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Abstract 
Although many studies have explored the quality of Texas groundwater, very few have investi-
gated the concurrent distributions of more than one pollutant, which provides insight on the 
temporal and spatial behavior of constituents within and between aquifers. The purpose of this 
research is to study the multivariate spatial patterns of seven health-related Texas groundwater 
constituents, which are calcium (Ca), chloride (Cl), nitrate (NO3), sodium (Na), magnesium (Mg), 
sulfate (SO4), and potassium (K). Data is extracted from Texas Water Development Board’s data-
base including nine years: 2000 through 2008. A multivariate geostatistical model was developed 
to examine the interactions between the constituents. The model had seven dependent varia- 
bles—one for each of the constituents, and five independent variables: altitude, latitude, longitude, 
major aquifer and water level. Exploratory analyses show that the data has no temporal patterns, 
but hold spatial patterns as well as intrinsic correlation. The intrinsic correlation allowed for the 
use of a Kronecker form for the covariance matrix. The model was validated with a split-sample. 
Estimates of iteratively re-weighted generalized least squares converged after four iterations. 
Matern covariance function estimates are zero nugget, practical range is 44 miles, 0.8340 variance 
and kappa was fixed at 2. To show that our assumptions are reasonable and the choice of the mod-
el is appropriate, we perform residual validation and universal kriging. Moreover, prediction 
maps for the seven constituents are estimated from new locations data. The results point to an 
alarmingly increasing levels of these constituents’ concentrations, which calls for more intensive 
monitoring and groundwater management. 
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1. Introduction 
Groundwater is one of Texas natural resources that supplies the majority of the total water use in Texas [1]. 
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Many local groundwater management districts are organized on county lines rather than on natural boundaries of 
the aquifers. Few counties take their water from more than one aquifer [2]. Groundwater quality covers physical, 
chemical, and biological aspects. Physical water qualities include temperature, turbidity, color, taste, and odor 
[3]. The increasing demand for high quality groundwater has driven many studies to investigate how the consti-
tuents’ concentrations change over time and space, and what sources can be controlled in order to keep their le-
vels within the acceptable range. Higher concentrations negatively affect the environment and public health. 
Examples of groundwater pollution sources include salt water intrusion, fertilizer leakage, natural erosions, and 
mine discharge.  

This study focuses on the simultaneous spatial and temporal distributions of the seven most investigated 
groundwater constituents (five major and two minor constituents) over a nine-year period. A deeper understand-
ing of the factors affecting constituents’ levels may lead to a more successful and specialized programs designed 
at protecting groundwater from contamination. The results of this research project may be relevant to preventing 
and controlling groundwater contamination. 

2. Methods 
2.1. Data 
Data was obtained from the Texas Water Development Board Groundwater Database for all Texas wells from 
2000 through 2008. The samples were checked for flagged values to ensure acceptable results in terms of relia-
ble sampling, threshold conditions, or other criteria that can label the values as non-reliable. The wells are sam-
pled periodically every four years (Figure 1). R version 2.9.0 was used. Descriptive statistics were performed 
using the build-in functions within the stats package. Variograms were plotted using geoR package.  

2.2. Investigation of Temporal and Spatial Effects 
To investigate temporal effects, Fisher’s F-test was used to test the null hypothesis of non-changing variances 
between samples of the following years: 2000 versus 2004, 2001 versus 2005, 2002 versus 2006, 2003 versus 
2007 and 2004 versus 2008. Fisher’s F test p-values were all greater than the significance level of 0.05. Hence 
we cannot reject the null hypothesis of equal variances. Therefore, none of the constituents has shown any 
change in variance from the year 2000 to the year 2008. Repeated measures t-test was used to test the null hy-
pothesis of non-changing means for the seven constituents (calcium, chloride, magnesium, potassium, nitrate, 
sulfate, sodium). The test was run to compare sample pairs of the following years: 2000 versus 2004, 2001 ver-
sus 2005, 2002 versus 2006, 2003 versus 2007 and 2004 versus 2008. It was found that none of the constituents 
has shown any change from the year 2000 to the year 2008. T-tests p-values were all greater than the signific-
ance level of 0.05. Hence the null hypothesis of equal means could not be rejected. Moreover, mapping of an-
nual concentrations showed that for each of the seven constituents, the differences between two years levels was 
around zero. Based on the results for non-changing variances and means across the years, it was concluded that 
the data set does not contain temporal effects and all records between 2000 and 2008 were combined. 

2.3. Exploratory Data Analyses 
Exploratory analyses showed that Texas well depth means are similar all over the State, and that variances of 
constituents are lesser within an aquifer than between the aquifers. This means that the locality of a constituent 
has an effect on its level, which calls for a spatial model. Descriptive statistics showed high shifts of skewness 
and kurtosis from 0 and 3, respectively, which are the characteristic values of normal distribution. Therefore, the 
variables generally exhibit non symmetric distributions, with long tails and several outliers (Table 1). Because 
the data also had positive skewness as well as outliers, a log transformation on all the constituent data was per-
formed. Furthermore, standard tests of univariate and multivariate normality (Shapiro-Wilk test and E-statistic 
(Energy)) [4] did not reject the null hypothesis of normality for the log-transformed data. Four records out of 
3379 contained zero values. We neglected these records. Table 2 presents the pair-wise correlations between the 
transformed constituents across aquifers whereas Table 3 lists correlations within the Ogallala Aquifer, which 
are all non-negligible. Please note that the absence or drop of correlation between constituents does not imply 
the absence of spatial correlation.  

A preliminary variogram analysis enables us to visualize the characterization of spatial correlation. At this 
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Figure 1. Groundwater four-year periodical sampling from 2000 to 2008.                     

 
Table 1. Across-aquifer descriptive statistics of the groundwater constituents.                      

Variable Mean Minimum Maximum Median Std. Dev. Skewness Kurtosis 

Calcium 93.72 0.35 1560.00 68.50 104.38 4.19 25.80 

Chloride 159.32 1.85 17000.00 41.60 421.6111 18.41 635.51 

Potassium 5.95 0.20 99.30 4.40 6.20 3.53 25.69 

Magnesium 36.59 0.22 559.00 24.20 44.60 3.93 24.23 

Sodium 122.51 2.39 13900.00 47.15 301.76 24.74 1052.38 

Nitrate 17.33 0.00 425.88 8.01 31.68 5.03 35.69 

Sulfate 192.40 0.00 5110.00 46.50 389.27 4.08 22.56 

 
Table 2. Pair-wise inter-constituent correlations across aquifers.                                   

Variables ln(Ca) ln(Mg) ln(Na) ln(K) ln(SO4) ln(NO3) ln(Cl) 

ln(Ca) 1 0.695 0.043 0.218 0.403 0.428 0.359 

ln(Mg) 0.695 1 0.166 0.525 0.557 0.489 0.315 

ln(Na) 0.043 0.166 1 0.628 0.696 0.026 0.832 

ln(K) 0.218 0.525 0.628 1 0.629 0.206 0.541 

ln(SO4) 0.403 0.557 0.696 0.629 1 0.288 0.678 

ln(NO3) 0.428 0.489 0.026 0.206 0.288 1 0.157 

ln(Cl) 0.359 0.315 0.832 0.541 0.678 0.157 1 
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Table 3. Pair-wise inter-constituent correlations within the Ogallala Aquifer.            

 Ca Mg Na K SO4 NO3 Cl 

Ca 1.00 0.67 0.64 0.44 0.76 0.52 0.81 

Mg  1.00 0.72 0.77 0.87 0.46 0.82 

Na   1.00 0.59 0.86 0.41 0.88 

K    1.00 0.64 0.43 0.61 

SO4     1.00 0.45 0.81 

NO3      1.00 0.46 

Cl       1.00 

 
point, we recognize that there may be mean effects that are unaccounted for. Nevertheless, these initial vario-
gram estimates indicate consistent spatial behavior across aquifer. None of the constituents showed any signifi-
cant anisotropy within an aquifer. Multivariate intrinsic correlation exists when the multivariate correlation of a 
multivariate data set is independent of the spatial correlation. Multivariate intrinsic correlation allows one to 
simplify data modeling. Under intrinsic correlation, the joint covariance matrix is given by the Kronecker prod-
uct V RΣ = ⊗ , where V is the standard variance-covariance matrix. We have 1 11 V R− − −⊗Σ = , which only re-
quires the inversion of the 7 7×  variance-covariance matrix V and the n n×  spatial correlations matrix W [5]. 
One of the ways to test for intrinsic correlation is to calculate codispersion coefficients (i.e. the ratio of the cross 
versus the direct variograms). If the codispersion coefficients are constant, we can assume intrinsic correlation 
[5] [6]. The calculations of codispersion coefficients show that they are practically constant for all spatial scales. 
Their variances ranged from 0.01 to 0.04. This supports the intrinsic correlation hypothesis, i.e. a similar corre-
lation matrix W holds at all spatial scales. In other words, when the covariance is structured according to the in-
trinsic correlation model, all direct and cross covariance functions are proportional to one basic covariance func-
tion. The model of intrinsic correlation is entirely specified by its spatial structure, and by the variance-cova- 
riance matrix [6].  

2.4. Principal Component Analysis 
Principal components analysis (PCA) was conducted to study and visualize the correlations between the va-
riables and hopefully be able to limit the number of variables to be measured afterwards, and to visualize obser-
vations in a 2- or 3-dimensional space in order to identify similarities and dissimilarities within observations. 
PCA was performed using the correlation matrix, which brings the measurements onto a common scale. In other 
words, a constituent which concentration varies between 0 and 1 will not weigh more in the projection than a 
constituent varying between 0 and 400. The Scree Plot of Figure 2 shows the cumulative variance explained by 
the seven principal components F1:F7. The principal components are sorted in decreasing order of variance, so 
the most important principal component is always listed first. Positions of the observations on a biplot are scores 
of the observations on the first two components. Distance between observations on this plane is “how close 
these observations are to each other” (Since we use two-dimensional plot we have ignored all remaining com-
ponents). With respect to the first two principal components, nitrate is a bit isolated as compared to the other 
constituents. This suggests that nitrate levels might come from a different origin than the remaining constituents. 
The variation explained by each principal component does not exceed that of the first principal component 
which is 52%. The first two principal components explain 75% of the data variation. If further analysis needs to 
be performed on the 2-dimensional PCA scores instead of the seven-dimensional dataset, this leaves a signifi-
cant amount of variation not accounted for. Therefore, principal components analysis results were not used to 
model the data.  

3. Results and Discussion 
For our estimation we used the K-Bessel (Matern) model for the semivariogram model since its smoothness can 
be adjusted. Although the computation are cumbersome, the advantage of this model is that the behavior of the  
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Figure 2. Scree plot.                                                  

 
semivariogram near the origin can be estimated from the data rather than assumed to be of a certain form. Also, 
changing the value of α, we can get other semivariogram models. For example, when α = 0.5 we get the expo-
nential covariance function [7]. We estimate β and ( )jΣ  using iterative re-weighted generalized least squares 
IRWGLS [8]. For this model, the random functions are assumed to be second-order stationary. Isotropy of the 
data is also assumed. This means that the variogram is a function of the distance vector regardless of its direction. 
An alternative to IRWGLS would be maximum likelihood ML. We chose IRWGLS for edification purposes. The 
complexity of IRWGLS estimation lies in estimating the full covariance matrix of the data which is of a big size 
in our case. On the other hand, IRWGLS estimation is more efficient than weighted least squares and ordinary 
least squares. IRWGLS estimator of theta is efficient and has as little bias as possible [8].  

In order to determine the significant covariates to include in the model, we perform a model selection exercise. 
The research started with six covariates: altitude, latitude, longitude, major aquifer, water level and percentage 
of irrigated acres per county. The effect of percentage of irrigated acres per county is excluded from the analysis 
since it has shown no association with any of the constituents. Model selection was performed to decide on 
which of the remaining covariates to include in our model. The criteria for model selection is Akaike’s informa-
tion criterion AIC. One thousand records were selected based on simple random sampling without replacement. 
Many regressions were performed and their AIC values were compared. We started with no intercept. Then sin-
gle predictor models, then two-predictor models and so on. The regression model with the least AIC value 
(3143.04) was found to be [Ca, Cl, NO3, Na, Mg, SO4, K] = longitude + altitude + water depth + aquifer effect 
(Table 4).  

Figure 3 shows the empirical variogram of the OLS residuals. The seven variograms follow similar spatial 
behavior (range). Figure 4 shows the normalized residuals. The first seven standardized individual empirical va-
riograms in Figure 4 look very similar to each other. The only difference between the variograms is the sill val-
ue. After running the IRWGLS algorithm for four iterations the results converge with tolerance less than 1e−05. 
Table 5 and Figure 5 show the Matern covariance function parameters after the fourth iteration. Practical range 
is about 44 miles, variance is 0.83, nugget is zero and smoothness parameter was fixed at 2. The range indicates 
that the maximal distance at which the constituents are spatially auto-correlated is 44 miles. Beyond 44 miles, 
the distance among wells does not affect the spatial structure of the data forming a sill of 0.83. At zero distance 
the variogram is zero. That is, there is no nugget effect. Comparing OLS residuals variance-covariance results 
showed that there is more correlation represented in the fourth iteration estimates, which is an indicator that 
IRWGLS is more efficient than OLS. To validate the model, one hundred locations were randomly selected from 
the original dataset. This dataset was not used in the estimation analysis. It was used to predict the constituent 
levels at these sites and study the behaviour of the residuals. Residuals were computed using the IRWGLS 
fourth iteration estimates. The scatter plots of the residuals do not follow a specific pattern. The residuals depar-
ture from the normality was negligible. Shapiro-Wilk test did not reject the null hypothesis of normality for the 
residuals. P-values were less than the significance level of 0.05. From the above discussion we conclude that the 
assumptions were reasonable and the choice of the model was appropriate. 
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Table 4. Regression models AIC values.                                 

Regression AIC 

Nitrate = 1 3643.62 

Nitrate = Altitude 3530.97 

Nitrate = Latitude 3573.52 

Nitrate = Longitude 3507.15 

… … 

Nitrate = Water Depth 3510.61 

Nitrate = Longitude + Altitude 3509.11 

Nitrate = Longitude + Latitude 3502.37 

Nitrate = Longitude + Water Depth 3401.39 

… … 

Nitrate = Altitude + Latitude + Longitude + Water Depth 3371.91 

… … 

 

 
Figure 3. OLS residuals empirical variogram.                              

 
Because the concentrations were log transformed prior to modeling (Table 6), the predicted concentrations on 

the prediction maps are contrasted to the log transformed values of EPA’s maximum contaminant levels [9] 
(Figure 6). Prediction maps provide an easier tool for researchers and hydrologists to see which constituents’ 
concentrations might exceed or go below the EPA tolerated levels. This also helps groundwater policy makers to 
act appropriately and in a timely manner in order to protect our natural resources. A grid of two hundred and 
sixteen randomly chosen locations was formed. Elevations of points were estimated using global positioning 
system website GPSies. Table 7 presents the constituents with predicted concentrations that exceed the EPA’s 
maximum concentration levels.  

4. Conclusion 
This study focused on seven of the most researched groundwater constitutents in Texas. Namely, calcium (Ca),  
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Table 5. Matern covariance function parameters after 
fourth iteration, Kappa = 2.                           

Nugget (tausq) = 0 

Range (miles) = 8.22 

Sill (sigmasq) = 0.83 

Kappa (smoothness parameter) = 2 

Practical Range = 44.12 (miles) 

 

 
Figure 4. OLS standardized residuals empirical variogram.                          

 

 
Figure 5. Fourth IRWGLS iteration matern function estimate variogram.        
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Table 6. EPA tolerated concentrations.                                          

Constituent Mx: The maximum level allowed in public water supplies by the EPA Log(Mx) 

Calcium And magnesium 200 mg/L 5.298317 

Chloride 250 mg/L 5.521461 

Magnesium And calcium 200 mg/L 5.298317 

Nitrate 10 mg/L 2.302585 

Potassium 10 mg/L 2.302585 

Sodium 20 mg/L 2.995732 

Sulfate 250 mg/L 5.521461 

 
Table 7. Constituents with predicted concentrations higher than MCLs.                 

Constituent Affected aquifers 

Calcium Gulf Coast, Ogallala, Edwards-Trinity Plateau and Seymour 

Nitrate Ogallala, Seymour and Edwards-Trinity Plateau 

Chloride Ogallala Edwards-Trinity Plateau and Hueco-Mesilla Bolson 

Potassium Ogallala 

Sodium All 

Sulfate Ogallala and Edwards-Trinity Plateau 

 

 
Figure 6. Predicted concentrations for five constituents in lnMg.                                  

 
chloride (Cl), nitrate (NO3), sodium (Na), magnesium (Mg), sulfate (SO4), and potassium (K). Data were ex-
tracted from TWDB database for the nine years from 2000 to 2008. No temporal effects were found in the con-
centrations but data was found to be intrinsically correlated. This allowed to spatially model the between-con- 
stituent effects individually using IRWGLS. The multivariate geostatistical model used latitude, longitude, ele-
vation, water depth and aquifer effect as the mean covariates. Also, a covariance structure was estimated to link 
the constituents’ concentrations with the spatial structure. The non-temporally different concentrations of the 
seven constituents points to the value of geostatistical modeling techniques as a valuable estimation method. 
This study provides an example where simultaneous modeling of pollutants can be conducted based on locality, 
which closes a big gap in environmental research where interaction between variables is significant. This study 
also shows that calcium, chloride, nitrate, sodium, magnesium, sulfate, and potassium follow similar increasing 
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trends. The high concentrations that exceed EPA tolerated levels presented in the prediction maps (Figure 6) 
agree with recent research observations [10], which further validates the model as a tool for hydrologists and 
policy makers to accurately estimate the seven constituents simultaneously based on location. 
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