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Abstract 
 
Numerical solutions of the modified equal width wave equation are obtained by using collocation method 
with septic B-spline finite elements with three different linearization techniques. The motion of a single soli-
tary wave, interaction of two solitary waves and birth of solitons are studied using the proposed method. 
Accuracy of the method is discussed by computing the numerical conserved laws error norms L2 and L∞. The 
numerical results show that the present method is a remarkably successful numerical technique for solving 
the MEW equation. A linear stability analysis shows that this numerical scheme, based on a Crank Nicolson 
approximation in time, is unconditionally stable. 
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1. Introduction 
 
This study is concerned with the numerical solution, us-
ing septic B-spline functions in collocation method, of 
the modified equal width wave (MEW) equation, which 
was introduced by Morrison et al. [1] as a model equa-
tion to describe the nonlinear dispersive waves. Few 
analytical solutions of the MEW equation are known. 
Thus numerical solutions of the MEW equation can be 
important and comparison between analytic solution can 
be made. Many methods have been proposed to solve the 
EW and MEW equation. Gardner and Gardner solved the 
EW equation with the Galerkin’s method using cubic 
B-splines as a trial and test function [2,3] and a Pet-
rov-Galerkin method using quadratic B-spline element 
[4]. Zaki considered the solitary wave interactions for the 
MEW equation by Petrov-Galerkin method using quintic 
B-spline finite elements [5] and obtained the numerical 
solution of the EW equation by using least-squares 
method [6]. Wazwaz investigated the MEW equation and 
two of its variants by the tanh and the sine-cosine meth-
ods [7]. Esen applied a lumped Galerkin method based 
on quadratic B-spline finite element has been used for 
solving the EW and MEW equation [8,9]. Saka proposed 
algorithms for the numerical solution of the MEW equa-
tion using quintic B-spline collocation method [10]. A 
solution based on a collocation method incorporated cu-
bic B-splines is investigated by Dağ and Saka [11]. 

Variational iteration method is introduced to solve the 
MEW equation by Junfeng Lu [12]. Hamdi et al. [13] 
derived exact solitary wave solutions of the generalized 
EW equation using Maple software. D. J. Evans and K. 
R. Raslan [14] studied the generalized EW equation by 
using collocation method based on quadratic B-splines to 
obtain the numerical solutions of a single solitary waves, 
and the birth of solitons. 

The modified equal width wave equation which is as a 
model for non-linear dispersive waves, considered here 
has the normalized form [1] 

23t x xxtU U U U 0                (1) 

with the physical boundary conditions  as 
, where  is time and 

0U 
x   t x  is the space coordi-
nate,   is a positive parameter. For this study bound-
ary conditions are chosen 
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and the initial condition as 

   ,0 ,   U x f x a x b    

where  f x  is a localized disturbance inside the con-
sidered interval. 
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2. Septic B-Spline Collocation Method 
 
The interval  ,a b  is partitioned into uniformly sized 
finite elements by the knots ix  such that  

0 1 Na x x x b     and . The septic   1i ih x x  
B-splines  i x , (i= −3(1) N + 3), at the knots ix  are  

defined over the interval  ,a b  as [15], 
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The set of splines,       3 2 3, , , Nx x     x  forms  

a basis for functions defined over  ,a b . The numerical 
solution  to  takes the form   ,NU x t  ,U x t 

i    
3
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where i  are unknown, time dependent quantities to be  

determined from the boundary and collocation conditions 
and  i x  are septic B-spline. Each septic B-spline 
covers 8 elements thus each element  1,i ix x   is cov-
ered by 8 splines. A typical finite interval  1,i ix x   is 
mapped to the interval [0, 1] by a local coordinate trans-
formation defined by ih x x   , 0 1  . Therefore 
septic B-splines (3) in terms of   over [0, 1] can be 
given as 
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Since all splines apart from  
     3 2 3, , ,i i ix x     x  are zero over the element [0, 

1] . For the problem the finite elements are identified 

with the interval  1,i ix x  . Using the nodal values 
, ,i i iU U U   and iU   are given in terms of the parameter 

i  by:  

 
 
 

3 2 1 1 2

3 2 1 1 2 3
2

3 2 1 1 2 3
3

3 2 1 1 2 3

120 1191 2416 1191 120 ,

7 56 245 245 56 ,

42 24 15 80 15 24 ,

210 8 19 19 8 ,

i i i i i i i i

i i i i i i i

i i i i i i i i

i i i i i i i

U

hU

h U

h U

3      
     
      
     

    

     

     

     

      
      
      
     



                   (6) 

 
and the variation of  over the element U 1,i ix x   is 
given by 
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We now identify the collocation points with the knots 
and use (6) to evaluate i  and its space derivatives in 
(1). This leads to a set of ordinary differential equations 
f the form 

U

o    
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If time parameters i  and its time derivatives i  in (7) are discretized by the Crank-Nicolson formula and usual 
finite difference approximation, respectively: 
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We obtain a recurrence relationship between two time levels n and n + 1 relating two unknown parameters 1n
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For the first linearization, we suppose that the quantity 
 in the non-linear term U 2

xU U  to be locally constant. 
This is equivalent to assuming that in (7) all iZ  are 
equal to a local constant. Furthermore, we can write the 
nonlinear term 

2
x xU U UUU                (9) 

and apply the Rubin and Graves [16] linearization tech-
nique  
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to the xUU  term in (8) and we can also apply the 
Caldwell and Smith [17] linearization technique  
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to the xUU  term in (8). The system (8) consists of 
 linear equation in  unknowns  

2 3 . To obtain a unique solution to 
this system we need 6 additional constraints. These are 
obtained from the boundary conditions and can be used 
to eliminate 
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3. Initial State 
 
To start evolution of the vector of parameters n , 0  
can be determined from the boundary conditions and the 
initial condition  ,0U x . So we can rewrite approxima-
tion (4) for the initial condition 
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 ,0U x  at the knots ix .  
2) the first, second and third derivatives of the ap-
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set (2) which then becomes a matrix equation for the 

 unknowns  of the form 1N 
1

 0 1, , δ
nnA B  . The matrices A  and are septa-dia- 

gonal  matrices and so are easily 
solved by septa-diagonal algorithm. 

B
  1 N   1N

The above conditions lead to 0K b   matrix equa-
tion, which is solved by using a variant of Thomas algo-
rithm.  
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4. Stability Analysis 
 
The stability analysis will be based on the von Neumann 
theory in which the growth factor of a typical Fourier 
mode  
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The modulus of g  is 1 therefore the linearised 
scheme is unconditionally stable. 
 
5. Numerical Examples and Results 
 
All computations were executed on a pentium 4PC in the 
Fortran code using double precision arithmetic. The 
conservation properties of (1) will be examined by cal-
culating the lowest three invariants given as 
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For this problem, we consider Equation (1) with the 
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The analytical values of invariants are obtained from 
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For the numerical simulation of the motion of a single 

 wave, we have used the parameters 0.1h
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 constant during the computer run for the t  
second linearization techn  we can not say the 
same for the third linearization technique. For the first 
and second linearization, the numerical values of invari-
ants are 1 2 30.7853966, 0.1667641, 0.0052083C C C    
and for the third linearization numerical values of invari-
ants are 1 2 30.7855405, 0.16676 , 0.0052144C C C    
at the 20t  . Figure 1 shows that the proposed method 
perform the motion of propagation of a solitary wave 
satisfactorily, which moved to the right at a constant 
speed and preserved its amplitude and shape with in-  

, ,C C C  

g the prese

L  and 

iques but

 time

od with 

the

firs

Ta

alm

41

 
7. Interaction of Two Solitary Waves 
 
For this problem, we consider (1) with boundary condi-
tions  as , interaction of two positive 
solitary waves is studied by using the initial condition  

0U  x  

   
2

1

,0 sec .j j
j

U x A h k x x


     

where 1 .k    
We first used the parameters  0.1,  0.025,h t  

1 21,  1,  0.5,A A     1 215,x  30x   through the in- 
terval 0 80x   which is used by Zaki [5]. These pa-
rameters provide solitary waves of magnitudes 1 and 0.5  

 

t   

Table 1. In

1C  

variant

Lineerization 

s and error n

2C

orms for single solitary waves. 

3C  3

2 10L   310L   

0 0.7853966 0.1666664 0.0052083 0.0000000 0.0000000 

5 0.7853966 0.166666

10 0.7853966 0.1666664First 

4 0.0052083 0.0000979 0.0000622 

 0.0052083 0.0002113 0.0001368 

03432 0.0002251 

1666664 0.0052083 0.0004969 0.0003309 

15

20

20 [5] 

20 [14] 

20 [18] 

20 [19] 

 

0.7853966 0.

Second 

 

0.7853966 0.1666664 0.0052083 0.00

 

0 0.7853966 0.1666664 0.0052083 0.0000000 0.0000000 

5 0.7853966 0.1666664 0.0052083 0.0000972 0.0000627 

10 0.7853966 0.1666664 0.0052083 0.0002102 0.00001378 

15 0.7853966 0.1666664 0.0052083 0.0003419 0.0002272 

20 0.7853966 0.1666664 0.0052083 0.0004957 0.0003331 

0 0.7853966 0.1666664 0.0052083 0.0000000 0.0000000 

5 0.7854325 0.1666908 0.0052098 0.0237333 0.0228190 

10 0.7854685 0.1667152 0.0052114 0.0480311 0.0454089 

15 0.7855045 0.1667397 0.0052129 0.0734307 0.0678603 

20 

Third 

0.7855405 0.1667641 0.0052144 0.1004249 0.0900579 

0.785397 0.166667 0.005210 0.0034500 0.0020300 

0.7849545 0.1664765 0.0051995 0.2498925 0.2905166 

0.7853977 0.1664735 0.0052083 0.2692812 0.2569972 

− − − 0.1958878 0.1744330 
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Figure 1. The motion of a single solitary wave. 
 
and peak positions of them are located at  and 30. 
The analytical invariants are [l4] 

15x 

 

 

 

1 1 2

2 2
2 1 2

4 4
3 1 2

π 4.7123889,

8
3.3333333,

3
4

1.4166667.
3

Calculation is carried out with t

C A A

C A A

C A A

  

  

  

 

he time step  
 and space step  over the region 

0 . The experime n from
0.025t 

0 8x 
0.1h 

nt was ru  0t   to 
to allow the interaction to t ke place.  

nteraction  
hat at 
of th alle

e 

55t   
shows the i
can be seen t
is on the left 
The larger 
inc
lapping pro
and waves

a
of two positive solitary 

the wave with 
wave with sm

Figure 2
waves. It

larger amplitude 
r amplitude. 

 as tim

5t   
e second 

wave catches up with the smaller one
reases. Interaction started at about time 25t  , over-

cesses occurred between times 25t   and 40 
 started to resume their original shapes after 

time 40t  . For the first and second linearization tech-
niques at 55t  , the amplitude of larger waves is 
1.000149  at the point 44.4x   whereas the amplitude 
of the smaller one is 0.507317 at the point 34.6x  . It 
is found that the absolute difference in amplitude is 

37.3 10  for the smaller wave and 0.149 310  for the 
larger wave for this algorithm. For the third linearization 
technique at 55t  , the amplitude of larger waves is 
0.99593 t the point 44.7x   whereas the amplitude 
of the smaller one is 0.507477  at the point 34.6x

3  a
 . It 

is found that the abso erence in amplitude is 
37.4 10  for the smaller wave and 4  10  for the 

larger wave for this algorithm. In Table 2 we compares 
values invariants of the two solitary waves with results 
from first, second and third linearization. We see from 
the Table 2 that for the first and second linearization 

s, all 3 invaria conserved by less than 

lute diff
3

technique nts are 

59.9 10  
that the conservatio

Table 2. Invaria

during the experiment. Thus we have found 
n quantities are satisfactorily constant 

 
nts for interaction of two solitary wave. 

1 21,  0.5A A   

t Lineerization 1C  2C  3C  

0 4 3.3333294 3.7123733 1.416664

5 4.7123660 3.3333183 1.4166532

15 4.7123494 3.3332959 1.4166308

25 4.7123331 3.3332741 1.4166083

35 4.7123243 3.3335335 1.4165818

45 4.7123127 3.3332470 1.4165824

First 

4.7122960 3.3332247 1.4165605

0 4.7123733 3.3333294 1.4166643

55

15 4.7123602 892 1.4166241

25 4.7123 4 3.3332 03 1.4165 7

Third 

5 4.7123696 3.3333160 1.4166509

3.3332

49 6 94

35 4.7123274 3.3332088 1.4165317

45 4.7123380 3.3332270 1.4165618

55

Second 

4.7123291 3.3332012 1.4165363

0 4.7123733 3.3333294 1.4166643

5 4.7318586 3.3857414 1.4689535

15 4.7738238 3.5004328 1.5869329

25 4.8195659 3.6284390 1.7245060

35 4.8528439 3.7197153 1.8236340

45 4.9055278 3.8734565 2.0013048

55 4.9694524 4.0643034 2.2347812
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Figure 2. Interaction of two solitary waves at different times. 
 
with the proposed algorithm. 

We have also studied the interaction of two solitary 
waves with the following parameters: 

allow the interaction to take place. Figure 3 shows the 
development of the solitary wave interaction. 

As is seen from the Figure 3, at  a wave with 
the negative amplitude is on the left of another wave 
with the positive amplitude. The larger wave with the 
negative amplitude catches up with the smaller one with   

1  , 1 15x  , 
ime step 

≤ x ≤
55

2 30x 
0.02t 

150. The

0t 
, ,  together with t

 
t  from

1 2A  
5 and space ste

xperimen

2 1A  ,
p h

 was run
 = 0.1 in the range 0 

0  to  e  t  t   to 
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Figure 3. Interaction of two solitary waves at different times. 
 
the positive amplitude as the time increases. For the first 
linearization technique at , the amplitude of the 
smaller wave is the point 

 55t 
5  at 0.97469 52.5x  , 

whereas the am r one is
at the point e seco
technique at he sm

is at the point , whereas the ampli-
arger on  at the point 

plitude of t
122.8

, the am

he large
. For th

plitude of t

  
nd linea

 

1.989036
rization 

aller wave
x 

55t  

0.972778  
tude of the l

122.8

52.5x 
e is 1.98 6701

x  . It is found th  difference in am-at the absolute
plitudes is 10.253 10

1133 10
, for the smaller 1  0.272 10

wave and 0.  , 1109 100.  for the larger wave, 
respectively. 
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The analytical invariants by using Equation (1) can be 
found as ,  

he invari-

wellian initial condition breaks up into more solitary 
waves which were drawn in Figures 4(c)-(f) at time 1 23.1415927,  13.3333333C C  

66667 . Table 3 lists the values of t
ants of the two solitary waves with amplitudes 

3 22.66C 
1 2A   , 

d for the
the computer

2 1A  . 
inva

It can be seen that the values obtaine
riants are satisfactorily constant during 

 
 

run. 
 
8. The Maxwellian Initial Condition 
 
As a last study, we consider here is the numerical solu-
tion of the Equation (1) with the Maxwellian initial con-
dition  

  2

,0 e xU x                 (14) 

with the boundary conditions 

       20, 20, 20, 20, 0.x xU t U t U t U t       

As it is known, Maxwellian initial condition (14) the 
behavior of the solution, de ends on the values of p  . 
So we have considered various values for  . For

ases 

 the 
first linearization technique the computations are carried 
out for the c 1,0.5,0.1,0.05,0.02   and 0.005  
which are used in the earlier papers [5,14]. When 

1,0.5   is used as shown Figures 4(a) and (b) at time 
12t   the Maxwellian initial condition does not cause 

development into a clean solitary wave. However with 
smaller valu 0.1es of ,0.05,0.02   and 0.005  Max- 
 

Table 3. Invariants for interaction of two solitary wave. 

1 22,   1A A    

t  Lineerization 1C  2C  3C  

0 −3.1415739 13.3332981 22.6665313

5 −3.1373324 13.3219118 22.6210653

15 −3.1227097 13.2806152 22.4483653

.3589494

−3.0896638 13.1922565 22.0973499

0 −3.1415739 13

13.3196543 22.6120524

15 −3.1325076 13.2805526 22.463773

3.1137210 13.1745553 8880

25 −3.1143337 13.2581754 22First 

35 −3.1060334 13.2359744 22.2706624

45 −3.0978106 13.2140028 22.1834701

55 

.3332981 22.6665313

5 −3.1391704

3

25 −3.1277388 13.2535359 22.3561477

35 −3.1230138 13.2268810 22.2501653

45 −3.1183416 13.2005566 22.1457584

55 

Second 

− 22.042

12t  . The numerical conserved quantities with  
1,0.5,0.1,0.05,0.02   and  are given in Table 4. 

It is observed that the obtained values of the invariants 
remain almost constant during the computer run. 
 
Table 4. Invariants for Maxwellian initial condition, differ-
ent µ. 

 0.005

t    
1C  2C  3C  

0 1.772454 2.506607 0.886227 

3 1.772972 2.506836 0.886561 

6 1.775116 2.512628 0.890240 

 2.514942 0.891795 

12 

1 

1.776698 2.515136 0.891967 

3 

9 1.772451 1.879967 0.886223 

0 1.772454 1. 46 0.886226 

3 1.7724  1.3785 0.8861 4 

6 

9 

0.1 

 

 

 

 

0.05 

0 

 

 

 

 

9 1.72 1.1

12 1.710490 1.162646 0.737751 

9 1.776365

0 1.772454 1.879971 0.886227 

1.772452 1.879970 0.886225 

6 1.772451 1.879968 0.886224 0.5 

12 1.772450 1.879966 0.886222 

3786

20 91 7

1.772368 1.378507 0.886054 

1.772316 1.378424 0.885933 

12 1.772264 1.378340 0.885813 

0 1.772454 1.315980 0.886227 

3 1.772266 1.315654 0.885789 

6 1.771976 1.315150 0.884947 

9 1.771685 1.314648 0.884107 

12 1.771396 1.314147 0.883270 

1.772454 1.278380 0.886227 

3 1.770834 1.275265 0.880933 

6 1.768546 1.271572 0.874402 

9 1.766186 1.266707 0.864400 

12 

0.02 

1.763931 1.262351 0.855782 

0 1.772454 1.259581 0.886227 

3 1.757684 1.254254 0.928815 

6 1.738212 1.227138 0.880527 

2397 71836 0.714373 

0.005
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(a)                               b) 

 
                                (

   
(c)                                                               (d) 

 

   
(e)                                                               (f) 

Figure 4. Maxwellian initial condition, state at time t = 12 (a) µ = 1, (b) µ = 0.5, (c) µ = 0.1, (d) µ = 0.05, (e) µ = 0.02, (f) µ = 
0.005.   
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9. Conclusions 
 
In this study, a numerical solution of the MEW equation 
based on the septic B-spline finite element has been pre-
sented with three different linearization techniques. 
Three test problems are worked out to examine the per-
formance of the algorithms. The performance and accu-
racy of the method were demonstrated by calculating the 
error norms  and  on the motion of a single 
solitary wave. For the first and second linearization tech-
niques, the error norms are sufficiently small and the 
invariants are satisfactorily constant in all computer run. 
The obtained results from the first and the second lin-
earization techniques are almost the same and the com-
puted results show that the present method is a remarka-
bly successful numerical 
quation and can also be efficiently applied to other 

types of non-linear problem. 
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