Random Spanning Trees. 30th Annual Symposium on Foundations of Computer Science, 

Research Triangle Park, NC, 30 October-1 November 1989, 442-447.  
[42] Bayati, M., Kim, J.H. and Saberi, A. (2010) A Sequential Algorithm for Generating Random Graphs. Algorithmica, 58, 

860-910. http://dx.doi.org/10.1007/s00453-009-9340-1 
[43] Charikar, M., Jansen, K., Reingold, O. and Rolim, J.D.P. (2007) Approximation, Randomization, and Combinatorial 

Optimization. Algorithms and Techniques. 10th International Workshop, APPROX 2007, and 11th International Work- 
shop, RANDOM 2007, Princeton, 20-22 August 2007, Proceedings in Lecture Notes in Computer Science, Springer, 
Berlin. 

[44] Butts, C.T. (2003) Network Inference, Error, and Informant (in) Accuracy: A Bayesian Approach. Social Networks, 25, 
103-140. http://dx.doi.org/10.1016/S0378-8733(02)00038-2 

[45] Marsden, P.V. (2005) Recent Developments in Network Measurement. In: Carrington, P.J., Scott, J. and Wasserman, 
S., Eds., Models and Methods in Social Network Analysis, Cambridge University Press, Cambridge, Vol. 7, 8-30. 

[46] Liu, H.J., Li, J.H., Ha, T. and Li, J. (2012) Assessment of Random Recruitment Assumption in Respondent-Driven 
Sampling in Egocentric Network Data. Social Networking, 1, 13-21. http://dx.doi.org/10.4236/sn.2012.12002 

http://dx.doi.org/10.1016/j.drugpo.2007.11.014
http://dx.doi.org/10.1016/j.drugpo.2008.02.014
http://dx.doi.org/10.1016/j.drugpo.2008.02.013
http://dx.doi.org/10.1080/15265160903585610
http://dx.doi.org/10.1111/j.1467-9531.2007.00188.x
http://dx.doi.org/10.1007/s11524-006-9101-2
http://dx.doi.org/10.1016/j.drugalcdep.2004.10.011
http://dx.doi.org/10.1007/s10461-005-9012-3
http://dx.doi.org/10.1007/s10461-008-9413-1
http://dx.doi.org/10.1007/s11524-006-9108-8
http://dx.doi.org/10.1017/CBO9780511815478
http://dx.doi.org/10.1016/j.socnet.2007.11.001
http://dx.doi.org/10.1016/S0378-8733(03)00012-1
http://dx.doi.org/10.1016/j.socnet.2005.11.005
http://dx.doi.org/10.1007/s00453-009-9340-1
http://dx.doi.org/10.1016/S0378-8733(02)00038-2
http://dx.doi.org/10.4236/sn.2012.12002


http://www.scirp.org/
mailto:submit@scirp.org
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/
http://www.scirp.org/journal/CE/
http://www.scirp.org/journal/ENG/
http://www.scirp.org/journal/FNS/
http://www.scirp.org/journal/Health/
http://www.scirp.org/journal/JCC/
http://www.scirp.org/journal/JCT/
http://www.scirp.org/journal/JEP/
http://www.scirp.org/journal/JMP/
http://www.scirp.org/journal/ME/
http://www.scirp.org/journal/NS/
http://www.scirp.org/journal/PSYCH/

	Estimating Vertex Measures in Social Networks by Sampling Completions of RDS Trees
	Abstract
	Keywords
	1. Introduction
	2. ECSTC
	3. Network-Centric Vertex Measures
	3.1. Effective Size (ES)
	3.2. Betweenness Centrality (BC)
	3.3. Constraint (CON)

	4. Mathematical Model
	4.1. Estimation Process
	4.2. Evaluation Strategies

	5. Experiments
	Experiment Results

	6. Discussion and Future Work
	Acknowledgements
	References



