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Abstract

Two existing methods for solving a class of fuzzy linear programming (FLP) problems involving symmetric
trapezoidal fuzzy numbers without converting them to crisp linear programming problems are the fuzzy pri-
mal simplex method proposed by Ganesan and Veeramani [1] and the fuzzy dual simplex method proposed
by Ebrahimnejad and Nasseri [2]. The former method is not applicable when a primal basic feasible solution
is not easily at hand and the later method needs to an initial dual basic feasible solution. In this paper, we
develop a novel approach namely the primal-dual simplex algorithm to overcome mentioned shortcomings.
A numerical example is given to illustrate the proposed approach.
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1. Introduction

In optimizing real world systems, one usually ends up
with a linear or nonlinear programming problem. For
many cases, the coefficients involved in the objective
and constraint functions are imprecise in nature and have
to be interpreted as fuzzy numbers to reflect the real
world situation. The resulting mathematical problem is
therefore referred to as a fuzzy mathematical program-
ming problem. After the pioneering work on fuzzy linear
programming by Tanaka et al. [3,4] and Zimmermann
[5], several kinds of fuzzy linear programming problems
have appeared in the literature and different methods
have been proposed to solve such problems [6-12]. One
important class of these methods that has been high-
lighted by many researches is based on comparing of
fuzzy numbers using ranking functions. Based on this
idea, Maleki et al. [13] proposed a simple method for
solving fuzzy number linear programming (FNLP) pro-
blems. They also applied an special kind of FNLP pro-
blems, involving fuzzy numbers only in objective func-
tion, as an auxiliary problem for solving fuzzy variable

linear programming (FVLP) problems. Ebrahimnejad et al.

[14] developed their method for solving bounded linear
programming with fuzzy cost coefficients. Then Mahdavi-
Amiri and Nasseri [15] used the certain linear ranking
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function to define the dual of FNLP problem as a similar
problem that lead to an efficient algorithm called the dual
simplex algorithm [16] for solving FNLP problems.
Based on these algorithms, Ebrahimnejad [17] inves-
tigated the concept of sensitivity analysis in FNLP pro-
blems. Of course, Mahdavi-Amiri and Nasseri [18] and
Mahdavi-Amiri et al. [19] proposed two efficient algo-
rithms for solving FVLP problems directly without need
of any auxiliary problem. Moreover, Nasseri and Ebra-
himnejad [20] suggested the fuzzy primal simplex me-
thod to solve the flexible linear programming problems
directly without solving any auxiliary problem. Then,
Ebrahimnejad et al. [6] gave another efficient method
namely primal-dual simplex method to obtain the fuzzy
solution of FVLP problems. Ebrahimnejad and Nasseri
[21] used the complementary slackness for solving both
FNLP problem and FVLP problem. Hosseinzadeh Lotfi
et al. [9] discussed full fuzzy linear programming (FFLP)
problems of which all parameters and variable are
triangular fuzzy numbers. They used the concept of the
symmetric triangular fuzzy number and proposed an
approach to defuzzify a general fuzzy quantity. After that
Kumar et al. [11] proposed a new method to find the
fuzzy optimal solution of same type of fuzzy linear
programming problems.

Recently Ganesan and Veeramani [1] introduced a
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new method based on primal simplex algorithm for
solving linear programming problem with symmetric
trapezoidal fuzzy numbers without converting them to
crisp linear programming problems. Ebrahimnejad et al.
[7] extended their method for situations in which some or
all variables are restricted to lie within fuzzy lower and
fuzzy upper bounds. After that, Nasseri and Mahdavi-
Amiri [22] and Nasseri et al. [23] developed the concept
of duality of such problems that led to a new method
based on dual simplex algorithm [2]. However, dual
simplex algorithm begins with a basic (not necessarily
feasible) dual solution and proceeds by pivoting through
a series of dual basic fuzzy solution until the associated
complementary primal basic solution is feasible. In this
paper, we describe a new method for solving linear
programming problem with symmetric trapezoidal fuzzy
numbers, called the primal-dual algorithm, similar to the
dual simplex method, which begins with dual feasibility
and proceeds to obtain primal feasibility while main-
taining complementary slackness. An important diffe-
rence between the dual simplex method and the dual
simplex method is that the primal-dual simplex method
does not require a dual feasible solution to be basic.

This paper is organized as follows: In Section 2, we
give some necessary concepts of fuzzy set theory. A
review of linear programming problems with symmetric
trapezoidal fuzzy numbers and two methods for solving
such fuzzy problems are given in Section 3. We develop
and present a fuzzy primal-dual algorithm to solve the
fuzzy linear programming problems in Section 4 and
explain it by an illustrative example. Finally, we con-
clude in Section 5.

2. Preliminaries

In this section, we review the fundamental notions of
fuzzy set theory (see [1,7,24]).

Definition 2.1. A fuzzy number on R (real line) is
said to be a symmetric trapezoidal fuzzy number if there
exist real numbers a- and a’, a“-<a” and a>0,
such that

X a-a" L L
4 , xela"-g,a
a (04
1, XG[aL,aU]
a(x)=
() U
AT Xe[a ,a +a}
a (04
0, otherwise.

We denote a symmetric trapezoidal fuzzy number &
by éz(aL,aU,a,a), where (aL—a,aU +a) is the

support of & and [aL,aU] its core, and the set of all
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symmetric trapezoidal fuzzy numbers by F (R) .
Let a=(a",a",a,a) and b=(b",b", 5 8) betwo
symmetric trapezoidal fuzzy numbers. Then the arith-

metic operationson & and b are given by (taken from
[1]):

a+b=(a"+b",a’ +b’,a+p,a+p)

a-b=(a"-b",a" -b",a+B.a+p)

~_[(a“+a” \[b"+b" a-+a’ |(b-+b’
ab = -,
2 2 2 2

+w,|a“ﬁ+b“a|,|a“ﬂ+b“a|J

where

w= 2;1 ot = min{aLbL,aLbU,anL,anU},
t, =max{a‘b",a"b”,a’b",a"b" }.
From the above definition it can be seen that
A>0, 1eR; 1d= (ﬂaL,ﬂaU ,la,la)

1<0, 1eR: Ja= (/lau ,/IaL,—/la,—/la).

Note that depending upon the need, one can also use a
smaller @ in the definition of multiplication involving
symmetric trapezoidal fuzzy numbers.

Definition 2.2. Let é:(aL,aU,a,a) and

6=(bL,bU ,ﬂ,ﬁ) be two symmetric trapezoidal fuzzy
numbers. Define the relations < and ~ as given below:

a=<b (or b>=a)ifandonly if

(aL —a)+(a” +a) . (bL—ﬂ)+(bU +ﬂ)

b 2 2 ’
that is a’+a’ < b" +b" (in this case, we may write
a<b),

2) or aL;aU =bL;bU ,b-<a" and a” <b",

3) or aL;aU :bL;bU ,b-=a",a’ =p" and
a<lp.

Note that in cases (2) and (3), we also write a=~b
and say that & and b are equivalent.
Remark 2.1. Two symmetric trapezoidal fuzzy num-

bers a=(a",a”,«), b=(b*,b”,3) are equivalent if
b- +b”

,
Definition 2.3. For any trapezoidal fuzzy number &,

L U
and only if a ;a =
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we define a0, if there exist £>0 and «>0 such
that &= (-¢,&,). We also denote (-¢,&,) by 0.
Note that O is equivalent to (0,0,0)=0. Naturally,
one may consider 0=(0,0,0) as the zero symmetric
trapezoidal fuzzy number.

Remark 2.2. If %~0, then X is said to be a zero
symmetric trapezoidal fuzzy number. It is to be noted
that if X=0, then X~0, but the converse need not be
true. If X#0 (thatis X is not equivalent to 0), then
it is said to be a non-zero symmetric trapezoidal fuzzy
number. It is to be noted that if X#0, then X0, but

the converse need not be true. If X>=0 ()ij)) and

% # 0, then is said to be a positive (negative) symmetric
trapezoidal fuzzy number and is denoted by
>0 (x<0).Nowif &, beF(R),itiseasy toshow
thatif a>b,then a-b>0.

The following lemma immediately follows form De-
finition 2.1. 3

Lemma 2.1. If 4beF(R), and ceR such that
c#0,then

1) ab~ba.

2) 0(56) ~ (Cé)ﬁ ~ é(CB) .

The two following results are taken from [1].

Lemma 2.2. For any symmetric trapezoidal fuzzy
number &b and €, we have:

1) é(a+6) z(63+66).

2) ¢(a-b)~(ca-ch).

Lemma2.3.1f 4beF(R), then

1) The relation = is a partial order relation on the set
of symmetric trapezoidal fuzzy numbers.

2) The relation =< is a linear order relation on the set
of symmetric trapezoidal fuzzy numbers.

3) For any two symmetric trapezoidal fuzzy numbers
a and b, if a<b then a=<(1-1)a+b=b, for
all 4, 0<4<1.

3. Fuzzy Linear Programming

Ganesan and Veeramani [1] introduced a new type of
fuzzy arithmetic for symmetric trapezoidal fuzzy num-
bers. Here, we first review these new notions which are
useful in our further consideration. After that we review
the concept of duality for such problems proposed by
Nasseri and Mahdavi-Amiri [22] and Nasseri et al. [23].

3.1. A Fuzzy Primal Simplex Algorithm

Definition 3.1. A linear programming problem with tra-
pezoidal fuzzy number is defined as [1]:
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min 7 = ¢&X
st. AX=b (1)
% =0

where b e F(R))m & e F(R))n,AeRmx” are given
and Xe(F (R))n is to be determined.

Definition 3.2. We say that a fuzzy vector X e (F (R))n
is a feasible solution to (1) if and only if x satisfies the
constraints and non-negativity restrictions of the pro-
blem.

Definition 3.3. A fuzzy feasible solution X. is said to
be a fuzzy optimal solution to (1), if for all fuzzy feasible
solution X for (1), we have €X. <¢€X.

Definition 3.4. Consider fuzzy linear programming
problem (1) in its standard form as follows:

min Z~¢
st. AR~b )
£=0

where the parameters of the problem are as defined in (1).
Let A=[a,] . Assume rank(A)=m. Partition A

as [B N] where B, mxm , is nonsingular. It is
obvious that rank(B)=m. Let y, be the solution to
By = a, . It is apparent that the basic solution

xB=(xBl,...,gBm)Tzsflﬁ,xNzé 3)

is a solution of Ax=b. In fact, X=(%, %' )T. If
Xz = 0, then the fuzzy basic solution is feasible and the
corresponding fuzzy objective value is: Z =~ €;X; , where
Cy = CBl,u-,CBm). Now, corresponding to every non-
basic variable x;,1<j<n,j=B,,i=1,--,m, define

7, ~ Gy, ~C;B™a;. 4

Below, we state some important results concerning to
the optimality conditions improving a fuzzy feasible
solution and unbounded criteria (taken from [1]).

Theorem 3.1. If we have a fuzzy basic feasible solu-
tion with fuzzy objective value Z such that Z, > ¢,
for some nonbasic variable x,, and y, £0, then it is
possible to obtain a new basic feasible solution with new
fuzzy objective value 7 , that satisfies 7 < 7.

Theorem 3.2. If we have a fuzzy basic feasible solu-
tion with Z > € for some nonbasic variable x,, and
Yy, <0, then the problem (2) has an unbounded solution.

Theorem 3.3. (Optimality conditions) If a fuzzy basic
solution %, =B7'b, X, =0 is feasible to (2) and
Z; X¢; for all j, 1<j<n, then the fuzzy basic
solution is a fuzzy optimal solution to (2).

Ganesan and Veeramani [1] based on these theorems
proposed a new algorithm for solving problem (2). Here,
we give a summary of their method in tableau format.
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Algorithm 3.1. A fuzzy primal simplex method

Initialization step

Suppose an initial fuzzy basic feasible solution with
basis B is at hand. Form the following initial Table 1.

Main step

1) Calculate Z; —¢; for all nonbasic variables. Sup-
pose Z;—¢; =(hi,h h;,h;). Let

J L B

U L — U L

hY +he = max{h}' +hj}
where T is the index set of the current nonbasic
variables.

If h!+h- <0, then stop; the current solution is
optimal. Otherwise, go to (2).

2) Let y, =B™'a . If y, <0, then stop; the problem
is unbounded. Otherwise, suppose b, =(b”,b", e, c )
and determine the index r as follows:

b_ru+brL . {EU+EL
= min

. yy >0},
Y Leism Yik ‘ }

3) Update the tableau by pivoting at y, . Update the
fuzzy basic and nonbasic variables where X, enters the

basis and >~<Br leaves the basis, and go to (1).

3.2. A Fuzzy Dual Simplex Algorithm

Definition 3.5. Dual of the FLP problem (1) is defined as
follows [22,23] :

e

max
s.t.

?

~ Wb
A=
W0

(g2}

Q)

where W= (W,,---,W,) e F(R)" is including the fuzzy
variables corresponding to constraints of problem (1). In
fact, W, i=1,---,m is defined for the ith constraint of
the problem (1). We name this problem as the DFLP
problem.

We shall discuss here the relationships between the
FLP problem and its corresponding dual and omit the
proofs (taken from Nasseri and Mahdavi-Amiri [22] and
Nasseri et al. [23]).

Theorem 3.4. (The weak duality property.) If %, and
W, are fuzzy feasible solutions to FLP and DFLP

problems, respectively, then €X, > Wb .

Corollary 3.1. If X, and W, are fuzzy feasible so-

Table 1. The initial primal simplex tableau.

Basis X

z 0 Z,-¢C, =€

Xg
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lutions to FLP and DFLP problems, respectively, and
&%, ~W,b, then %, and W, are fuzzy optimal solu-
tions to their respective problems.

Corollary 3.2. If any one of the FLP or DFLP
problem is unbounded, then the other problem has no
fuzzy feasible solution.

Theorem 3.5. (Strong duality.) If any one of the FLP
or DFLP problem has an fuzzy optimal solution, then
both problems have fuzzy optimal solutions and the two
optimal objective fuzzy values are equal. (In fact, if X
is fuzzy optimal solution of the primal problem then the
fuzzy vector W =¢,B™', where B is the optimal basis,
is a fuzzy optimal solution of the dual problem).

Theorem 3.6. (Complementary slackness). Suppose
X. and W. are feasible solutions of the FLP problem
and its corresponding dual, the DFLP problem, respec-
tively. Then %X. and W. are respectively optimal if and
only if

(RA—C)% ~0, W (b-Ax.)~0.

Ebrahimnejad and Nasseri [2] using the above results,
introduced a new fuzzy dual algorithm for solving pro-
blem (2).

Algorithm 3.2. A fuzzy dual simplex algorithm

Initialization step

Suppose that basis B be dual feasible for the pro-
blem (2). Form the Tableau 3.1 as an initial dual feasible
simplex tableau. Suppose Z;—¢; = (h,h} a;,a;), so
h! +h; <0 forall j.

Main step  _ .

1) Suppose b =B . If b>=0, then Stop; the
current fuzzy solution is optimal.

Else suppose gz(EL b, ;) and let

B +B* = min{B” +5"}.
I<i<m
2)If y, >0 forall j,then Stop; the problem (2) is
infeasible.
Else select the pivot column k by the following test:

U tht h? +h:
M:m_in ] ) y,; <O0¢.
yrk I<jsn yrj

3) Update the tableau by pivoting at y, . Update the
fuzzy basic and nonbasic variables where x, enters the
basis and Xg, leaves the basis, and go to (1).

4. A Fuzzy Primal-Dual Algorithm

We note that the method which is proposed by Ganesan
and Veeramani in [1], starts with a fuzzy basic feasible
solution for FLP and moves to an optimal basis by
walking through a sequence of fuzzy feasible bases of
FLP. All the bases with the possible exception of the
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optimal basis obtained in fuzzy primal simplex algorithm
don’t satisfy the optimality criteria for FLP or feasibility
condition for DFLP. But their method has no efficient
when a primal basic feasible solution is not at hand. So,
Ebrahimnejad and Nasseri [2] developed a new dual
simplex algorithm to overcome this shortcoming by using
the duality results which have been proposed by Nasseri
and Mahdavi-Amiri [22] and Nasseri et al. [23]. This
algorithm starts with a dual basic feasible solution, but
primal basic infeasible solution and walks to an optimal
solution by moving among adjacent dual basic feasible
solutions. However, the dual simplex method for solving
FLP problem needs to an initial dual basic feasible
solution. Here, we develop the fuzzified version of
conventional primal-dual method of linear programming
problems that any dual feasible solution, whether basic
or not, is adequate to initiate this method.
Corollary 4.1. [22,23] The optimality criteria

Z;-¢ <0, for all j, for the FLP problem is equi-
valent to the feasibility condition for the DFLP problem.

To explain the main strategy employed by this method,

we consider the following standard FLP:

min 7 =~ €X
st. AX~b (6)
£=0

Let W=(W,W,,-,W,) be the row of dual vector

variables. The Dual of FLP problem (6) is

max 0~ Wh
o ()
st. WA>C
The complementary slackness conditions are
(¢,-wa;)%; ~0 j=1,-n (8)

Let W be the Jnitial fuzzy dual feasible solution.
Suppose Q—{j Wa -C; ~0!. Now consider the fol-
lowing problem known as the restricted fuzzy primal

problem corresponding to w.
min > 0%, +1%,
ieQ
;lajxj IX, ~b ©)
%, =0, forjeQ
%, =0,
where %, =(%,, %, ) e F(R)" and
1= ((1,1,0,0), +(1,1,0,0)) e (F(R))".

The restricted fuzzy primal problem (9) is now solved
by the method which is proposed by Ganesan and
Veeramani in [1] beginning the fuzzy feasible basic
solution X, . In this process, once an artificial variable
X.. drops out of the basic variables, discard it from the

Jja
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problem. Let x and %° be the fuzzy primal solution

and fuzzy objective value obtained at termination in this
restricted fuzzy primal problem, respectively. If %° =0,
x and w are optimal to (6) and (7), respectively. If

®-0,let V be the optimal solution to the dual of the
restncted fuzzy primal problem (9).

Now, we construct the new fuzzy dual solution for (6)
such that all the basic primal variables in the restricted
fuzzy primal problem remain in the new restricted fuzzy
primal problem and in addition, at least one primal
variables that did not belong to the set Q would get
passed to restricted fuzzy primal problem. Furthermore,
this variable would reduced %° if introduced in the
basic.

In order to construct such a dual fuzzy vector, consider

the following fuzzy dual w,where o >0:

Then

waj—cj

W=W+aV
=(W+ \7)a

~¢, =(Wa, ¢, )+a(7a, ) (10)

Now, if X; with jeQ is a basic variable in the
restricted fuzzy primal problem, then from complementary
slackness Va; ~0 and hence Wa -¢; ~0, permitting
J inthe new restricted fuzzy pnmal problem If jeQ
and va <0, then from (10) we have Wa -C; <0.
Flnally, if jeQ and va >0, we show there is a
a >0 such that Wa -C; <O for j¢Q with at least
one component equal to fuzzy zero.

First, we show in this case for each j thereisan «;

such that Wa -¢; (wa - )+a (va )~0 Let
Wa; — € = (W, W1y, ), W <,
wa; —¢; = (W, W,;,h;,h;) <0
PP TRALTI
and
a, = (6,0, k, k), 9, <0, %050

Now Wa, —¢; =(v:vaj —Cj)+aj (Gaj)z
if

0, if and only

(W +avlj,W +aVJ,hJ+a kJ,h]+ak) 0
if and only if
\/Avlj+aj\71j =—W2j—aj\72j
if and only if
a.(01j+\72j)=-(w1.+w2j)

if and only if
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Note that «; >0, since V; +V,; >0 and
W,; +W,; <0. That is, if we choose «; as above, then
wa; —€; =0. Now, we define « as follows:
Wy + Wy

a=q =——2 "X -min uva =~ 0.
- U = ~ ~ - h
¥y + Vi, i V4V,

By definition of «, we see wa, —¢ ~0.In addition,
we show Wa -¢; <0 for each j with va, ~0.
From deflnltlon of a, we have a<q; for aII j-
Thus

Ol(Vlj +V2j)SOtj (Vlj +V2j).

So, we have

(le +W2j)+a(\71j +v2j)s(wlj +\fv2j)+aj( i +\72j).
or
(8 + )+ (i +at, )
<5 (8 + e, )+ (B, +,0,,))
that is

(v:vaj —Cj)+a(\7a )<(v:va

Ol

)+ (va))

But, we know (V:Vaj—cj)-i-aj (Oaj)zﬁ. Therefore
wa; —¢; :(v:vaj —Cj)+a(\7aj)j 0. Hence, modifying
the dual fuzzy vector leads to a new feasible dual fuzzy
solution. Also, all the variables that belonged to the
restricted fuzzy primal problem basis are passed to the
new basis. In addition, a new fuzzy variable X, thatisa
candidate to enter the basis, is passed to the restricted
fuzzy primal problem. Thus, we continue from the
present restricted fuzzy primal problem basis by entering
X, which leads to a potential reduction in X°. This
process is continued until %° ~0 |n which case we
have an optimal solution or else %° >0 and va, =<0

for all j¢ Q. We explain this case as Theorem 4.1 as
below.

Theorem 4.1. If at the end of the restricted fuzzy
primal problem, we have %°>0 and va, <0 for all
j ¢ Q, then the FLP (6) has no solution. L.

_Proof. In this case consider W=W+aV . Since

aj—cJ =<0, for all j and by -assumption vaJ <0
for all j¢Q, then from (10), W is a dual feasible
fuzzy solution for all « >0 . In addition, the dual
objective fuzzy value is

Wb ~ (v:v+a\7)5 ~ Wb + aVb

Since %° and Vb are the optimal objective values
for the restricted fuzzy primal problem and its dual, we
have Vb~ %°. Also %°>0, so Wb can be increased
indefinitely by choosing « arbitrarily large. Therefore
the DFLP is unbounded and hence from corollary 3.2 the
FLP is infeasible.

Algorithm 4.1. A fuzzy primal-dual simplex algo-
rithm

1) {dual feasibility} Choose a fuzzy vector W such
that Z; -¢; <0 forall j.

2) Q = {J wa; —¢; ~0} and solve the restricted
fuzzy primal problem If X, = 0 then Stop (the current
solution is optimal).

Else let V be the optimal dual fuzzy solution to the
restricted fuzzy primal problem.

3) If Va; =< 0, forall j then stop (the FLP problem

is |nfea5|ble)

Else let

va >O}

and replace W by W+av and go to (2).

For an illustration of the fuzzy primal-dual algorithm,
we consider the following example.

Example 4.1. Consider the FLP problem: (See (11))

Thus, with introducing the slack variables x; and
X, , the above FLP problem reduces to the standard form:
(See (12))

Wy, + W, W W
a:ak:_uzmm{ J—
J

Uy + Vo vy +v2J

min  2~(1,51,1)% +(2,6,1,1)% +(5,7,2,2)% +(6,8,1,1)%, +(0,2,1,1) %

St 2% — %, + % +6%, —5% = (4,8,2,2)

11)

X+ X, + 2% + X, + 2% 5(1,5,1,2)

R, %, %, %, %,>= 0

min  Z~(1,51,1)%,

St 2% —%, +%, +6%, 5% — %

+(2,6,1,1)%, +(5,7,2,2) % +(6,8,1,1)%, +(0,2,1,1) %,

~(4,8,2,2) 12)

%+ %, +2% + %, +2% - %, ~(1,5,1,2)

X, %, %3, %, %, %5, %, = 0

Copyright © 2011 SciRes.
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The dual problem is given by the following:

max W= (4,8,2,2)W +(1,51,1)W,
st 2w +W, <(1,51,1)
—W, +W, <(2,6,2,2)
W, +2W, <(5,7,2,2)
6W, +W, <(6,8,1,1) (13)
—5W, +2W, <(0,2,1,1)
<0
W, <0
W, , W, unrestricted.

A

Wy

Now we solve the FLP problem (13) by the fuzzy
primal-dual simplex algorithm.
Initialization step: The initial fuzzy dual solution is

given by W:(Wl,wz):(f),ﬁ).

First iteration: Substituting W:(WI,WZ):(G,C)) in
each dual constraint, we find that the last two dual
constraints hold at equality. Thus, ©Q={6,7}. The rest-
ricted fuzzy primal problem becomes as follows:

min  (1,1,0,0)%; +(1,1,0,0) %,
st —% +% ~(4,8,2,2)
~ % +% ~(1,5,1,1)

%, %, %, X = 0

(14)

where %, and X, are the artificial fuzzy variables.
Solving this problem by Ganesan’s method [7] gives the
optimal fuzzy solution and the optimal objective fuzzy
value as follows:

)?6 zO,)~(7 z(),)~(8 z(4,8,2,2),

% ~(1,5,1,1),%° ~(5,12,3,3).
Complementary slackness gives the dual solution as
=(%,%)=((2,1,0,0),(1,1,0,0)). So, we have
Va, ~(3,3,0,0)~0, Va, ~0, Va, ~(3,3,0,0)~0,

va, ~(7,7,0,0)~0 and Va ~(-5,-5,0,0)< 0. Thus,
a is determined as follows:

. -5-1 -7-5 -6-8
a=min<— - - =
3+3 3+3 T+7

n <n

and we replace W by
((0,0,0,0),(0,0,0,0))+1((1,1,0,0),(1,1,0,0))
=((1,1,0,0),(1,1,0,0)) '
Second iteration: Recomputing of Q with new dual
solution W=~ ((1,1,0,0),(1,1,0,0)) , gives Q={1,4}
and the following new restricted fuzzy primal problem:;

Copyright © 2011 SciRes.

min (1,1,0,0) % +(1,1,0,0) %
st 2% +6%, +% ~(4,8,2,2)
%, + %, +% ~(1,5,1,1)
%, Ry %o, %o = 0
The optimal fuzzy solution to this problem is given by

(15)

% ~(2,411), X, ~ X~ %, ~0

with %° ~0. Thus, we have an optimal solution to the
main problems as follows:

% ~(2411), %[, xX =K, %~ %~ ~0.
Remark 4.1. If we want to solve the problem (11)
directly by use of Algorithm 3.1 proposed by Ganesan
and Veeramani [1], we must first solve the following
linear programming problem with introducing the slack
variables x; and x, and the fuzzy artificial fuzzy
variables x, and x,, which minimize the sum of the
artificial fuzzy variables to obtain a initial fuzzy basic
feasible solution:
min 7~(1,1,0,0)% +(1,1,0,0) %
St 2% — %, + %, +6%, —5% — % + %, ~(4,8,2,2)
R+ %, + 2% + K, + 2% — %, + % ~(1,5,1,2)
)zl'izlxy)zA’XS’)‘ZG')z?'iﬁ’ig ié
(16)
After finding a initial fuzzy basic feasible solution by
solving the problem (16), we must minimize the original
objective function of the problem (11). So, this process is
time consuming and has no efficiency computationally
for solving such problems in which an initial fuzzy basic
solution is not easily at hand.

5. Conclusions

Ganesan and Veeramani in [1] proposed a new approach
based on primal simplex algorithm to obtain the fuzzy
solution of fuzzy linear programming problem with
symmetric trapezoidal fuzzy numbers without converting
them to crisp linear programming problems. In this paper,
we reviewed the dual of a linear programming problem
with symmetric trapezoidal fuzzy numbers. Then, we
introduced a fuzzy primal-dual algorithm for solving the
FLP problems directly without converting them to crisp
linear programming problems, based on the interesting
results which have been established by Ganesan and
Veeramani [1]. This approach can be expected to be
efficient if an initial dual fuzzy solution can be computed
readily. This algorithm is also useful specially for
solving minimum cost flow problem with fuzzy para-
meters in which finding an initial dual feasible solution
turns out to be a trivial task. However, development of

AM
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network primal-dual simplex algorithm for solving such
problem in fuzzy environment may also produce inter-
secting results.
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