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Abstract

Numerical solutions of the modified equal width wave equation are obtained by using collocation method
with septic B-spline finite elements with three different linearization techniques. The motion of a single soli-
tary wave, interaction of two solitary waves and birth of solitons are studied using the proposed method.
Accuracy of the method is discussed by computing the numerical conserved laws error norms L, and L. The
numerical results show that the present method is a remarkably successful numerical technique for solving
the MEW equation. A linear stability analysis shows that this numerical scheme, based on a Crank Nicolson

approximation in time, is unconditionally stable.
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1. Introduction

This study is concerned with the numerical solution, us-
ing septic B-spline functions in collocation method, of
the modified equal width wave (MEW) equation, which
was introduced by Morrison et al. [1] as a model equa-
tion to describe the nonlinear dispersive waves. Few
analytical solutions of the MEW equation are known.
Thus numerical solutions of the MEW equation can be
important and comparison between analytic solution can
be made. Many methods have been proposed to solve the
EW and MEW equation. Gardner and Gardner solved the
EW equation with the Galerkin’s method using cubic
B-splines as a trial and test function [2,3] and a Pet-
rov-Galerkin method using quadratic B-spline element
[4]. Zaki considered the solitary wave interactions for the
MEW equation by Petrov-Galerkin method using quintic
B-spline finite elements [5] and obtained the numerical
solution of the EW equation by using least-squares
method [6]. Wazwaz investigated the MEW equation and
two of its variants by the tanh and the sine-cosine meth-
ods [7]. Esen applied a lumped Galerkin method based
on quadratic B-spline finite element has been used for
solving the EW and MEW equation [8,9]. Saka proposed
algorithms for the numerical solution of the MEW equa-
tion using quintic B-spline collocation method [10]. A
solution based on a collocation method incorporated cu-
bic B-splines is investigated by Dag and Saka [11].
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Variational iteration method is introduced to solve the
MEW equation by Junfeng Lu [12]. Hamdi et al. [13]
derived exact solitary wave solutions of the generalized
EW equation using Maple software. D. J. Evans and K.
R. Raslan [14] studied the generalized EW equation by
using collocation method based on quadratic B-splines to
obtain the numerical solutions of a single solitary waves,
and the birth of solitons.

The modified equal width wave equation which is as a
model for non-linear dispersive waves, considered here
has the normalized form [1]

U,+3U°U,-uU,_, =0 (1)

with the physical boundary conditions U —0 as
x — oo, where ¢ is time and x is the space coordi-
nate, u is a positive parameter. For this study bound-
ary conditions are chosen

U(a,t)=0, U(b,t)=0,
U,(a,t)=0, U, (b1)=0, 2)
U, (a,1)=0,U_ (b,t)=0,

and the initial condition as

U(x,O):f(x), a<x<bh

where f (x) is a localized disturbance inside the con-
sidered interval.
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2. Septic B-Spline Collocation Method a=x,<x--<x,=b and h=(x, —x). The septic
The interval [a,b] is partitioned into uniformly sized B-splines 4, (x) » (= =3(1) N+ 3), at the knots x; - are
finite elements by the knots x, such that defined over the interval [a,b] as[15],
(X—xl_4 )7 s xe['xi—4’xi—3]’
(x—x._, )7 —8(x—x_, )7, xe[x s,
(x—xl_4 )7 —8()c—x,._3 )7 +28(x—xl._2 )7 , xXe [x[_z,xl._, ],
| (x—x_, )7 —-8(x—x._; )7 +28(x—x,_, )7 -56(x—x,_, )7 . xelx,x],
$(6) =571 (s =07 =805 =) #2805, =) =560, =), xe[x.x,], ®)
(xl.+4 - x)7 —8()@.+3 - x)7 + 28()@.+2 —x)7 , xe [X,»H,XH;],
(xi+4 —x)7 _S(XM —x)7, xe[xl.ﬂ,xw],
(xl.+4—x)7, xe[xi+3’xi+4]’
0 otherwise.
The set of splines, { 65 (x)s0, (), s ( x)} forms determined from the boundary and collocation conditions

and ¢, (x) are septic B-spline. Each septic B-spline
covers 8 elements thus each element [x,,x,,] is cov-
ered by 8 splines. A typical finite interval [x,,x,,,] is

i+1

a basis for functions defined over [a,b]. The numerical
solution U, (x,t) to U(x,t) takes the form

N+3 mapped to the interval [0, 1] by a local coordinate trans-
Uy (x.t)= Z 5,(1)4,(x) ) formation defined by A& =x-x,, 0<&<1. Therefore
- septic B-splines (3) in terms of & over [0, 1] can be
where &, are unknown, time dependent quantities to be given as

B =1-TE+21E =358 +35£4 —218° +7&£° - ¢

¢, =120—392& + 50487 —280&° +84&° —42£° +7¢7

@, =1191-1715& +315£% + 665&° =315 —105£7 +105¢£° —21&7
$ =2416—1680& + 560 —140&° +35¢7

2 3 4 5 6 7 (5)
@, =1191+1715& +3155° —6655° —315&" +105&° +1055° —35&
B.r =120+392& + 50487 +280¢° —84&° — 4280 +21¢7
B =1+ TE+21E7 +358 +35&4 +218° +7£° 787
¢i+4 = 57‘

Since all splines apart from with the interval [x,,x,,]. Using the nodal values
¢_3(x).¢_,(x), .4, (x) are zero over the element [0, ~ U,,U/, U/ and U, are given in terms of the parameter
1] . For the problem the finite elements are identified o, by:

U, =6.,,+1205,, +11916.,, + 24165, +11915,_, +1205,_, + 5. 5,
hU! =7(6,5+566,, +2456,,, —2455,, —=560,_, - 5,_; ), 6
WU!=42(6,, +246,,, +156,,, —805, +155,, + 245, , +5,,), (
WU"=210(5,,; +85,., ~195,, +195,_, =85, =4, ),
and the variation of U over the element [x[,x,.H] is We now identify the collocation points with the knots
given by and use (6) to evaluate U, and its space derivatives in
3 (1). This leads to a set of ordinary differential equations

=S5

=~ of the form

Copyright © 2011 SciRes. AM
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d.,,+1200, , +11916,

i+3 i+2 i+1

i i+2

7
42458, +249

where
Z,=(s,

i+3

+1200,

i+2

+11916,

i+l

+24165, +11916,_, +1200,_, +6,_, =21+ Z,(3,,; +563,,, + 245,

—2455,, =566, , =0, )
()

i+3 i+2 i+l

+155,,, ~805, +155,, + 245, , +5,,) =0,

+24168,+11915,, +1205, , +5,,)".

If time parameters &, and its time derivatives o, in (7) are discretized by the Crank-Nicolson formula and usual

finite difference approximation, respectively:

1 n n+ S
5,:5(5 +6"), 8, =

5/1+l _ 5n
At

We obtain a recurrence relationship between two time levels 7 and n + 1 relating two unknown parameters &', &

n+1 n+l n+l n+1 n+l n+l n+1
YaOis +Vin0iy T VinOry 70 750 +Vi60iy + V7013

i+3 i+2 i+1

_ n n n
= 770123 T V160122 + 7i50;

i+1

where

®)

+ 70 Va0 Va0, + Va0

vu=(0+EZ -M), y,, =(120+56EZ,—24M ), y,; =(1191+245EZ,—15M ),
Vis = (2416 +80M), 7,5 =(1191-245EZ,—15M ), 7, =(120—56EZ, —24M ),
Vi1 :(

1-EZ,~M) i=0,1,--,N,
21 42

E=""At, M=—p.
2h h2#

For the first linearization, we suppose that the quantity
U in the non-linear term U’U_ to be locally constant.
This is equivalent to assuming that in (7) all Z, are
equal to a local constant. Furthermore, we can write the
nonlinear term

U’U, =UUU, )

and apply the Rubin and Graves [16] linearization tech-
nique

(vu,)" =u™'u, +UU -UTUT (10)

to the UU, term in (8) and we can also apply the
Caldwell and Smith [17] linearization technique

n+l 1

(uu,) —E(U””Ux +U"UI) (11)

to the UU_ term in (8). The system (8) consists of
N +1 linear equationin N +7 unknowns

(65,65, .0y12-0y3 )T. To obtain a unique solution to
this system we need 6 additional constraints. These are
obtained from the boundary conditions and can be used
to eliminate 6,,0,,0, and O,,,,0y,,,0y,; from the
set (2) which then becomes a matrix equation for the
N+1 unknowns &=(8,,8,,8,) of the form
AS6"" = BS" . The matrices 4 and B are septa-dia-
gonal (N+1)x(N+1) matrices and so are easily
solved by septa-diagonal algorithm.

Copyright © 2011 SciRes.

3. Initial State

To start evolution of the vector of parameters 6", &°
can be determined from the boundary conditions and the
initial condition U(x,0). So we can rewrite approxima-
tion (4) for the initial condition

N+3

UN(x,O):f;@(O)Q(x),

where parameters & will be determined. To determine
the parameters &° = (593,592,---,52”,5,?“3) , We require
the initial numerical approximation U, (x,0) to satisfy
the following conditions:

1) it must agree with the exact initial condition
U(x,0) atthe knots ;.

2) the first, second and third derivatives of the ap-
proximate initial condition agree with those of the exact
initial conditions at both ends of the range. These two
conditions can be expressed as:

U, (x,O) =U, (xl.,O), 0<i<N,
Un(0) =0, (5.0) =0

Uy (a,()) =Upu (b,()) =0,

U s (@,0) = Uy, (6,0) = 0.

(12)

The above conditions lead to K&° =5 matrix equa-
tion, which is solved by using a variant of Thomas algo-
rithm.
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[ 1536 2712 768 24
82731 210568.5 104796 10063.5 1
81 81 81 81
9600 96597 195768 96474 120 |
81 81 81 81
K- 1 120 1191 2416 1191 120
T
o’ :(50751352"”75N—2’5N—1’5N)
and

T

b=(U(xO,O),U(xI,0),---,U(xN_,,0),U(xN,0))

4. Stability Analysis

The stability analysis will be based on the von Neumann
theory in which the growth factor of a typical Fourier
mode
57 =0"e"™, (13)
where k is the mode number and /% the element size,
is determined for a linearisation of the numerical scheme.
Substituting the Fourier mode (13) into the linearised
recurrence relationship (8) shows that the growth factor
formod k& is
_a-ib
a+ib

where
a=1208+40M — 3(—397 + 5M)cos[hk]

—24(=5+ M )cos[2hk]+(1—M )cos[3hk]
b =245EZ,sin[hk]|+56 EZ, sin[2hk]+ EZ, sin[3hk].
The modulus of |g| is 1 therefore the linearised
scheme is unconditionally stable.

5. Numerical Examples and Results

All computations were executed on a pentium 4PC in the
Fortran code using double precision arithmetic. The
conservation properties of (1) will be examined by cal-
culating the lowest three invariants given as

R )
Cz = Lb |:U2 +,U(Ux )2 :|dx = hzlj\/ﬂ(UJn )2 + ’u(Ux ): >

¢ =["Utde=nY" (U1,

Copyright © 2011 SciRes.
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| poo 6474 195768 96597 9600
81 81 81 81

10063.5 104796 210568.5 82731
81 81 81 81

24 768 2712 1536 |

which correspond to mass, momentum and energy re-
spectively [5]. The accuracy of the method is measured
by both the error norm

N
L2 :"Uexact _UN||2 — \/hz
J=0

and the error norm

2
U;xact _ (UN ) )

J

B

L = ||Uexact _UN ||Oo _ m;ax U;xact _(UN) ]

J

To implement the method, three test problems: motion
of a single solitary wave, interaction of two solitary
waves and the maxwellian initial condition will be con-
sidered.

6. Motion of Single Solitary Wave

For this problem, we consider Equation (1) with the
boundary conditions U — 0 as x — tco and the ini-
tial condition

U(x,0) = Asech(k[x—x,]).
This problem has an exact solution of the form
U(x,t) = Asech(k[x—x,—vt])

which represents the motion of a single solitary wave
with amplitude 4 , here the wave velocity v=4>/2 and
k =/1/u . For this problem the analytical values of the
invariants are [5]

2 kA

et G

44"

3k

The analytical values of invariants are obtained from
(1) C, =0.7853982, C, =0.1666667, C, =0.0052083 .
For the numerical simulation of the motion of a single

solitary wave, we have used the parameters 2=0.1,
At=0.05, u=1, x, =30, A=0.25 through the inter-
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val 0<x<80. The computations are done until time
t=20 and in this lenght we find error norms L,, L,
and numerical invariants C,,C,,C, at various times. In
Table 1 we compare the values of the invariants and
error norms obtained using the present method with the
three different approximation and the results of [5,14,
18,19] at different times. We can easily see from the this
table that the error norms L, and L_are obtained suf-
ficiently small and the quantities in the variants remain
almost constant during the computer run for the first and
second linearization techniques but we can not say the
same for the third linearization technique. For the first
and second linearization, the numerical values of invari-
ants are C, =0.7853966,C, =0.1667641,C; = 0.0052083
and for the third linearization numerical values of invari-
ants are C, =0.7855405,C, =0.1667641,C, =0.0052144
at the ¢=20. Figure 1 shows that the proposed method
perform the motion of propagation of a solitary wave
satisfactorily, which moved to the right at a constant
speed and preserved its amplitude and shape with in-

creasing time as expected. Amplitude is 0.249999 at
t =0 which is located at x =30, while it is 0.249922
at =20 which is located at x=30.6. The absolute
difference in amplitudes at times =0 and ¢#=20 is
7.7x107° so that there is a little change between ampli-
tudes.

7. Interaction of Two Solitary Waves

For this problem, we consider (1) with boundary condi-
tions U -0 as x— foo, interaction of two positive
solitary waves is studied by using the initial condition

U(;:,O):éAj sech (k[ x—x;]).

where & =1/ p.

We first used the parameters /7 =0.1, At =0.025,
u=1,4=14,=05, x =15, x, =30 through the in-
terval 0<x <80 which is used by Zaki [5]. These pa-
rameters provide solitary waves of magnitudes 1 and 0.5

Table 1. Invariants and error norms for single solitary waves.

¢ Lineerization C C, C, L, x10° L, x10°
0 0.7853966 0.1666664 0.0052083 0.0000000 0.0000000
5 0.7853966 0.1666664 0.0052083 0.0000979 0.0000622
10 First 0.7853966 0.1666664 0.0052083 0.0002113 0.0001368
15 0.7853966 0.1666664 0.0052083 0.0003432 0.0002251
20 0.7853966 0.1666664 0.0052083 0.0004969 0.0003309
0 0.7853966 0.1666664 0.0052083 0.0000000 0.0000000
5 0.7853966 0.1666664 0.0052083 0.0000972 0.0000627
10 Second 0.7853966 0.1666664 0.0052083 0.0002102 0.00001378
15 0.7853966 0.1666664 0.0052083 0.0003419 0.0002272
20 0.7853966 0.1666664 0.0052083 0.0004957 0.0003331
0 0.7853966 0.1666664 0.0052083 0.0000000 0.0000000
5 0.7854325 0.1666908 0.0052098 0.0237333 0.0228190
10 Third 0.7854685 0.1667152 0.0052114 0.0480311 0.0454089
15 0.7855045 0.1667397 0.0052129 0.0734307 0.0678603
20 0.7855405 0.1667641 0.0052144 0.1004249 0.0900579
20 [5] 0.785397 0.166667 0.005210 0.0034500 0.0020300
20 [14] 0.7849545 0.1664765 0.0051995 0.2498925 0.2905166
20 [18] 0.7853977 0.1664735 0.0052083 0.2692812 0.2569972
20[19] - - - 0.1958878 0.1744330

Copyright © 2011 SciRes.
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Figure 1. The motion of a single solitary wave.

and peak positions of them are located at x =15 and 30.
The analytical invariants are [14]

C, = n(4 +4,)= 47123889,

C, = g(Af +4; ) =3.3333333,

C, :i(Af‘ + 4,) =1.4166667.
3
Calculation is carried out with the time step
At =0.025 and space step ~£=0.1 over the region
0<x<80. The experiment was run from =0 to
t=55 to allow the interaction to take place. Figure 2
shows the interaction of two positive solitary waves. It
can be seen that at =15 the wave with larger amplitude
is on the left of the second wave with smaller amplitude.
The larger wave catches up with the smaller one as time
increases. Interaction started at about time ¢ =25, over-
lapping processes occurred between times ¢ =25 and 40
and waves started to resume their original shapes after
time ¢=40. For the first and second linearization tech-
niques at ¢=55, the amplitude of larger waves is
1.000149 at the point x =44.4 whereas the amplitude
of the smaller one is 0.507317 at the point x=34.6. It
is found that the absolute difference in amplitude is
7.3x107 for the smaller wave and 0.149x107 for the
larger wave for this algorithm. For the third linearization
technique at ¢=55, the amplitude of larger waves is
0.995933 at the point x =44.7 whereas the amplitude
of the smaller one is 0.507477 at the point x =34.6 .1t
is found that the absolute difference in amplitude is
7.4x107 for the smaller wave and 4 x 10~ for the
larger wave for this algorithm. In Table 2 we compares
values invariants of the two solitary waves with results
from first, second and third linearization. We see from
the Table 2 that for the first and second linearization
techniques, all 3 invariants are conserved by less than

Copyright © 2011 SciRes.

9.9x107° during the experiment. Thus we have found
that the conservation quantities are satisfactorily constant

Table 2. Invariants for interaction of two solitary wave.

4=1,4=05

t  Lineerization G G, G

0 4.7123733 3.3333294 1.4166643
5 4.7123660 3.3333183 1.4166532
15 4.7123494 3.3332959 1.4166308
25 First 4.7123331 3.3332741 1.4166083
35 4.7123243 3.3335335 1.4165818
45 4.7123127 3.3332470 1.4165824
55 4.7122960 3.3332247 1.4165605
0 4.7123733 3.3333294 1.4166643
5 4.7123696 3.3333160 1.4166509
15 4.7123602 3.3332892 1.4166241
25 Second 4.7123494 3.3332603 1.4165947
35 4.7123274 3.3332088 1.4165317
45 4.7123380 3.3332270 1.4165618
55 4.7123291 3.3332012 1.4165363
0 4.7123733 3.3333294 1.4166643
5 4.7318586 3.3857414 1.4689535
15 4.7738238 3.5004328 1.5869329
25 Third 4.8195659 3.6284390 1.7245060
35 4.8528439 3.7197153 1.8236340
45 4.9055278 3.8734565 2.0013048
55 4.9694524 4.0643034 2.2347812

AM



T.GEYIKLI ET AL.

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0+

-0.1 . . : . : . :

U(x,1)

745

1.0
0.9
0.8
0.7
0.6

< 0.5

=
0.4

=)
0.3
0.2
0.1
0.0

-0.1 T T T T T T T
0 10 20 30 40 50 60 70 80

1.0 1.0
0.9 =25 0.9 t=35
0.84 0.8
0.7 0.74
0.6 0.64
§ 0.5 S 051
S 0.4 S 0.4
0.34 0.34
0.2 0.24
0.1 0.14
0.0 0.04
-0.1 . . r - - - - -0.1 T T T . T T T
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
X X
1.0 1.0
0.9 t=45 0.9 1=55
0.8+ 0.84
0.7 0.74
0.6 0.6
< 0.5 < 0.5
= 0.4+ h \E/ 0.4 ﬂ
0.34 0.34
0.24 0.24
0.14 0.14
0.0 0.0
-0.1 T T T T T T T -0.1 T T T T T T T

0 10 20 30 40 50 60 70 80
X

0 10 20 30 40 50 60 70 80
x

Figure 2. Interaction of two solitary waves at different times.

with the proposed algorithm.

We have also studied the interaction of two solitary
waves with the following parameters: x=1, x, =15,
x,=30, A4 =-2, A, =1, together with time step
At =0.025 and space step # = 0.1 in the range 0 < x <
150. The experiment was run from =0 to =55 to

Copyright © 2011 SciRes.

allow the interaction to take place. Figure 3 shows the
development of the solitary wave interaction.

As is seen from the Figure 3, at +=0 a wave with
the negative amplitude is on the left of another wave
with the positive amplitude. The larger wave with the
negative amplitude catches up with the smaller one with
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Figure 3. Interaction of two solitary waves at different times.

the positive amplitude as the time increases. For the first
linearization technique at 7 =55, the amplitude of the
smaller wave is 0.974695 at the point x=52.5,
whereas the amplitude of the larger one is —1.989036
at the point x=122.8 . For the second linearization
technique at ¢ =55, the amplitude of the smaller wave

Copyright © 2011 SciRes.

is 0.972778 at the point x =52.5, whereas the ampli-
tude of the larger one is —1.986701 at the point
x=122.8 . It is found that the absolute difference in am-
plitudes is 0.253x107", 0.272x10™" for the smaller
wave and 0.133x107", 0.109x10™" for the larger wave,
respectively.
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The analytical invariants by using Equation (1) can be
found as C, =-3.1415927, C, =13.3333333,
C, =22.6666667 . Table 3 lists the values of the invari-
ants of the two solitary waves with amplitudes 4, =-2,
A, =1. It can be seen that the values obtained for the
invariants are satisfactorily constant during the computer
run.

8. The Maxwellian Initial Condition

As a last study, we consider here is the numerical solu-
tion of the Equation (1) with the Maxwellian initial con-
dition

U(x,0)=¢ (14)
with the boundary conditions

U(-20,1)=U, (-20,¢)=U(20,t)=U, (20,¢) =0.

As it is known, Maxwellian initial condition (14) the
behavior of the solution, depends on the values of .
So we have considered various values for g . For the
first linearization technique the computations are carried
out for the cases «=1,0.5,0.1,0.05,0.02 and 0.005
which are used in the earlier papers [5,14]. When
u#=1,0.5 isused as shown Figures 4(a) and (b) at time
t =12 the Maxwellian initial condition does not cause
development into a clean solitary wave. However with
smaller values of 4 =0.1,0.05,0.02 and 0.005 Max-

Table 3. Invariants for interaction of two solitary wave.

A4=-2, 4 =1

¢ Lineerization C G, G

0 —3.1415739 13.3332981 22.6665313
5 —3.1373324 13.3219118 22.6210653
15 =3.1227097 13.2806152 22.4483653
25 First —3.1143337 13.2581754  22.3589494
35 —3.1060334 13.2359744  22.2706624
45 —3.0978106 13.2140028 22.1834701
55 —3.0896638 13.1922565 22.0973499
0 —3.1415739 13.3332981 22.6665313
5 -3.1391704 13.3196543 22.6120524
15 —3.1325076 13.2805526  22.4637733
25 Second —3.1277388 13.2535359 22.3561477
35 —3.1230138 13.2268810  22.2501653
45 —3.1183416 13.2005566  22.1457584
55 -3.1137210 13.1745553 22.0428880

Copyright © 2011 SciRes.

wellian initial condition breaks up into more solitary
waves which were drawn in Figures 4(c)-(f) at time
t =12 . The numerical conserved quantities with
4=1,0.5,0.1,0.05,0.02 and 0.005 are given in Table 4.
It is observed that the obtained values of the invariants
remain almost constant during the computer run.

Table 4. Invariants for Maxwellian initial condition, differ-
ent u.

t H C C, C,

0 1.772454 2.506607 0.886227
3 1.772972 2.506836 0.886561
6 1 1.775116 2.512628 0.890240
9 1.776365 2.514942 0.891795
12 1.776698 2.515136 0.891967
0 1.772454 1.879971 0.886227
3 1.772452 1.879970 0.886225
6 0.5 1.772451 1.879968 0.886224
9 1.772451 1.879967 0.886223
12 1.772450 1.879966 0.886222
0 1.772454 1.378646 0.886226
3 1.772420 1.378591 0.886174
6 0.1 1.772368 1.378507 0.886054
9 1.772316 1.378424 0.885933
12 1.772264 1.378340 0.885813
0 1.772454 1.315980 0.886227
3 1.772266 1.315654 0.885789
6 0.05 1.771976 1.315150 0.884947
9 1.771685 1.314648 0.884107
12 1.771396 1.314147 0.883270
0 1.772454 1.278380 0.886227
3 1.770834 1.275265 0.880933
6 0.02 1.768546 1.271572 0.874402
9 1.766186 1.266707 0.864400
12 1.763931 1.262351 0.855782
0 1.772454 1.259581 0.886227
3 1.757684 1.254254 0.928815
6 0.005 1.738212 1.227138 0.880527
9 1.722397 1.171836 0.714373
12 1.710490 1.162646 0.737751
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Figure 4. Maxwellian initial condition, state at time =12 (@) =1, (b) u = 0.5, (c) # = 0.1, (d) x = 0.05, (e) # = 0.02, (f) u =

0.005.

Copyright © 2011 SciRes.
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9. Conclusions

In this study, a numerical solution of the MEW equation
based on the septic B-spline finite element has been pre-
sented with three different linearization techniques.
Three test problems are worked out to examine the per-
formance of the algorithms. The performance and accu-
racy of the method were demonstrated by calculating the
error norms L, and L, on the motion of a single
solitary wave. For the first and second linearization tech-
niques, the error norms are sufficiently small and the
invariants are satisfactorily constant in all computer run.
The obtained results from the first and the second lin-
earization techniques are almost the same and the com-
puted results show that the present method is a remarka-
bly successful numerical technique for solving the MEW
equation and can also be efficiently applied to other
types of non-linear problem.
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