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Abstract 
 
Based on the model provided by the Mulone and Straughan [1], we relax the population which are constant 
and obtain the drug-free equilibrium which is global asymptotically stable under some conditions. The sys-
tem has only uniqueness positive endemic equilibrium which is globally asymptotically stable by using the 
second compound matrix. 
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1. Introduction 
 
Heroin is an opiate drug that is synthesized from mor-
phine, a naturally occurring substance extracted from the 
seed pod of the Asian opium poppy plant. Heroin usually 
appears as a white or brown powder or as a black sticky 
substance, known as “black tar heroin” [2]. Heroin users 
are at high risk for addiction—it is estimated that about 
23 percent of individuals who use heroin become de-
pendent on it. The spread of heroin habituation and ad-
diction presents many of the well-known phenomena of 
epidemics, including rapid diffusion and clear geo-
graphic boundaries. It is unrealistic to repeat the experi-
ment on the human body for obtaining the statistic data. 
Mathematical models play very important role in dealing 
with these problems. Mathematical modellings are very 
useful tools to predict how classes of drug takers behave, 
and provide a good suggestion for the treatment strate-
gies. It is interest to explore the problem mathematically, 
reducing the factors to the essential transmission mecha-
nism, in real life, is much more complex because of im-
ponderable and often intervening biological, psycho-
logical, and social conditions.  

During recent years, many mathematical models have 
been developed to describe the Heroin epidemic model 
(see [1,3]). One of the recent model divided the mathe-
matical problem into tree class, namely susceptibles, 
heroin users or alcoholics, and heroin users or alcoholics 
undergoing treatment which denote by    1,  S t U t  
and , respectively. The model is  2U t
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where the number of individuals enter the susceptible 
population at a rate,  , die at rate  . Infection of a 
drug user occurs through a simple mass action process 

1 1SU N , where 1  is probability of becoming a drug 
user, per unit time. The probability of a drug user in 
treatment relapsing to untreated use, per unit time is . 
Infected heroin users die at enhanced rate 1 , treatment 
infected heroin users die at enhanced rate 2 . In this 
model, the authors considered the global stability of the 
drug equilibrium under some conditions. However, they 
treated the total population is a constant for simple. In 
fact, we sum the tree equations of (1.1) and get  

p
δ
δ

1 1 2 2

d
δ δ .

d

N
N U U

t
      

It is easy to see that the total population is not a con-
stant. This assumption is not reasonable and maybe sim-
ply the problem. Since (1.1) can be changed a plane sys-
tem under the constant population. In our paper we will 
relax this assumption and assume the total population is 
very according to the time. In our model we use the bi-
linear law incidence function instead of standard inci-
dence. The model is changed into  
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2. Basic Reproduction Number and Stability  

of Drug-Free Equilibrium 
 
The drug-free equilibrium is given by  

 0
0 ,0,0 ,0,0 .E S


 

   
 

 

The basic reproduction number 0  is defined to be 
the expected number of secondary cases produced, in a 
completely susceptible population, by a typical infected 
individual during its entire period of infection. We fol-
low the recipe of [4] to calculate the basic reproduction 
number. O. Diekmann et al. in [5] has shown 0  as the 
spectral radius of the next generation matrix. Firstly we 
need to separate the new infections from other factors. 
We define 

R

R

 F X  to be the vector which represents the 
rate of new infections that appear in the population 
where X  is a vector given by  1 2, , X U U S . In this 
model, we get ,  1 1,0,0F SU
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,  F V  have the same definition as explained in [4]. 
According to the recipe presented in [4] we define the 
derivatives  and  in the following 
way 
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Finally the basic reproduction number is obtained by 
calculating the spectral radius of 1FV  . Then the basic 
reproduction number for the model presented in system 
(1.2) is given by the following expression  
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This completes the calculation of basic reproduction 
number. The Jacobian matrix of (1.2) at drug-free equi-
librium  is 0E
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The characteristic roots of the matrix are  
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1 2 2 30, δ 0, δ .p
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Hence the characteristic equation just has negative real 
part roots under some condition. Then we can obtain the 
following theorem.  

Theorem 2.1. If 0 1R  , the drug-free equilibrium is 
locally asymptotically stable otherwise it is unstable. 

Theorem 2.2. If 
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Proof. We set a Lyapunov function  
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, the  

drug-free equilibrium 0  is globally asymptotically 
stable by Lassale’s invariance principle. 

E

 
3. Existence and Stability of the Endemic  

Equilibrium 
 
In this section we discuss the existence of the endemic 
equilibrium. We just consider the special situation. We 
find the positive endemic equilibrium for (1.2) which is 
obtained by solving the following sets of equations  
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From the expression of 1  and 2U , and positivity 
of the endemic equilibrium, we note that 
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Solving the first and second equations of (3.1), we ob-
tain 
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positive roots of (1.2) are respectively x  and x , we 
check the positive real roots of (1.2)  2  into the third equation of (3.1), we obtain U  S  

should satisfies the following equation  
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In our model, we just consider 1 3 

P E

. It is easy to 
see  and . Due to Descarters’ rule of sings, 
the number of real positive roots of  is deter- 

0A  0C 


Concluding the above discussion, then we can obtain 
the following theorem.  

Theorem 3.1. 1) If , and 0 1R  1

1
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 , (1.2)  mined by the following table 
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has only unique real positive endemic equilibrium.  
Next, we will discuss the locally stability of the en- 

demic equilibrium. The Jacobian matrix at endemic equi- 
librium is 
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Then the characteristic of the endemic equilibrium is  

3 2
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where  

      

      

1 3 1 1 1 1

2 1 1 3 1 2 3 1 1 1 1 3 1

2
3 3 1 1 1 1 1 1 3 1 1 1 2

2 δ 0

δ δ 0,

δ δ 0.

a U U

a U U U S U

a U U S U S U

  

        

         

 

    

     

    

        

      

 

Define   1 2 3 ,H E a a a    and straightly calculate and then we obtain 
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Theorem 3.2. Let E  be the endemic equilibria of 

system (1.2) as defined before, and assume  U      Note that  
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get . Due to the Routh Hurtwiz [6], we get 
the following theorem.  

  0H E 
tically stable.  
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Finally, we will consider the global stability of the 
endemic equilibrium is asymptotically orbitally stable 
with asymptotic phase.  

Theorem 3.3. The endemic equilibrium of E  to  

(1.2), if it exists, is asymptotically orbitally stable with 
asymptotic phase.  

Proof. The second compound matrices  1 2, ,J S U U   
of (1.2) is given by 
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 
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we can write the linear system (1.2) with respect to a 
solution  of (1.2) as the following 

 system (3.4):  
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To show the asymptotic stability of the system (3.4) 
we consider the following function: 

     1 2 1 2, , ; , , , , , ,V X Y Z S U U P S U U X Y Z
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The right-hand derivative of  V t  exists and its calcu- 
lation is described in [7]. In fact, direct calculation yields
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We claim that  
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which, together with (3.9), implies that  as 
 and in turn that 

  0V t 
 t      Z t , ,X t Y t



0  as 
 by (3.6). As a result, the linear system (1.2) is 

asymptotically stable and the periodic solution 

1 2  is asymptotically orbitally stable 
with asymptotic phase by Theorem 3.1 [7].  

t 

 S t     , ,U t U t

 
4. Conclusions and Simulation 
 
In this paper we have addressed the problem of investi- 
gation the existence and stability of the equilibria heroin 
epidemic model provided by Mulone and Straughan. We 
relax the condition the total population is a constant. 
Under some condition, the drug-free equilibrium is glo- 
bal asymptotically stable; the number of equilibria are 
determined by Theorem 3.1 and we show that the en- 
demic equilibrium is also globally asymptotically stable 
under any conditions. The natures of the model are not 
different from the epidemic models [1,3]. We use nu- 
merical simulations to illustrate the theoretical results 
obtained in previous sections. As an example, we take 
the parameter values as follows: 11,  0 008,   

 δ 0 05,  δ 0 06
  

3 1 20 001,  0 04,  0 01,p      

10

   

,  1,  1S U U

 By 
using the classical implicit format solving the ordinary 
differential equations and the method of steps for differ- 
ential equations, we can solve the numerical solutions of 
(1.2) via the software package Matlab (see Figure 1) is 
globally asymptotically stable with asymptotic phase. 
The initial conditions are 0 10 20   . 

In future, there are some problems that will be solved. 
We continue the problems of system (2.1) on substituting 
the bilinear into standard incidence. Whether there are 
some kinds of bifurcations for the model or not is still 
open. If we assume the input is impulsive input or sto-  

chastic perturbations, what results will occur. We give 
some numerical results. For the impulsive perturbation, 
we give the following system (4.1). 

   

 

   

 

   

1 1

1
1 1 3 1 2 1 1

1 1

2
1 3 1 2 2 2

2 2

d
,  ,

d

,  ,

d
δ ,  ,

d

,  ,

d
δ ,  ,

d

,  .

S
SU S t nT

t

S t S t t nT

U
SU U U p U t nT

t

U t U t t nT

U
pU U U U t nT

t

U t U t t nT

 

  

 







    

    

      

  



    

  

 

Theorem 4.1. The drug-free periodic solution of (4.1) 
is globally asymptotically stable, and the system is per-
sistent.  

As another example, we take the parameter values as 
follows: 1 32,  1,  0 1,  0 4,  0 01,p          

T
 

1 2δ 0 05,  δ 0 06,  1     . We can solve the numerical 
solutions of (4.1) via the software package Matlab (see 
Figure 2). 

For the stochastic perturbation, we give the following 
system (4.2). 

 

 

1
1 1

21
1 1 3 1 2 1 1

32
1 3 1 2 2 2

d
d ,

d
d

δ d ,
d

d
δ d .

d

t

t

t

S
SU S

t
U

SU U U p U
t

U
pU U U U

t

   

   

   

     

      



    


  

 

   
(a)                                                     (b) 

Figure 1. (a)-(b) show that endemic equilibrium to (1.2).    
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(a) 

 

 
(b) 

 

 
(c) 

Figure 2. (a)-(c) show that the system (4.1) is persistent. The 
initial conditions are S0 = 0.5126, U10 = 0.1688, U20 = 0.7448. 

 
(a) 

 

 
(b) 

Figure 3. (a)-(b) show that the zero solution of system (4.2) 
is probably asymptotically stable. The initial conditions are 
S0 = 0.5126, U10 = 0.1688, U20 = 0.7448. 
 

We take the parameter values as follows: , 2 

1 3

1 2

0 1,  0 01,  0 4,  0 01,

δ 0 05,  δ 0 06,  0 002.

p  


       

     
 

we can solve the numerical solutions of (4.1) via the 
software package Matlab (see Figure 3). 

Furthermore, we will give the detail analysis proofs 
for the theorems in the future. 
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