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Abstract 
 
Many equations possess soliton resonances phenomenon, this paper studies the soliton resonances of the 
nonisospectral modified Kadomtsev-Petviashvili (mKP) equation by asymptotic analysis. 
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1. Introduction 
 
In the process of searching for explicit solutions, quite a 
few systematic methods have been developed, such as 
inverse scattering transformation [1], Darboux transfor-
mations [2], Hirota’s bilinear method [3-5], and so on. 
Among them, the bilinear method first proposed by Hi-
rota provides us with a comprehensive approach to con-
struct exact solutions of nonlinear evolution equations 
(NEEs). Meanwhile, as the interacting of the solution, 
soliton resonance has been studied in many papers. Miles 
obtained resonantly interacting solitary waves of KP 
equation [6], these solutions are coherent structures that 
describe the diffraction of a soliton at a corner, and sug-
gest that, under certain conditions, a KP soliton can’t 
turn at a convex corner without separating or otherwise 
losing its identity. Thus, these structures provide a solu-
tion of the problem of “Mach reflection” in water waves, 
and this phenomenon is now known as soliton resonance. 
Asymptotic analysis is a very important tool in studying 
the behaviors of soliton solutions, we call the asymptotic 
line soliton solutions as  and as  the 
incoming and outgoing line soliton solutions, respec-
tively. The amplitudes, directions and even the number 
of incoming solitons are in general different from those 
of the outgoing ones, when resonance occurs two soliton 
solutions under certain condition resonate and create a 
new soliton solution. 

y   y  

Multisoliton solutions exhibiting nontrivial spatial 
structures and interaction patterns were found in many 
well-known soliton equations. Hirota studied resonances 
of solitons in one-dimensional space theoretically taking 

the Sawada-Kotera equation with a nonvanishing bound-
ary condition as an example by his bilinear method [7], 
in which he pointed out that two solitons at the resonant 
state fused after colliding with each other, or a soliton 
splited into two solitons. Other (1 + 1)-dimensional space 
equations like KdV-SK and Hirota-Satsuma equations [8] 
and Boussinesq equation [9]. 

However more emphases are placed on (2 + 1)-dimen- 
sional ones, the most relevant with ours like the follow-
ing: Wadati clarified the fundamental properties of the 
soliton in KP equation [10], Medina then went further in 
this equation [11], Pashaev created four virtual soliton 
resonance solution for KP-II [12], Biondini made use of 
tau-function in Wronskian to study it [13], after that Iso-
jima studied the parameter regions for resonance and 
also study the “spider web”-like solution for cKP system 
[14,15], the approach of the Reference [16] for MKP-II 
equation allows audiences to interpret the resonance 
soliton as a composite object of two dissipative solitons 
in (1 + 1) dimensions, Hao investigated the resonance of 
two line solitons of the nonisospectral KP equation [17] 
which classified the resonance condition clearly. Reso-
nance can also occur in (3 + 1)-dimensional system [18] 
and even multi-dimensional space [19,20]. 

In recent years, much attention has been paid to the 
study of nonisospectral systems [21], as nonisospectral 
evolution equations are of physical and mathematical 
importance, which can be used to describe solitary waves 
in a certain type of non-uniform media with a relaxation 
effect. The aim of this paper is to clarify the fundamental 
properties of the soliton resonances in the (2 + 1)-dimen- 
sional nonisospectral mKP equation 
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whose Wronskian and Grammian type solutions have 
been studied by Deng [22] and Zhang [23] respectively. 

This letter is organized as follows: in Section 2, the 2- 
and 3-soliton solution of Equation (1.1) will be presented 
using Hirota’s bilinear method. Then 2- and 3-soliton 
resonances will be studied in Sections 3 and 4 respec-
tively. Finally, concluding remarks are given in Section 
5. 
 
2. 2- and 3-Soliton Solutions of the  

Nonisospectral mKP Equation 
 

Through the transformation log
x

g
u

f

 
 
 





, Equation (1.1)  

can be transformed into the bilinear form 

2 0y xD g f D g f               (2.1a) 
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where D is the well-known Hirota bilinear operator 
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where the sum is taken over all possible combinations of 
, then the first three soliton 

solutions are 
   0,1  1,2, ,j j   
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where  
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ij  ,  and i, , ,i i i ik q a b   are all functions 
corresponding to t, which satisfy the following disper-
sion relations: 
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What’s more, in order to avoid the divergence of u, we 
suppose if  and ig  are all positive. Let i i ik q    
and i ik q i  , then i  can be rewritten as 

 i i ix y i       and without lose of generality we 
suppose  ji j  i  . 
 
3. 2-Solitons 
 
In general, a soliton is observed when the following two 
conditions are satisfied: 

1) Two terms of Equation (2.3b) are so large that other 
two terms are neglected. 

2) Under the condition 1), the large two terms are of 
the same order. Under these two conditions, the peak of 
the soliton is on the line tani cons t  . 
 
3.1. Pure 2-Soliton 
 
When 0 iA    and 1 , for the limit , 

1 2

y  
   the condition 1) and 2) are satisfied in two re-
gions: 
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we will use the simplified for later convenience. 

 

Similarly, when, ,  y  
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 Above all, both  

of them have four arms and displays the regular interac-
tion, that means two soliton solutions maintain their 
original amplitudes and velocities during the interaction 
(See Figure 1). 
 
3.2. Soliton Resonances 
 
When 12 , or 12 , the phase shift 0A   A   12 , 
becomes , the length of the intermediate region be-
comes infinite, this may be thought as “soliton reso-
nance”, and the dispersion relation plays a major role in 
producing the soliton resonance. Further more, as  

 Figure 1. Pure 2-soliton solution. 
 

1 21 1 1
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by taking , Equation (3.5) becomes  12 0A  

1 2 1
2 1 2 1 2e e eg a a a a 2      

2

        (3.6a) 

Similarly we call them as “minus resonance” and “plus resonance” 
respectively. 1 2 1

2 1 2 1 2e e ef b b b b      

1e

         (3.6a) 
 

The above substitutions are nothing but only a transla-
tion of the coordinates. 

3.2.1. Minus Resonance 
Case 1. By taking 12 , Equation (2.3b) becomes 

2 1 2

0A  
1 2ea1 eg a     , 1

2 1 21 e ef b b The corresponding asymptotic forms are Equation (3.7). 2   , from which 
we have the asymptotic forms (see Equation (3.3)). The solution has three arms again. 
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into Equation (2.4b), get 
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Case 2. Substituting 2 1
12e A   into (2.3b), then taking  we get 12A  
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The above asymptotic analysis discusses the 2-soliton 

solution and it’s two type of resonances, minus reso-
nance and plus resonance, by which we know that they 
all possess three arms, this theory can be illustrated by 
Figure 2, and furthermore, they show that when reso-
nance occurs, interaction of two high and steep waves 
can produce a new weak one. 

We have assumed that 1 2  , the case of 12 
1 2

 is 
similar, however it is different in the case of   . Let 

1x y Z  , then 
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where two soliton lie in parallel, this solution is similar 
to 2-soliton solution of the KdV equation. 
 
4. 3-Solitons 
 
In this section, we analyze the behaviors in asymptotic 
regions about typical four types of solutions. 
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The above limit analysis can prove that 3-soliton solu-
tion has 6 arms on theory, Figure 3 can illustrate it too. 

The soliton resonance occurs when one or two or even 
three of i j   , we call them 1-, 2-, 3-resonance 
solution respectively, each of which include minus reso-
nance and plus resonance, in the following, we will dis-
cuss them all. 
 
4.1. 1-Resonance 
 
In this case, one of i j   , we suppose 13  

0A  
 

without lose of generality, that is equal to 13  
(minus 1-resonance) and  (plus 1-resonance). 13A  
 
4.1.1. Minus 1-Resonance 
Taking the limit of , Equation (2.3c) becomes 13 0A  
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consequently, the asymptotic forms of the solution are 
iven by g  
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(a)                                                           (b) 

 

   
(c)                                                           (d) 

Figure 2. Minus and plus resonance of 2-soliton solution, (a) 2-soliton minus 1; (b) 2-soliton minus case 2; (c) 2-soliton plus 1; 
(d) 2-soliton plus case 2. 
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So minus 1-resonance of 2-soliton solution has five 
arms (See Figure 4(a)). 
 
4.1.2. Plus 1-Resonance 
Taking the limit of , Equation (2.3c) becomes 13A  
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It is clearly that plus 1-resonance of 2-soliton solution  
 

,

,
  (4.5)  

Figure 3. Pure 3-soliton solution. 
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only has one arm, and the figure is similar to that of 
1-solition solution. 
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Case 3. Substituting 2
12 23e eA A  
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 into Equation 
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4.2.2. Minus 2-Resonance 
In the limit of  Equation (2.3c) 
can be rewritten as 
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The case of condition 12  and 13,       
13 23,         are similar. 
By the asymptotic analysis above, we know that two 

types of 2-resonance 3-soliton solution possess four arms 
(See Figures 4(b)-(d)), the 2-soliton solution has also 
four arms, but differently, the behaviors of the former in 
the intermediate region are not stationary. 
 
4.3. 3-Resonance 
 
For the plus 3-resonance, substituting 1 1

12e eA ,   
32 2

23 13e e , e eA A 3   
12 

 into Equation (2.3c), and 
taking the limit of , we get 13 23, ,A A  A 
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     (4.11) this case is like 1-soliton solution, which only has one 

arm. 
For the minus 3-resonance, by taking the limit    
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(a)                                                           (b) 

 

   
(c)                                                           (d) 

 

   
(e)                                                           (f) 

Figure 4. Minus and plus resonance of 3-soliton solution, (a) 3-soliton minus 1-resonance; (b) 3-soliton plus 2-resonance case 
1; (c) 3-soliton plus 2-resonance case 2; (d) 3-soliton plus 2-resonance case 3; (e) 3-soliton minus 2-resonance; (f) 3-soliton 

inus 3-resonance. m    
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12 13 230, 0, 0A A A       of the Equation (2.3c), 
we have 
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which has four arms (See Figure 4(f)). 
 
5. Conclusions 
 
In this work, we have primarily focused on the asymp-
totic behavior of the $2$- and $3$-soliton solution as 

 and their interactions in the .x y   xy  plane. 
Generally, in the case of multi-soliton, saying N-soliton 
solutions, it has 21-, 2-, , -NC  resonance N-soliton so-
lutions, and all of them have minus and plus ones. The 
condition will be more complicated with the increase of 
N. A full characterization of interaction patterns of the 
general ones is an important open problem, which is left 
for further study. It is pointed out that the amplification 
of the amplitude has been experimentally observed and 
has practical in maritime security and coastal engineering. 
It has been found out that many soliton equations have 
resonance phenomenon which will be helpful in making 
further investigation on the interaction and energy dis-
tribution of gravity waves, and evaluating the impact on 
the ship traffic on the surface of water. We expect that 
the results presented in this work will be useful to study 
solitonic solutions in a variety of integrable systems. 
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