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Abstract

In this present paper, the Fan sub-equation method is used to construct exact traveling wave solutions of the
(1 + 1) dimensional Kaup-Kupershmidt equation. Many exact traveling wave solutions are successfully ob-
tained, which contain solitary wave solutions, trigonometric function solutions, hyperbolic function solutions
and Jacobian elliptic function periodic solutions with double periods.
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1. Introduction

Nonlinear partial differential equations are widely used
to describe complex phenomena in vary scientific fields
and especially in areas of physics such as plasma, fluid
mechanics, biology, solid state physics, nonlinear optics
and so on. Therefore the investigation of the exact solu-
tions to nonlinear equations plays an important role in
the study of nonlinear science. Up to now, many power-
ful methods to seek for exact solutions to the nonlinear
differential equations have been proposed. Among these
are inverse scattering method [1], Lie group method [2,3],
bifurcation method of dynamical systems [4-6], sine-
cosine method [7,8], tanh function method [9-11], ho-
mogenous balance method [12], Weierstrass elliptic
function method [13].

Recently, Fan [14] presented the Fan sub-equation
method which is a unified algebraic method to obtain
many types of traveling wave solutions based on an aux-
iliary nonlinear ordinary differential equation with con-
stant coefficients called Fan sub-equation. The important
feature of Fan’ method is to, without much extra effort
and without considering the integrability of nonlinear
equations, directly get a series of exact solutions in a
uniform way, which cover all results of tanh function
method, extended function method, F-expansion method,
etc. This method is a powerful technique to symbolically
compute traveling wave solutions of nonlinear evolution
equations and is widely used by many researcher such as
in [15-17] and by the references therein.
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In this paper, we will use the Fan sub-equation method
to discuss the (1+1) dimensional Kaup-Kupershmidt equ-
ation [18] which can be shown in the form

25
—u, +5u’u, +7uxun +5Suu,, +us, =0. (1.1)

2. The Fan Sub-Equation Method

For a given nonlinear partial differential equation

F(uyu, 0 uy 1) =0, 2.1

x>
where u = u(x,t) is an unknown function, F usually is a
polynomial in u(x,z).

To seek exact solutions of (2.1), we outline the Fan
sub-equation method. The main steps are given below
[14].

Step 1. By using the traveling wave transformation

u(x,t):u(g), E=x—ct, (2.2)

where ¢ is a wave speed, we can reduce (2.1) to an ordi-
nary differential equation in the form

F(u,u',u",u"’,- . ) =0, (2.3)

where the prime denotes the derivative with respect to

£.
Step 2. Expand the solution of (2.3) in the form

u(@)=2"ad (&), 2.4)
where a; (i = 1,2, -, n) are constants to be determined
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later and the new variable ¢(§ ) satisfies the following
Fan sub-equation

#(£)=e 25008 (£). 25)

where £==1 and ¢, are real constants.

Step 3. Determine # in (2.4) by substituting (2.4) and
(2.5) into (2.3) and balancing the highest order derivative
terms with the highest order nonlinear terms.

Step 4. Substituting (2.4) and (2.5) into (2.3) again and

1
collecting all coefficients like ¢ (ijo c;¢’ ) (I=0,1;
k=0, 1, -, n), then setting these coefficients to zero will
give a set of algebraic equations with respect to a; (i =
1,2, -+, n) and c.

Step 5. Solve these algebraic equations to obtain ¢ and
a; . Substituting these results into (2.4) yields to the gen-
eral form of traveling wave solutions.

Step 6. For each solution to (2.5) which depends on
the special conditions chosen for ¢;, it follows from (2.4)
that the corresponding exact traveling wave solution of
(2.1) can be constructed.

3. Exact Solutions for the (1 + 1) Dimensional
Kaup-Kupershmidt Equation

The fifth order Kaup-Kupershmidt Equation (1.1) is one
of the solitonic equations related to the integrable cases
of the Henon-Heiles system and belongs to the com-
pletely integrable hierarchy of higher order KdV equa-
tions. Moreover the equation has infinite sets of conser-
vation laws [19-22]. Let us find the exact traveling wave
solutions of the (1 + 1) dimensional Kaup-Kupershmidt
equation by using the Fan sub-equation method.

The traveling wave transformation (2.2) permits us to
reduce (1.1) to an ODE in the form

cu'+5u2u'+2—25u’u"+5uu"’+u(5) =0. (3.1)

According to Steps 1 and 2 in Section 2, by balancing
u® and w’u' in (3.1), we obtain n + 3 = 37 — 1 and
therefore give n = 2. Thus we can suppose that (3.1) has
the following formal solutions

u(§)=a,+ap(&)+ad ($), (3.2)

where ¢(&) satisfies (2.5).
Substituting (3.2) and (2.5) into (3.1), collecting all

terms with the same power in ¢" /ijo ¢’ (0<k<5),

then setting all their coefficients to zero yields a set of
simultaneous algebraic equations omitted here for the
sake of brevity. Solving these algebraic equations with
the help of Maple, we get the following two sets of solu-
tions.
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1) The first set of parameters is given by

3c; —16c,c,

¢ =0,a =3, a=—c,a, = R
1 2 4 1 2 3 0 16C4
2 3 4 2.2 3-3)
oo 240c,c3c, +768¢c,c;, —45¢c; —256¢;¢;
256¢; ’
where ¢, ¢,, ¢;, ¢, #0 are arbitrary constants.
2) The second set of parameters is given by
¢ (4e,e,—c2
¢ :3(2—;3)’ a, = —24c,,
8c;
3¢ -16
a,=—12¢,, a, =2 2% (3.4)
2c,
11(144c,¢5¢, = 21c; +768¢,c; —256¢3c; )
c= ,
16¢;

where ¢, ¢,, ¢;, ¢, #0 are arbitrary constants.

We may obtain many kinds of exact solutions de-
pending on the special values chosen for c;.

Case1.1f ¢, =¢,=¢;=0,¢,<0 and ¢, >0, Equa-
tion (2.5) admits a triangle solution

¢(§)=\/% sec(@f). (3.5)

Substituting (3.5) along with (3.3) and (3.4) into (3.2)
respectively yields two triangle solutions of (1.1)

u, (x,t) =—c, +3c, sec’ [\/;(x+czzt)] (3.6)

and
uy (x,1) = =8¢, +24¢, sec’ [ ¢, (x+176¢31) | (3.7)

with ¢, < 0 being an arbitrary constant.
2

Case 2. If 00:40—2, ¢=¢=0,¢,>0 and ¢, >0,
G

we can find two periodic solutions of (2.5)

¢(§)zi\/§tan(\/%§} (3.8)

Substituting (3.8), (3.3) and (3.4) into (3.2) respec-
tively yields two triangle solutions of (1.1)

i 2
uy (x,1)=—c, _%Cz tan’ \/%(x+%tj:| (3.9

u, (x,t)=—8¢c, —12c, tan’ \/%(x+44c§t)} (3.10)

and

with ¢, > 0 being an arbitrary constant.
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Case 3. For ¢, =¢, =¢;=0,¢,>0, ¢, <0, we can
gain the following hyperbolic function solution to (2.5)

¢(§) =\/%sech(\/g§).

Similarly, we obtain two peak-shaped solitary wave
solutions of (1.1)

us (x,) = —c, +3c, sech? [\/Z(xﬂ:;tﬂ

and
1 (x,1) = =8¢, +24c, sech’ | Je, (v +176¢t) | (3.13)

with ¢, > 0 being an arbitrary constant.

To show the physical insight of these solitary wave
solutions, here we take us as an example. Figure 1 shows
the wave plot of the solution us with ¢, = 1 and the initial
status of us. Clearly the solution is a bell-shaped solitary
wave with peak form and describes the traveling of wave

in the negative x-direction.
2
¢
Case 4. For ¢, =—*,c, =¢, =0,¢, <0,c, >0, Equa-
4c,

(3.11)

(3.12)

tion (2.5) admits two following hyperbolic function solu-

tions
,_Cz )

This in turn gives two peak-shaped solitary wave solu-
tions of (1.1)

(3.14)

2
u7(x,t):—c2+%cztanh2 —%()H-%tﬂ (3.15)

and

ug (x,t) = =8¢, +12¢, tanh’ /—%(x+44c§z)} (3.16)

with ¢, < 0 being an arbitrary constant.
Case 5. For ¢,=¢ =0,c, =£2\/c,c,,c, >0,¢c, >0,
one can find the following hyperbolic solutions of (2.5)

__1 g £
¢(§)_+5\E[1+tanh[ > 5” (3.17)

Similar to Case 1, (1.1) has two peak-shaped solitary
wave solutions.

U, (x,t):%z—%%tanh2 {%(16)«14—02%) (3.18)
and
Uy (x,) = 4c, — 6¢, tanh? [g(ﬁncgt) (3.19)
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with ¢, > 0 being an arbitrary constant.
ok (k1)

c\p;
¢, <0, Equation (2.5) admits the following Jacobian
elliptic function solution

¢(§)=,/;L;cn[ ;—Zf,kl}

where p, =2k’ —1 and k, e(x/z/2,1) is an arbitrary
constant.

This in turn gives the following two doubly periodic
wave solution of (1.1)

3 kZ 2
uy, (x,0)=—c, + 2% cn? c—z(x+ q1c22 t],k1 (3.21)
b D D
and

2 2
u, (x,1) =8¢, JrMcn2 l: c—z[x+176#t}kl},
P P P

Case 6. For ¢, = ,¢=¢=0,¢c,>0 and

(3.20)

(3.22)
where ¢, =k' —kl +1.

To demonstrate the physical insight of the new solu-
tions, we take u;; as an example. Obviously the solution
is a Jacobi elliptic function with two periods and de-
scribes the traveling of wave in the negative x-direction
with the wave velocity cZg,/p? . Figure 2 shows the
wave plot of the solution u;; to (1.1) with ¢, = 0.5, k; =
0.9 and the initial status of u;.
A\l-k3

2
Cq4Po

we can obtain one Jacobian elliptic function solution of

2.5)
2 dn| [k, |,
C4Dy P,
where p, =2—k; and k, €(0,1) is an arbitrary con-
stant.

Thus we can give two corresponding periodic travel-
ing wave solutions of (1.1)

2
u,3(x,t)=—c2+3ﬁdn2{ C—Z[H‘bcj tj,kz} (3.24)

Case 7. For ¢, = ,0,=03=0,c,>0,¢4 <0,

#(&)= (3.23)

P> )2 P,
and
24 176g,c3
uy (x,0)=—8c, + 2 4n? c—2(x+#t],k2 ,
P, P, 123
(3.25)
where ¢, =kj —k; +1.
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Figure 2. The plot of the periodic traveling wave solution uy; to (1.1) with ¢, = 0.5, k; = 0.9 and the initial status of uy;.

2

k

Case 8. For ¢, =22 ¢ =¢, =0,¢, <0,¢, >0, (2.5)
CaPs

admits two kinds of Jacobian elliptic doubly periodic

wave solutions

#(&)=+ —ﬁsn[ /—C—Zg,k3]
C4Ds Ps

where p;=1+k; and k, €(0,1) is an arbitrary con-
stant.

This in turn gives two corresponding periodic travel-
ing wave solutions of (1.1)

2 2
s (x,t)=—c, + 36k 2| ol sy ‘13‘;2 t |,k
b P b

(3.27)

(3.26)

and
Uy (x,t)

24c,k} 176¢,c2 3.28
=—8¢, + 2705 2 —C—Z[x+#tj,k3 ,( )
P P Dy

where ¢, =ki —k; +1.

Copyright © 2011 SciRes.

4. Conclusions and Summary

In this paper, the Fan sub-equation method has been
successfully applied to obtain many traveling wave solu-
tions of the (I + 1) dimensional Kaup-Kupershmidt
equation. These rich results show that this method is ef-
fective and simple and a lot of solutions can be obtained
in the same time. It is also a promising method to solve
other nonlinear equations.
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