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Abstract 
 
We present an algorithm for determining the stepsize in an explicit Runge-Kutta method that is suitable 
when solving moderately stiff differential equations. The algorithm has a geometric character, and is based 
on a pair of semicircles that enclose the boundary of the stability region in the left half of the complex plane. 
The algorithm includes an error control device. We describe a vectorized form of the algorithm, and present 
a corresponding MATLAB code. Numerical examples for Runge-Kutta methods of third and fourth order 
demonstrate the properties and capabilities of the algorithm. 
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1. Introduction 
 
Stiff initial-value problems (IVPs) are often solved nu-
merically using implicit A-stable Runge-Kutta (RK) me-
thods. In such methods, there is no need to adjust the 
stepsize for the sake of stability, since the stability region 
of the method is the entire left half of the complex plane. 
These methods are particularly useful when the problem 
is very stiff. However, implementing an implicit RK 
method requires the solution of a nonlinear system of 
stage equations at each step, whereas an explicit RK me-
thod does not. It is, therefore, often feasible to use an 
explicit RK method to solve moderately stiff problems, 
wherein the stiffness constant λ is not too large. Often, 
the explicit RK pairs RK (3,4) [1] and RK (4,5) [2,3] are 
used to solve IVPs, so we will focus our attention on 
these methods. 

The stability region of explicit RK methods is a 
bounded region S in the complex plane, and the stepsize 
h must be chosen such that, if the vector hλ is in the left 
half of the complex plane, then it lies within S. Moreover, 
λ can be complex, so that hλ does not necessarily lie 
along the real axis (even though h is always real). In this 
paper, we present a simple algorithm for determining h 
such that hλ lies within S, for any relevant λ and S per-
taining to an explicit RK3 or RK4 method. 

2. Relevant Concepts, Terminology and  
Notation 

 
An m-dimensional IVP of the form 
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can be solved using an explicit RK method 

1 ,i i i iw w hF x w    ,              (3) 

where iw  denotes the approximate numerical solution 
at ix  (i.e.  i iw y x ), F  is a function that defines 
the method, and 1i ih x x  . From here on, the notation 
RKr indicates an explicit Runge-Kutta method of order r. 

The stability function  R z  of the RK method is ob-
tained by applying the RK method to the Dahlquist equa-
tion 
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                 (4) 
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to get, with , 0 0w y

 1 0 0 ,w w hF w               (5) 

which can be written 

 1w R z w 0                  (6) 

with z h . As a simple example, consider the sec-
ond-order method of Heun [4], which has 
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Applying this method to the Dahlquist equation 
  ,f x y y , we find 
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so that  
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from which we identify 

 
2

1
2

z
R z z   .               (10) 

Generally speaking, the stability function for explicit 
RK methods is a power series in z that represents an ap-
proximation to the exponential solution of the Dahlquist 
equation. Indeed, we see that  in (10) is a 
low-order Taylor series for the exponential function 

 R z
ze . 

For RK3 and RK4 we have [5] 
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and these are the stability functions that will interest us 
in the remainder of this paper. 

The region of stability of the RK method is defined as 
[6] 

  :S z R z   1            (12) 

and we denote the boundary of this region by ∂S. For an 
explicit RK method, ∂S is a closed contour in the com-
plex plane (see Figure 1). 

We must consider complex values for z, because it is 
possible that the stiffness constant λ could be complex; 
this is particularly true for systems of ODEs, as in (1), 
where the stiffness constants are determined from the 
eigenvalues of the Jacobian 

 

Figure 1. Stability regions for the indicated explicit RK 
methods. 
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There are m eigenvalues, and those with negative real 
part are taken as the stiffness constants of the system. 

Now, assume 0   in (4). The exact solution is 
therefore expected to be an exponentially decreasing 
function of x. However, if h is such that   1R z  , then 
the numerical solution (9) will increase with x, which is 
quite the opposite behaviour to what is expected. Fur-
thermore, the numerical solution will increase without 
bound under iteration, whereas the exact solution tends 
to zero. This is referred to as an unstable solution, or 
instability with regard to stiff ODEs. It is therefore vital 
to choose h at each step of the RK method so that 

  1R z  , i.e. z h  lies within S. An algorithm for 
determining an appropriate stepsize h is the subject of the 
next and subsequent sections. 
 
3. Theoretical Description of the Algorithm 
 
We first consider the algorithm for a single stiffness con-
stant (eigenvalue of J

1

i

). Consider two semicircles 1  
and , of radius  and , respectively, centered at 

C

half 
2C

orig
r 2r

circles are sthe in. These sem uch that, in the left 
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of the complex plane, 1C  is contained entirely within S, 
and S is contained entirely within 2C , as shown in Fig-
ure 2. In this figure, S is the stabili egion of RK3 (for 
the sake of example), although the algorithm we describe 
here holds for the stability region of RK4, as well. 

Say λ is an eigenvalue of 

ty r

J , and λ lies in the left half 
of the complex plane (i.e. λ  a stiffness constant). De-
fine the unit vector 

is

ˆ ,



                 (14) 

where 

   

  is the magnitude of λ. Then 

1 2
ˆ ˆ and r r                   (15) 

are vectors of length  and 1r 2r , respectively, in the 
direction of λ, and 

 2 1 2 1r r  

2
ˆr

ˆr              (16) 

is the length of the segment of 

D r

  that cuts ∂S (see 

 user-defined tolera ompute 
Figure 3). 

Let ε be a nce, and c

*

D
N

D

N




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
               (17) 

This gives 

 

   

* 
e toler

. This is not ing more than a re-
fin

rmine, for j = 0, ···, N, 

h
ement of th ance ε, consistent with an integer 

value of N. 
Now dete

*ˆ ˆz r j1j                   (18) 

and compute 

 jR z                  (19) 

for each j. 
largest Find the jz  (in magnitu  such that  de)

  1z  —call th cz —and then determine jR is 

.cz
h


            (20) 

Now, say is such that 

      

*h  

 *R h 1.                (21) 

This gives 
* *

*

,*

h h

h h

  




 

  
           (22) 

so that the difference between th psize estimated in 
(20) and the exact value (in the sense of (21)) is de- 

 

e ste
*h  

 

Figure 2. Semicircles of radii r1 and r2, for the stability re-
gion of RK3. 
 

 

Figure 3. Geometrical representation of the algorithm. The 
boundary of the stability region is indicated as ∂S. 
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pendent on *  , and  . Hence, the smaller we 
choose ε, the closer the endpoint of hλ is to ∂S, particu-
larly for large  . 

Note the following: (22) gives 
* *h h

1h h h r

 
 


 

            (23) 

and if we demand that the relative difference 
*h h

h


 

must be less than some value δ, then choosing 

1r


1r
                  (24) 

ensures that this will be case. In other words, (24) pro-
vides a form of error control, since 1r  and δ are known 
a priori. 

The algorithm is depicted in Figure 3. In this figure, 
the curves labelled 1r  and 2r  are the semicircles, and 
∂S indicates the boundary of the stability region. The 
arrow touching the 1r  semicircle indicates 1

ˆr , and the 
arrow touching the 2r  semicircle indicates 2

ˆr  . The 
arrows between these two represent jz  for  

1, , 1j N  . The separation of two adjacent ws is 
*

 arro
 , as indicated. The arrow within S and closest to ∂S is 

It is clear that ∂S cuts 2
ˆrcz , as shown.  . The segment 

ween arrowheads that ∂S cuts is the segment of length 
D, referred to earlier. 

For a system of ODEs, in which there is more than one 
stiffness constant, we

bet

 would apply the above algorithm 
for each such constant. This would yield a stepsize for 
each stiffness constant, and we would choose the mini-
mum of these stepsizes as h in (3). 
 
4. Implementation of the Algorithm 

algorithm, 
 
H
c

ere we present a vectorized version of the 
atering for a system of ODEs which has more than one 

stiffness constant. 
The parameters 1 2,r r  and ε are input from which N 

and *  are easily mined. Assume that the set of 

eigenvalues of 

deter  

 ,i iJ x w  yields M distinct stiffness con-  

stants (note that M m ). Let   denote a row vector 
containing these ess constants, as in M stiffn

 1 2   ,M   λ             (25) 

and let ̂  denote the corresponding
n 

 vector of unit vec-
tors, as i
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and hence, determine 

 *
11NMZ r A L           

where 

    (29) 

1NM

ent-by
 is the N × M unit matrix, and ⊠ denotes the 

elem -element product of two matrices, sometimes 
 product (the matrices must have 

f course). The structure of 
known as the Hadamard
the same dimensions, o Z  is 
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Define the N × M matrices 
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(30) 
We then evaluate 
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1
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                      RK4
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  
   

where 

   

(31) 

 R Z   is an N × M matrix, of which the jkth en-
try is 

     *
1

ˆ .k
jk

R Z R r j             (32) 

We compute  R Z  , the matrix containing the mag- 

f eacnitude o h element of  R Z  , and we find the largest  

entry less than unity in each column of  R Z  . The cor-  

responding elements in Z  are the  for each stiffness 
co are M 

c

nstant. There such values of cz , one for each 
z

stiffness constant k  (denote hem ,c kz ), and we de-
termine 

 t

,c kz
k

k

h


                 (33) 
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            (34) 

We provide a MATLAB code
nction for determining h for RK3. 

5.

Some comments are in order: 
1) It may occur that one of the 

for each 1, ,k M  . 
Finally, the stepsize h used in the RK iteration (3) is 

simply 

 
1,...,

min k
k M

h h


  

 in the Appendix, in the 
form of a fu
 

 Comments 
 

jz  lies on ∂S, in 
which case   1jR z  . If this is the case, we would still 
have that 1jz   is within *  of ∂S and, if we consider 

*  to be acceptably small, then 1jz
 can 

  ca
be 

n be taken as 
go refined to search 

 when
cz . Nevertheless, the al
r those occasions

rithm
 fo   1jR z . It is our opinion 

ssar
n

4 in mind
any

ad d
of


y. that this refinement is not nece

2) Although the algorithm has bee  developed with 
RK3 and RK , it should be clear that it can be 
applied to  RK method for which semicircles with 
r ii 1r  and 2r  can be constructe  (i.e. in the left half 

 the complex plane, one of the semicircles contains S 
entirely, and the other is contained entirely within S). For 
methods of order greater than four, however, the stability 
function R(z) is method-specific so that the appropriate 
semicircles would also be method-specific. In our nu-
merical examples in the next section, we will give semi-
circles that are universally applicable to all RK3 and 
RK4 methods. 

3) We have not considered applying the algorithm to 
RK1 and RK2 because it does not seem possible to de-
fine a semicircle interior to S for these methods (see Fig-
ure 1). Moreover, the low order of these methods proba-
bly mitigates against their use in solving moderately stiff 
IVPs, anyway. 

4) The vectorized algorithm described above is not the 
only way to determine h. We could use the algorithm 
with 1M   in a for-loop, providing a different λ for 
each pass through the loop, which would give a stepsize 
for each pass, and then taking the minimum of these 
stepsizes. The vectorized algorithm seems, to us, to be 
more elegant and may also be faster, generally speaking, 
al

onstan

though this might depend on computational platform. 
5) In principle, the algorithm can be applied for stiff-

ness c ts of any magnitude, although RK3 and RK4 
would most likely be used only for moderately stiff 
problems, wherein |λ|≲1000. 
 
6. Numerical Examples 
 
In our first example, we consider the stiffness constants 

1

2

3
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  
  
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            (35) 

which have magnitudes (rounded to nearest integer) of 
ly. The first of these lies 

ose to the real axis, the second is close to the diagonal, 

Applying the algorithm to the RK3 stability region, 
with 

               (36) 

1000, 647 and 910, respective
cl
and the third is close to the imaginary axis. 

1

2
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r

r


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and 310  , gives 

1

2
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h

h

3 0.0020h


           
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Also, we find 
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and 
*

1 1

*

2 2

*

3 3
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h

h

h








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


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             (39) 

is the upper bound on 
*
k k

k

h h

h

*

k kh




 where , as per  

(22). Here, we have 
3

1

10
0.058%

1.73r

 

               (40) 

which is greater than the upper bounds in (39), as expected 
from (23). If we had desired a bound of 0.01% 

73 10
, say, 

 havwe would e needed to use 4
1 1.r    . 

e stability region of RK4, Applying the algorithm to th

   

with 

1

2

2.5

3.0.

r

r




              (41) 

and 310  , gives 

1

2

0.0028

0.0

h

h

3

041

0.0031h


   


             (42) 
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and 

torized algorit d f i s for algor e 
see that the vectorized algorithm is slightly quicker than 
the for-loop v , in a orithm lso 
fast r RK4 for R t this e to t
er value of 

hm, an ndicate -loop ithm. W

ersion ll cases. The alg  is a
er fo  than K3, bu  is du he small-

2 1

Also, we find 

 
 
 

1 1

2 2

3 3

0.9990

0.9987

R h

R h

R h













0.9989            (43) 

D r r  , 
e u 

which leads to a aller value of 
N ( v

sm
we ha sed 3  in 10 all ca f co the 

n algor

icircles that “sandwich” 
 relevant stability region in the left 

 plane, is simple but robust and effec-

ses). O urse, 
values of 1r  and 2r , and hence D, are dependent on the 
geometry of the stability region. 
 
7. Conclusions 
 
We have designed a ithm for determining stepsizes 
appropriate for stable solutions of stiff IVPs, when such 
solutions are computed using explicit RK methods. The 

gorithm, based on a pair of sem

*

1 1

*

2 2

*

3 3

0.036%

0.037%

0.035%

h

h

h





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
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
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           (44) 

upper bounds are consistent with  

al
the boundary of the

alf of the complex
These 

h3

1

10
0.040%

2.5r

 

  . 

Clearly, the relative “error” in the stepsizes is very 
small. Of course, since it is proportional to 

tive, and possesses the facility to control the accuracy 
with which the stepsize is determined. The algorithm 
caters for complex stiffness constants, which can arise in 
IVP systems, and can be implemented in vectorized or 
for-loop form, with the former appearing to be slightly 
faster in terms of execution time. Features of the algo-
rithm have been ably demonstrated with respect to the 
RK3 and RK4 methods. Indeed, we expect that the algo-
rithm will be most useful when using RK3 and RK4 to 
solve moderately stiff problems, although it can easily be 
used with explicit RK methods of higher order. 
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The following is a MATLAB function file implementing 

r RK4 by 
changing the stability function in the tenth line. Text in 
small font to the right is commentary. 

 
function [f1] = STIFFSTEPSIZERK3(r1,r2,tol,lambda); 

Appendix the algorithm for RK3. It is easily modified fo

 lambda must be a row vector 

M = length(lambda); number of stiffness constants 

D = r2-r1;  

N = ceil(D/tol);  

newtol = D/N; this is *  

unitlambda = lambda./abs(lambda); this is ̂  

A = repmat([1:N]',1,M); this is A  

L = repmat(unitlambda,N,1); this is L  

Z = (A*newtol+r1).*L; .* is the MATLAB notation for ⊠ 

R = 1 + Z + Z.^2/2 + Z.^3/6; this is  R Z   for RK3 

I = find(abs(R)<1); this finds   1R Z    

B = zeros(N,M);  

B(I) = Z(I); this places the corresponding entries of Z  into a 
matrix B whose other entries are all zero 

h = max(abs(B))./abs(lambda); 
max(abs(B)) finds the entry in each column of B of 
largest magnitude; these are the

[f1] = min(h); output 

 ,c kz . 
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