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Abstract

We study a vacation queueing system with a single server simultaneously dealing with an M/G/1 and an
M/D/1 queue. Two classes of units, priority and non-priority, arrive at the system in two independent Poisson
streams. Under a non-preemptive priority rule, the server provides a general service to the priority units and a
deterministic service to the non-priority units. We further assume that the server may take a vacation of ran-
dom length just after serving the last priority unit present in the system. We obtain steady state queue size
distribution at a random epoch. Corresponding results for some special cases, including the known results of
the M/G/1 and the M/D/1 queues, have been derived.

Keywords: Non Preemptive Priority Queueing System, Modified Server Vacations, Combination of General

Service and Deterministic Service, Steady State, Queue Size Distribution

1. Introduction

Several authors including Cobham [1], Phipps [2],
Schrage [3], Jaiswal [4], Madan [5], Simon [6], Takagi
[7], Choi and Chang [8] have studied priority queues.
These authors and several others have studied single
server or multi-server queues with two or more priority
classes under preemptive or non-preemptive priority rules.
All these authors essentially assume the same service
time distribution for all classes of units with identical or
different service rates. Madan and Abu-Dayyeh [9] deal
with a single server queueing system with two classes of
units, priority units and non-priority units. Under the
non-preemptive queue discipline, they assume that the
service time V of a priority unit has a general distribution
and that of a non—priority unit is deterministic. Thus their
model is a combination of the M/G/1 and M/D/1 queues
and the server keeps switching over these two queues
depending on the class of units present in the system. For
separate references on M/G/1 and M/D/1 queues, the
reader is referred to Bhat [10], Levy and Yechiali [11],
Kleinrock [12], Cohen [13], Lee [14], Gross and Harris
[5], Cox and Miller [16], Tijms [17], Yang and Li [18],
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Bunday [19] and Madan [20,21]. However, in the present
paper, we generalize Madan and Abu-Dayyeh [9] paper
by adding a significant assumption to their model that the
server may take a vacation of random length but we as-
sume that no vacation is allowed if there is even a single
priority unit present in the system. Thus the server may
take an optional vacation of a random length just after
completing the service of the last priority unit present in
the system or else may just continue serving the
non-priority units if present in the system.

We use the supplementary variable technique by in-
troducing two supplementary variables, one for the
elapsed service time of a priority unit and the other for
the elapsed vacation time of the server. Thus, we gener-
alize the results of not only Madan and Abu-Dayyeh [9],
but also some other known results of the M/G/1 and the
M/D/1 queues as particular cases.

2. Assumptions Underlying the
Mathematical Model

Priority and non-priority units arrive at the system in
independent Poisson streams with respective mean arri-
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val rates 4, and A, and form two queues, if the server
is busy. The server must serve all the priority units pre-
sent in the system before taking up a non-priority unit for
service. In other words, there is no priority unit present
in the system at the time of starting service of a non-
priority unit. Further, we assume that the server follows a
non-preemptive priority rule, which means that if one or
more priority units arrive during the service time of a
non-priority unit, the current service of a non-priority
unit is not stopped and a priority unit will be taken up for
service only after the current service of a non-priority
unit is complete. Units are served one by one, on a
“first-come, first-served’ basis within each class of units.
We assume that the service time S of a priority unit is
general with probability density function b(s) and the
distribution function B(S) . Let y(x) dx be the condi-
tional probability of completion of service of a priority
unit during the interval (X, X+ dx] given that the
elapsed service time of such a unitis X, so that

ﬂ(x)z% @1

and, therefore,
b(S):,u(S)exp|:—J,u(X)dX}. (2.2)

The service time of a non-priority unit is deterministic
with constant duration d (>0).

We further assume that as soon as the service of the
last priority unit present in the system is completed, the
server has the option to take a vacation of random length
with probability p, in which case the vacation starts
immediately or else with probability (I1—p) he may
decide to continue serving the non-priorty units present
in the system, if any. In the later case, if there is no
non-priority unit present in the system, the server re-
mains idle in the system waiting for the new units to ar-
rive. The vacation period random variable V is as-
sumed to follow a general probability law with probabil-
ity density function a(v) and the distribution function
A(v). Let S(x) dx be the conditional probability of
completion of server’s vacation during the interval
(X,X+dx] given that the elapsed vacation time of the
server is X, so that

B(x) =1_ag—x()x) 23)
and, therefore,
a(s) :ﬁ(s)exp[—:[,b’(x)dx] 2.4)
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3. Definitions and Notations

We define
P"(]IZ] (x,t): probability that at time t there are m (>0)

priority units and n (>0) non-priority units in the queue
excluding one priority unit in service with elapsed ser-
vice time X.

PV (1) = J P! (x,t)dx : probability that at time t there
0

are m (=0) priority units and n (=0) non-priority units in
the queue excluding one priority unit in service without
regard to the elapsed service time X of a priority unit.

Vin (X,1): probability that at time t the server is on

vacation with elapsed vacation time X and there are m
(>0) priority units and n (>0) non-priority units in the
queue.

Voo (1) = J.Vm‘n (X,t)dx : probability that at time t the
0

server is on vacation and there are m (>0) priority units
and n (>0) non-priority units in the queue, without regard
to the elapsed repair time X.

Po(,i) (t) : probability that at time t there are no priority

units in the system and n (>0) non-priority units in the
queue excluding one non-priority unit in service.

Q(t): probability that at time t there is neither a priority
unit nor a non-priority unit in the system and the server is
idle but available in the system.

I, : probability that i (=0, 1, 2, ) priority units arrive
during the constant service time d of a non-priority unit.

k; : probability that j (= 0, 1, 2, -) non-priority units
arrive during the constant service time d of a non-priority
unit.

Then assuming that the steady state exists, let

t—o

lime,n (t) = .[Vm,n (X)dX =Vm,”; }I_I,E PO(,? (t) = PO(,?
0
and 1limQ(t)=Q
t—oo
denote the corresponding steady state probabilities. In

addition, we define the following steady state probability
generating functions:
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R(Zl):irizli :i[sz; :exp[—@d (1—21)},

K(Zz):ikazj :i{exp(_ﬂ?(—j)(ﬂzd)J ]22’ :exp[—;tzd (l—zz)],
lz| <1, |z,|<1.

4. Steady State Equations Governing the System

Usual probability reasoning based on our mathematical model, leads to the following equations.

% 0 (x)+(4 + 4 + () PO () = AP (x)+ 4P0 (x), m= L1,

P () (4 + &+ ()P ()= AR, (), m2Tn =0,

&Vo,n (X)+ (4 + 4+ B(X))Von (X) = LV, 0 (%), m=0,n21,
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(3.1a)

(3.1b)

(3.1c)

(3.1d)

(3.1e)

(3.19)

(3.1g)

(3.1h)

(3.1i)

(3.1j)

A.1)

4.2)

4.3)

“4.4)

(4.5)

(4.6)

“4.7)
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d

Vo0 (0 (A4 + B()Voo () =0, m=0,n =0, (48)
Q=(Q+R)rk, +(1-p ) [P (x dx+'[V0,0(x)/3(x)dx, (4.9)
0
o =(Q+RY)rk +Rirk, +(1-p) [PV u(x) dx+jv0, ) B(x)dx, (4.10)
0
n+1
:(Q+P0(;>)r0kn+l+ZP({?r0kn+l,j+(1—p)jP0ﬂ1n>+ly dx+j o (X) B(X)dx, n>1. (4.11)
j=1 0
The above equations are to be solved subject to the following boundary conditions:
P (0) = [P, (x) u(x)dx + Z Pk +Qr ik, +ij+1 L(X)B(x)dx, m>1,n>1, (4.12)
0 j=0
R (0)= [ R4 () a(x)dx+RFr, .k, +Qr. K, +ij+10 x) B(x)dx, m>1,n=0, (4.13)
0
P (0)= j Plf:]) (x)y(x)dx+zn: Po(’zj)rlknfj +Qrk, +J‘V1,n (x)B(x)dx, m=0,n>1, (4.14)
0 j=0 0
R (0)= [RY dx+P)rk K+ [V dx, m=0= 4.15
no (0) _[ N (%) e (x)dx+ Pygrk, +Qr, 0+_[ o (X)B(x)dx, m n. (4.15)
0 0
Vo (0)= p[ P (x) e(x)dx, n20 (4.16)

0

5. Steady State Queue Size Distribution at a Random Epoch

We perform the operations i(4.1) z; +(4.2); i(4.3) z; +(4.4) and use Equation (3.1). Thus we obtain

%Rﬁ')(x, 2,)+ (4 + 4+ u()R (x.2,) = AR (%,2,)+ 42,R (x.2,), m 21, “.17)
dip( (x.2,)+ (/11+ﬂ2+/“( )) R ( fzz):ﬂzzzpo(l)()gzz)' (4.18)

Next, we perform Y (4.17)z" +(4.18), use (3.1) and simplify. Then we have,

m=1
d

&P<1>(x,zl,z2)+(zq (1-2))+ 4, (1-2,) + u(x))P" (x,2,,2,) = 0. (4.19)

Similarly, we perform the operations i(4.5) z; +(4.6); i(4.7) z;, +(4.8) and use Equation (3.1). Thus we obtain

%Vm (%.2,) (4 + A+ B(X)V,y (X 2,) = AV (%,2,) + 4,2V, (%,2,), m21, (4.20)
%VO (%.2,)+ (4 + A4+ B(X))V, (%.2,) = L2V, (X.2,). 4.21)

Next, we perform »_(4.20)z" +(4.21), use (3.1) and simplify. Then we have,

m=1

Copyright © 2011 SciRes. AM
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%v(x,zl,zz)Jr(z1 (1-2,)+ 4, (1-2,)+ B(X))V (x.2,,2,) =0. (4.22)

Then we perform (4.9)+(4.10)z, + i(4.1 1)25"" , use (3.1) and simplify. Thus we have
n=1

©

2P (2,) =QrK (z,)+(1- p)f P (%2, ) u(x)dx+P? (z,)r,K (22)—Q+J'V0 (%,2,) B(x)dx, (4.23)
0 0
which again simplifies to

©

(z, —rOK(zz))PO(Q)(zz)z(l— p)TPO(I)(x,zz)y(x)dx+Qr0K(22)—Q+_[V0(x, z,) B(x)dx. (4.24)

0

Now, we shall consider the boundary conditions (4.12) through (4.16) and perform " (4.12)z"" +(4.14)z, ;

m=1

+(R(zl)—r0)ZP0(,2j)knfj +(R(zl)—r0)Z;an, n>1,

(4.26)
And yet again, we perform 3" (4.25)2 +(4.26) , use (3.1) and simplify. This operation yields
=
z,P"(0,2,2,)= T PY (x, zl,zz)y(x)dx—T P (x, zz),u(x)dx+TV (%2, 22),6’(x)dx—ojzv0 (%,2,) B(x)dx
> > > 2 4.27)
+(R(z,)- ro)(PO(z) (zz)+Q)K(zz).
Similarly, on performing i (4.16)z5 and using (3.1), we obtain
g
V, (0,2,) = pT PY (x,2,) a(x)dx. (4.28)
0
Now, we integrate (4.19) from 0 to X and obtain
P (x,2,.2,)= P (0.2, Zz)exp{—ﬂq (1-2,)x— 4, (1 zz)x—jy(t)dt} , (4.29)
o
where P"(0,2,,2,) is given by (4.27).
Similarly, on integrating, (4.22) gives
V(x,zl,zz):V(0,zl,zz)exp{—/ll(1—zl)x—/tz(l—zz)x—iﬂ(t)dt}. (4.30)
However, by its definition, V (0,2,,,) =V, (0,2,) and, therefore, (4.30) is re-written as
V(%2,.2,) =V, (0, zz)exp{—ﬂq(l—zl)x—/lz(l—zz)x—iﬁ(t)dt}. @31)
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796 K. C. MADAN

where V,(0,2,) is given by (4.28).
Once again integrating (4.29) and (4.31) with respect to X by parts and using (2.2) and (2.4), we have

1-B"| 4 (1- 1-
PY(2.2,)=P"(0,2,2,) A(lmz)+ 4 (122, : (432)
A4 (1_21)"'12(1_22)
1-V'[ 4 (1-2)+4 (1-2
V(z,2,)=V,(0,z,) LA (1-2.)] , (4.33)
/11(1 Zl)+/?'z (l_ 2)
where
B [/11 1-2)+ 4 (1-2 )] = J'ef[ﬂ‘(l*z')MZ(l*ZZ)]dB (x) is the LST of the service time of a priority unit and
0
Vi[4(-2)+4(1-2,)]= jef[/l‘(l*z‘)%(lfzzﬂdv (x) is the LST of the server’s vacation time respectively.
0
Now, Equation (4.18) can be re-written as
d
&Po(l) (%,2,)+(4 + 2 (1-2,)+ (X)) R (x,2,) = 0.
which, on integration, gives
PY (x,2,)=P" (0,2 )exp{ aox=2, (1= zz)x—jy(t)dt}. (4.34)
0
and (4.21) yields
X
V, (x,2,) =V, (0,2 )exp{ Ax=2, (1= )x—jﬁ(t)dt}. (4.35)
0
Next, we shall determine the integrals of Equations (4.24), (4.27) and (4.28).

Then we multiply Equations (4.29) and (4.34) by
,u(x) , integrate by parts with respect to X and use equa-
tion (2.2). Thus we obtain

IP (%.2,.2,) u(x)dx, [P (x.2,)p(x)dx and

0
JVO (X,2z,) u(x)dx which appear in the right hand sides
0

P (x,2,.2,) u(x)dx =B"[ 4 (1-2)+ 4, (1-2,)]P" (0,2,,2,), (4.36)

o —38

P (%,2,) p(x)dx =B [ 4 + 4, (1-2,) | R (4.37)

S =38

Similarly, we multiply Equations (4.31) and (4.35) by S ( X) , integrate by parts with respect to X and obtain

0

[V (%.2,,2,) B(x)dx=V"[ 4 (1-2,)+ 4 (1-2,) ]V, (0,2,) (4.38)

0

©

Vo (%.2,) B(X)dx=V"[ 4 +4 (1-2,) [V, (0.2,). (4.39)

Using Equations (4.36) to (4.39) into Equations (4.24), (4.27) and (4.28), we obtain

(2,-1K(2,)) PP (2,) =(1-p) B[4 + 4 (1-2,) [RV (0,2,) + QK (2,) -Q+V ™ [ 4 + 4, (1-2,) [V, (0,2,) (4.40)

Copyright © 2011 SciRes. AM
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2PV (0,2,,2,) =B [4(1-2)+ 4 (1-2,)]P" (0,2,,2,)-B"[4, + 4, (1-2,) |R" (0.2,)

V4 (1-2)+ 4, (1-2,) [V, (0.2,) -V [ 4 + 4, (1-2,) ]V, (Oz) (4.41)
+(R(z,)—r0)(P0 (22)+Q) (z,).
Vo (0.2,)= B[4 + 4 (1-2,) R (0.2,) (4.42)
Next, we substitute the value of VO(O,zz) from R(z) by e and K(z,) by ™0 from

Equation (4.42) into Equations (4.40) and (4.41), replace (3.1f) and (3.1g) and simplify. We obtain
(z2 - roe“zd(“zz))PO(z) (z)=[(1-p)+ PV [4 + 4 (1-2,)]|B' [4 + 4 (1-2,) |R"(0.2,) +Qre *"™) —-Q  (4.43)

[2-B"[4(1-2)+4 (1-2,)]]P" (0.2.2,)
=B [4+4(1-2,)|R"(0,2,)+ pB' [ 4 + 4, (1-2,) V' [ 4 (1-2)+ 4 (1-2,) | RV (0,2, (4.44)
8 [ 2 (12 [ 2 (-2 JR (02 (e ) (B2 >+o>
Now, substituting for P") (0,2,,2,) from Equation (4.44) into Equation (4.32), we have
ST e ey
(2 -84 (-2)+4(1-2)])

1-B[4 (1-2)+ 4 (1-2,)] 4 (1-2 z
[ S IR ENIL LY

P(l)(znzz):

L al-z)+a(1-2
(z -B'[A4(1-2)+ 4 (-1, )]) was)
1-B'[4(1-2)+ A4 (1-2,)] e e '
( e J+%O—a) j@s[% 2 (=) [A(1-2)+ & (1-2,)]RY (0.2,))

(z-B[4(1-2)+4(1-2,)])

1-B[4(1-2)+ A4 (1-2,)]
[ A(1-z7)+4(1-2,) J<pB [’11+/12 1-z ]V [ﬂq+,12 1-2, ]P >

(2-B[4(1-2)+4(1-2,)])

We have yet to determine the 3 unknowns Po(l) (0,z,),  right hand side of (4.45) has one zero inside or on the

PO(Z)(ZZ) and Q appearing in the numerator of the right unit circle |Zl| =1. Let this zero be denoted as « .
hand side of (4.45). For this purpose, we proceed as fol- Therefore, the numerator of the right side of (4.45) must
lows. vanish for this zero giving

It can be easily shown that the denominator of the

<(e—41d(l-a)_r0)(|:>o<2>( )+ Q) ~Aod ”2> <B [21 +4(1 ]P >
<pB [+ 4 (1-2,) V' [A(1-a)+ 4 (1-2,) ] > (4.46)
<pB [4+24,(1-2,) V' [4 +4,(1-2,)]R" (0,2 )> 0.
Now, we solve Equations (4.43) and (4.46) for the two unknowns P (0,z,) and P”(z,). Thus we obtain

ohdli-a) _ ) o-d(-n) (1 _, Q
qwgg:( ) ) (447)

D(z)

Copyright © 2011 SciRes. AM
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[(1-0)+ B[4+ A (1)) (1 e 000 ) 0

|4+ -2, Q
B'lA 4 (1-2)] —[(1+pV*[ﬂq(l—zl)ﬁtﬂz(l—zz)]—pV*[21+/12(1—22)H [1—r0e*‘2"(“2)]

p —
o) 5()
(4.48)
where D(z) in Equations (4.47) and (4.48) is the common denominator given by
=B'[ 4+ 4 (1-2)]([(1= )+ PV T4 + 4 (1-2) ][ 1, ] o
“[a+pv [ (1-2)+ 4, (1-2,)]-pV 4 + 4, (12, )ﬂ[z2 - roe‘*zd“*z)])
Then, we substitute for P\" (0,z,) and P (z,) maining unknown Q.
from (4.47) and (4.48) into Equation (4.45) giving us Using L’ Hopital’s rule and proceeding as in Madan
pt (Zl, Zz) . Finally, we shall use the normalizing condi- and Aby-Dayyeah (2003), we obtain
tion P (1,1)+P?(1)+Q=1 to determine the only re-
o [1-2 ((E(S)+ PE(V))](1-4,d) 450
7 (E(S)+ PE(V))(1-2d)+[1-4 (E($)+ PE(V)) ]
where E(S) is the mean service time of a priority unit and that the server is idle, we have completely determined
E(V) is the mean vacation time of the server. PY (z,2,).
Having thus determined the value of Q, the probability Further, system’s utilization factor is given by
g ASE(S)+ PEV))(1- 201 ((E(S)+ PEW))(:0) s

4d(E(S)+ pE(V))(1-Ad)+[1-4 (E(S)+ pE(V))]
The stability condition, under which the steady state exists, emerges from (4.50 and (4.51)). This condition is given
by
< Ad((E(S)+ PE(V))(1-4d)[1-4 ((E(S)+ pE (V))](Ad
Ad(E(8)+pE(V))(1-2d)+[1-4 (E(S)+ DE(V))]
)

Note that (4.52) essentially implies that 4, (E S + pE V <1 and A4,d <1 should jointly hold for the steady state
to exist. This is also intuitively true.

(4.52)

6. Particular Cases

Case 1: If there are no server vacations, then we let p = 0 in the above results (4.45) to (4.52) and obtain

1-B Al-2)+4(1-1, —4d(1-7 ot (1-2,
( ,11[(1_(21)_’_)/12(1_(22) )]}<(e ( )_ro)(p()(22)+Q) )>

0 (z,2,)= .
PY(2,2,) (Z B[4 (1-2)+4(1-2,)]) “5)
1-B'[4(1-2)+ 4 (1-2,)] A (1 |
_{ A (1- 2)%(1— 2,) ]<B [ 4 li-2)]R" (01)
(21_8*[/11(1_21)"'/12(1_22)])
<(e_41d(1_a)_r0)( (2 )+Q) yd lzz> < Th+a(-2, :|p > (4.54)

Copyright © 2011 SciRes. AM
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~xd(1-a) ~2d((1-22) (1 _
P (0,2) = (e l ro)e E(1-2,)Q 4.55)
B* [31 +4, (1— z, )]([zz — roe-zzd(l-zz)])
B[4 +4 (-2 <r _ o hd(a) | A0(-22) [ g d(-22) >Q
PO(Z)(ZZ)z |:;i1 /12( 2)] (0 € )e |: o€ ] (4.56)

We further obtain Q the steady state probability that
thw server is idle as

_ [1-4E(S)](1-4,d)
AdE(S)(1-2,d)+[1-24E(S)]

where E(S) is the mean service time of a priority unit.
The utilization factor of the system is given by

_1-Q= AGE(S)(1-4d)[1-4E(S) (%)
T T T AdE(S) (1-Ad ) +[1- 4E(9)]

The stability condition, under which the steady state
exists, emerges from (4.57 and (4.58). This condition is
given by

<zldE(s)(l—/gd)[1—45(5)](@)
AdE(S)(1-4,d)+[1- 4E(S)]

All results in (4.53) to (4.59) agree with the results of
Madan and Abu-Dayyeah [15].

We may point out that with suitable substitutions, the
main results of this paper will reduce to many other par-
ticular cases including a combination of M/E,/l and
M/D/1 queues, a combination of M/M/1 and M/D/1
queues, the case when no priority units arrive at the sys-
tem and the case when no non-priority units arrive at the
system. Further, with p = 0, the results of all the particu-
lar cases of this paper agree with the corresponding par-
ticular cases of Madan and Abu-Dayyeah [9].

Q

(4.57)

(4.58)

<l. (4.59)

7. References

[1] A. Cobham, “Priority Assignments in Waiting Line Pro-
blems,” Operions Research, Vol. 2, No. 1, 1954, pp.
70-76. doi:10.1287/opre.2.1.70

[2] T.E. Phipps, “Machine Repair as a Priority Waiting Line
Problem,” Operations Research, Vol. 4, No. 1, 1956, pp.
76-85. doi:10.1287/opre.4.1.76

[31 L. E. Schrage, “The Queue M/G/1 with Feedback to
Lower Priority Queues,” Management Science, Vol. 13,
No. 7, 1967, pp. 466-474. doi:10.1287/mnsc.13.7.466

[4] N. K. Jaiswal, “Priority Queues,” Academic Press, New
York, 1968.

[5] K. C. Madan, “A Priority Queueing System with Service
Interruptions,” Statistica Neerlandica, Vol. 27, No. 3,

Copyright © 2011 SciRes.

B'[4+4 (-2 )]([z2 —re ) D

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

1973, pp. 115-123.
doi:10.1111/1.1467-9574.1973.tb00217.x

B. Simon, “Priorty Queues with Feedback,” Journal of
the Association for Computing Machinery, Vol. 31, No. 1,
1984, pp. 134-149.

H. Takagi, “Vacation and Priority Systems,” Queueing
Analysis, Vol. 1, Amsterdam, 1991.

B. D. Choi, and Y. Chang, “Single Server Retrial Queues
with Priority Calls,” Mathematical and Computer Mod-
eling Vol. 30, No. 3-4, 1999, pp. 7-32.
doi:10.1016/S0895-7177(99)00129-6

K. C. Madan and W. Abu-Dayyeah, “On a Combination
of M/G/1 and M/D/1 Queues in Non-Preemptive Priority
Queueing System,” Far East Journal of Theoretical Sta-
tistics, Vol. 10, No. 2, 2003, pp. 133-146.

U. N. Bhat, “Elements of Applied Stochastic Processes,”
Wiley, New York, 1972.

Y. Levy and U. Yechiali, “Utilization of Idle Time in an
M/G/1 Queueing System,” Management Science, Vol. 22,
No. 2, 1975, pp. 202-211. doi:10.1287/mnsc.22.2.202

L. Kleinrock, “Queueing Systems, Vol. 2, Computer Ap-
plications,” Wiley, New York, 1976.

J. W. Cohen, “The Single Server Queue,” 2nd Edition,
North-Holland, Amsterdam, 1982.

T. T. Lee, “M/G/1/N Queue with Vacation Times and
Exhaustive Service Discipline,” Operations Research,
Vol. 32, No. 4, 1984, pp. 774-786.
doi:10.1287/opre.32.4.774

D. Gross and C. M. Harris, “Fundamentals of Queueing
Theory,” 2nd Edition, Wiley, New York, 1985.

D. R. Cox and H. D. Miller, “The Theory of Stochastic
Processes,” Chapman and Hall, London, 1994.

H. C. Tijms, “Stochastic Models: An Algorithmic Ap-
proach,” Wiley, New York, 1994.

T. Yang and H. Li, “The M/G/1 Retrial Queue with the
Server Subject to Starting Failures,” Queueing Systems,
Vol. 16, No. 1-2, 1994, pp. 83-96.
doi:10.1007/BF01158950

B. D. Bunday, “Basic Queueing Theory,” 2nd Edition,
Edward Arnold, Melbourne, 1995.

K. C. Madan, “An M/G/1 Queue with Optional Determi-
nistic Server Vacations,” Metron, Vol. 57, No. 3-4, 1999,
pp- 83-95.

K. C. Madan, “An M/G/1 Queue with Second Optional
Service,” Queueing Systems, Vol. 34, No. 1-4, 2000, pp.
37-46. doi:10.1023/A:1019144716929

AM


http://dx.doi.org/10.1287/opre.2.1.70
http://dx.doi.org/10.1287/opre.4.1.76
http://dx.doi.org/10.1287/mnsc.13.7.466
http://dx.doi.org/10.1111/j.1467-9574.1973.tb00217.x
http://dx.doi.org/10.1016/S0895-7177(99)00129-6
http://dx.doi.org/10.1287/mnsc.22.2.202
http://dx.doi.org/10.1287/opre.32.4.774
http://dx.doi.org/10.1007/BF01158950

