
American Journal of Computational Mathematics, 2014, 4, 464-473
Published Online December 2014 in SciRes. http://www.scirp.org/journal/ajcm
http://dx.doi.org/10.4236/ajcm.2014.45039

How to cite this paper: Tabanjeh, M.M. (2014) Combining Algebraic and Numerical Techniques for Computing Matrix De-
terminant. American Journal of Computational Mathematics, 4, 464-473. http://dx.doi.org/10.4236/ajcm.2014.45039

Combining Algebraic and Numerical
Techniques for Computing
Matrix Determinant
Mohammad M. Tabanjeh
Department of Mathematics and Computer Science, Virginia State University, Petersburg, USA
Email: mtabanjeh@vsu.edu

Received 22 October 2014; revised 1 December 2014; accepted 9 December 2014

Copyright © 2014 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
Computing the sign of the determinant or the value of the determinant of an n × n matrix A is a
classical well-know problem and it is a challenge for both numerical and algebraic methods. In
this paper, we review, modify and combine various techniques of numerical linear algebra and ra-
tional algebraic computations (with no error) to achieve our main goal of decreasing the bit-
precision for computing detA or its sign and enable us to obtain the solution with few arithmetic
operations. In particular, we improved the precision   H p2log bits of the p-adic lifting algorithm
(H = 2h for a natural number h), which may exceed the computer precision β (see Section 5.2), to at
most   β bits (see Section 6). The computational cost of the p-adic lifting can be performed in
O(hn4). We reduced this cost to O(n3) by employing the faster p-adic lifting technique (see Section
5.3).

Keywords
Matrix Determinant, Sign of the Determinant, p-Adic Lifting, Modular Determinant, Matrix
Factorization, Bit-Precision

1. Introduction
Computation of the sign of the determinant of a matrix and even the determinant itself is a challenge for both
numerical and algebraic methods. That is, to testing whether ()det 0A > , ()det 0A < , or det 0A = for an n ×
n matrix A. In computational geometry, most decisions are based on the signs of the determinants. Among the
geometric applications, in which the sign of the determinant needs to be evaluated, are the computations of con-

http://www.scirp.org/journal/ajcm
http://dx.doi.org/10.4236/ajcm.2014.45039
http://dx.doi.org/10.4236/ajcm.2014.45039
http://www.scirp.org/
mailto:mtabanjeh@vsu.edu
http://creativecommons.org/licenses/by/4.0/

M. M. Tabanjeh

465

vex hulls, Voronoi diagrams, testing whether the line intervals of a given family have nonempty common inter-
section, and finding the orientation of a high dimensional polyhedron. We refer the reader to [1]-[5], and to the
bibliography therein for earlier work. These applications have motivated extensive algorithmic work on compu-
ting the value and particulary the sign of the determinant. One of the well-known numerical algorithms is
Clarkson’s algorithm. In [6], Clarkson uses an adaption of Gram-Schmidt procedure for computing an ortho-
gonal basis and employs approximate arithmetics. His algorithm runs in time ()3O d b and uses 2 1.5b d+ bits
to represent the values for a d × d determinant with b-bit integer entries. On the other hand, the authors of [7]
proposed a method for evaluating the signs of the determinant and bounding the precision in the case where

3n ≤ . Their algorithm asymptotic worst case is worse than that of Clarkson. However, it is simpler and uses re-
spectively b and ()1b + -bit arithmetic. In this paper we examine two different approaches of computing the de-
terminant of a matrix or testing the sign of the determinant; the numerical and the algebraic approach. In partic-
ular, numerical algorithms for computing various factorizations of a matrix A which include the orthogonal fac-
torization A QR= and the triangular factorizations A LU= , rA P LU= , and r cA P LUP= seem to be the
most effective algorithms for computing the sign of ()det A provided that det A is large enough relative to
the computer precision. Alternatively, the algebraic techniques for computing det A modulo an integer M
based on the Chinese remainder theorem and the p-adic lifting for a prime p use lower precision or less arith-
metic operations. In fact, the Chinese remainder theorem required less arithmetic operations than the p-adic lift-
ing but with higher precision due to (9). We also demonstrate some effective approaches of combining algebraic
and numerical techniques in order to decrease the precision of the computation of the p-adic lifting and to intro-
duce an alternative technique to reduce the arithmetic operations. If det A is small, then obtaining the sign of
the determinant with lower precision can be done by effective algebraic methods of Section 4. Although, the
Chinese remainder algorithm approach requires low precision computations provided that the determinant is
bounded from above by a fixed large number. This motivated us to generalize to the case of any input matrix A
and to decrease the precision at the final stage of the Chinese remaindering at the price of a minimal increase in
the arithmetic cost. Furthermore, in Section 5 we extend the work to an algorithm that computes ()det modA M
using low precision by relying on the p-adic lifting rather than the Chinese remaindering.

2. Definitions, Basic Facts, and Matrix Norms
Definition 1. For an n × n matrix A, the determinant of A is given by either

() () ()1det 1 det , for 1, , ,i jn
ij ijjA A a A i n+

=
= = − =∑  or () () ()1det 1 det , for 1, , ,i jn

ij ijiA A a A j n+

=
= = − =∑ 

where ijA is ()1n − -by- ()1n − matrix obtained by deleting the i-th row and j-th column of A.
Fact 1. Well-known properties of the determinant include () () ()det det detAB A B= , () ()Tdet detA A= ,

and () ()det detncA c A= for any two matrices , n nA B ×∈ and c∈ .
Definition 2. If A is a triangular matrix of order n, then its determinant is the product of the entries on the

main diagonal.
Definition 3. For a matrix A of size m × n, we define 1-norm: 1 11 max m

j n ijiA a≤ ≤ =
= ∑ , ∞ -norm:

1 1max n
i m ijjA a≤ ≤ =∞

= ∑ , p-norms: 0 0 1sup sup max
p

p
x x xp p

p p p

Ax xA A Ax
x x≠ ≠ =

 
 = = =
 
 

, and 2-norm:

2

2
02

2

= max x

Ax
A

x≠ .

3. Numerical Computations of Matrix Determinant
We find the following factorizations of an n × n matrix A whose entries are either integer, real, or rational by
Gaussian elimination.

A LU= (1)

rA P LU= (2)

.r cA P LUP= (3)
We reduce A to its upper triangular form U. The matrix L is a unit lower triangular whose diagonal entries are

M. M. Tabanjeh

466

all 1 and the remaining entries of L can be filled with the negatives of the multiples used in the elementary oper-
ations. Pr is a permutation matrix results from row interchange and Pc is a permutation matrix results from col-
umn interchange.

Fact 2. If P is a permutation matrix, then det 1P = ± . Moreover, det 1I = , where I is an identity matrix.

3.1. Triangular Factorizations
The following algorithm computes ()det A or its sign based on the factorizations (1)-(3).

Algorithm 1. Triangular factorizations.
Input: An n × n matrix A.
Output: ()det A .
Computations:
1) Compute the matrices L, U satisfying Equation (1), or Pr, L, U satisfying Equation (2), or Pr, L, U, Pc

satisfying Equation (3).
2) Compute det L , detU for Equation (1), or det rP , det L , detU for Equation (2), or det rP , det L ,

detU , det cP for Equation (3).
3) Compute and output ()()det det detA L U= for Equation (1), or ()()()det det det detrA P L U= for Eq-

uation (2), or () ()()()()det det det det detr cA P L U P= for Equation (3).
One can easily output the sign of det A from the above algorithm. We only need to compute the sign of

det rP , det L , detU , and det cP at stage 2 and multiply these signs. The value of det rP and det cP can be
easily found by tracking the number of row or column interchanges in Gaussian elimination process which will
be either 1 or −1 since those are permutation matrices. As L is a unit lower triangular matrix, det 1L = . Finally,
the computations of detU required 1n − multiplications since U is an upper triangular matrix. Therefore, the
overall arithmetic operations of Algorithm 1 will be dominated by the computational cost at stage 1, that is,
()() 1 2

1

1 2 1
6

n
i

n n n
i−

=

− −
=∑ multiplications, the same number for additions, subtractions, and comparisons, but

() 1
1

1
2

n
i

n n
i−

=

−
=∑ divisions. However, Algorithm 1 uses 1

1
n
i i−

=∑ comparisons to compute (2) rather than 1 2
1

n
i i−

=∑ .

3.2. Orthogonal Factorization
Definition 4. A square matrix Q is called an orthogonal matrix if T .Q Q I= Equivalently, 1 TQ Q− = , where
QT is the transpose of Q.

Lemma 1. If Q is an orthogonal matrix, then ()det 1Q = ± .
Proof. Since Q is orthogonal, then TQ Q I= . Now T 1Q Q I= = and thus T 1Q Q = , but TQ Q=

which implies that 21 Q Q Q= = , hence 1Q = ± .
Definition 5. If m nA ×∈ , then there exists an orthogonal matrix m mQ ×∈ and an upper triangular matrix

m nR ×∈ so that
.A QR= (4)

Algorithm 2. QR-factorization.
Input: An n × n matrix A.
Output: ()det A .
Computations:
1) Compute an orthogonal matrix Q satisfying the Equation (4).
2) Compute det Q .
3) Compute the matrix ()T

,i jR Q A r= = .
4) Compute () () ,det det i iiA Q r= ∏ , where ,i ir are the main diagonal entries of R.
Here, we consider two well-known effective algorithms for computing the QR factorization; the House-

holder and the Given algorithms. The Householder transformation (or reflection) is a matrix of the form
T2H I= − vv where

2 1=v .
Lemma 2. H is symmetric and orthogonal. That is, TH H= and T .H H I⋅ =
Proof. T2 ,H I= − vv and since TI I= and ()TT T ,=vv vv then ()TT T T T2 2 .H I I H= − = − =vv vv Hence,

M. M. Tabanjeh

467

H is symmetric. On the other hand, ()() ()T T T T T T T T2 2 4 4 4 4 .H H I I I v I I= − − = − + = − + =vv vv vv v v v vv vv
Therefore, H is orthogonal, that is, 1 TH H− = .

The Householder algorithm computes 1n
iiQ H−=∏ as a product of 1n − matrices of Householder trans-

formations, and the upper triangular matrix TQ A R= .
Lemma 3. () () 1det 1 nQ −= − for a matrix Q computed by the Householder algorithm.
Proof. Since T2i i iH I= − v v for vectors iv , 1, , 1i n= − , Lemma 2 implies that T

i iH H I= and hence
()2det 1iH = . Notice that ()T

1 1det 2 1I − = −e e where ()T
1 1,0, ,0e =  . Now for 0 1t≤ ≤ , we define the trans-

formation () ()1 1iv t t v e e= − + . Then the function () () ()()TdetD t I v t v t= − is continuous and 2 1D = t∀ .

Hence () ()T
1 11 det 2 1D I v v= − = − since

2 1=v and () ()T
1 10 det 2 1D I e e= − = − . This proves that

det 1iH = − i∀ . But 1
1

n
iiQ H−

=
=∏ , we have () 1det 1 nQ −= − .

The Givens rotations can also be used to compute the QR factorization, where 1 tQ G G=  , t is the total
number of rotations, Gj is the the j-th rotation matrix, and TQ A R= is an upper triangular matrix. Since the
Givens algorithm computes Q as a product of the matrices of Givens rotations, then ()det 1Q = . We define

() (), ,, ,i i k kG W c s W c s c= = = , , ,i k k iG W W s= = − = for two fixed integers i and k, and for a pair of nonzero real
numbers c and s that satisfies 2 2 1c s+ = such that TG G I= . If the Householder is used to find the QR, Algo-

rithm 2 uses 1n − multiplications at stage 3. It involves ()3 24
3

n O n+ multiplications at stage 1, and ()O n

evaluations of the square roots of positive numbers. If the Givens algorithm is used to find the QR, then it in-
volves ()3 22n O n+ multiplications at stage 3, ()3 2n O n+ multiplications at stage 1, and ()2O n evalua-
tions. This shows some advantage of the Householder over the Givens algorithm. However, the Givens rotations
algorithm allows us to update the QR of A successively by using only ()2O kn arithmetic operations and
square root evaluations if ()O k rows or columns of A are successively replaced by new ones. Therefore, in
this case, the Givens algorithm is more effective.

4. Algebraic Computations of Matrix Determinant
4.1. Determinant Computation Based on the Chinese Remainder Theorem
Theorem 1. (Chinese remainder theorem.) Let 1 2, , , km m m be distinct pairwise relatively prime integers
such that

1 2 1.km m m> > > > (5)

Let
1

k
iiM m

=
=∏ , and let D denote an integer satisfying the inequality

0 .D M≤ < (6)
Let

()mod .i ir D m= (7)

() (), mod , 1 mod , 1, , .i i i i i i i
i

MM s M m y s m i k
m

= ≡ ≡ ∀ =  (8)

Then D is a unique integer satisfying (6) and (7). In addition,

()()
1

mod .
k

i i i
i

D M r y M
=

= ∑ (9)

Algorithm 3. (Computation of ()det mod A M based on the Chinese remainder theorem.)
Input: An integer matrix A, an algorithm that computes ()det mod A m for any fixed integer 1m > , k in-

tegers 1, , km m satisfying (5) and are pairwise relatively prime, and 1 2 kM m m m=  .
Output: ()det mod A M .
Computations:
1) Compute ()det mod i ir A m= , 1, ,i k=  .
2) Compute the integers Mi, si, and yi as in (8) 1, ,i k∀ =  .
3) Compute and output D as in (9).

M. M. Tabanjeh

468

The values of yi in (8) are computed by the Euclidean algorithm when applied to si and mi for 1, ,i k=  .
Algorithm 3 uses ()3O kn arithmetic operations (ops) at stage 1, ()()1 1log log logO k m m ops at stage 2, and
()2logO k k ops at stage 3. The computations of the algorithm are performed with precision of at most

2 1log m   bits at stage 1, and at most 2log M   bits at stages 2 and 3. The latest precision can be decreased at
the cost of slightly increasing the arithmetic operations [8].

Lemma 4. For any pair of integers M and d such that 2M d> , we have

() () () mod if mod , and mod otherwise.
2
Md d M d M d d M M= < = − (10)

Suppose that the input matrix A is filled with integers and an upper bound detud A≥ is known. Then we
may choose an integer M such that 2 uM d> and compute ()det mod A M . Hence, det A can be recovered
by using (10).

4.2. Modular Determinant
Let n nA ×∈ and ()detd A= . In order to calculate ()det mod A p , we choose a prime p that is bigger than
2 d and perform Gaussian elimination (2) on ()mod n n

pA p ×∈ . This is the same as Gaussian elimination over
 , except that when dividing by a pivot element a we have to calculate its inverse modulo p by the ex-

tended Euclidean algorithm. This requires ()3 22
3

n O n+ arithmetic operations modulo p. On the other hand, if

we need to compute ()det mod A p for the updated matrix A, we rely on the QR factorization such that
()()modA QR p= and ()T modQ Q D p= , where D is a diagonal matrix and R is a unit upper triangular matrix.

The latest factorization can be computed by the Givens algorithm [9]. If the entries of the matrix A are much
smaller than p, then we do not need to reduce modulo p the results at the initial steps of Gaussian elimination.
That is, the computation can be performed in exact rational arithmetics using lower precision. In this case, one
may apply the algorithm of [10] and [11] to keep the precision low. The computations modulo a fixed integer

1M > can be performed with precision 2log M   bits. In such a computation, we do not need to worry about
the growth of the intermediate values anymore. However, to reduce the cost of the computations, one can work
with small primes modular instead of a large prime, that is, these primes can be chosen very small with loga-
rithmic length. Then the resulting algorithm will have lower cost of ()3O n k and can be performed in parallel.
Now, one can find a bound on the det A without actually calculating the determinant. This bound is given by
Hadamard’s inequality which says that

()2det ,
n nnA n a a n≤ = (11)

where 1 ,max i j n ija a +
≤ ≤= ∈ (nonnegative integers) is the maximal absolute value of an entry of A.

5. Alternative Approach for Computing Matrix Inverses and Determinant
5.1. p-Adic Lifting of Matrix Inverses
In this section, we present an alternative approach for computing matrix determinant to one we discussed in ear-
lier sections. The main goal is to decrease the precision of algebraic computations with no rounding errors. The
technique relies on Newton’s-Hensel’s lifting (p-adic lifting) and uses ()4 logO n n arithmetic operations.
However, we will also show how to modify this technique to use order of n3 arithmetic operations by employing
the faster p-adic lifting. Given an initial approximation to the inverse, say S0, a well-known formula for New-
ton’s iteration rapidly improves the initial approximation to the inverse of a nonsingular n × n matrix A:

() ()1 2 2 2 , 0.i i i i i i i iS S I AS S S AS I S A S i+ = − = − = − ≥ (12)

Algorithm 4. (p-adic lifting of matrix inverses.)
Input: An n × n matrix A, an integer 1p > , the matrix ()1

0 mod S A p−= , and a natural number h.
Output: The matrix ()1 mod HA p− , 2hH = .
Computations:
1) Recursively compute the matrix jS by the equation,

M. M. Tabanjeh

469

()()1 12 mod , where 2 , 1, , .J j
j j jS S I AS p J j h− −= − = = 

 (13)

2) Finally, outputs hS .
Note that, ()1 mod J

jS A p−= , 2 jJ = , j∀ . This follows from the equation () ()2
1 mod J

j jI AS I AS p−− = − .
The above algorithm uses ()3O n arithmetic operations performed modulo pJ at the j-th stage, that is, a total of
()3O hn arithmetic operations with precision of at most 2logJ p   bits.

5.2. p-Adic Lifting of Matrix Determinant
We can further extend p-adic lifting of matrix inverses to p-adic lifting of matrix determinants, that is

()det mod A p , using the following formula [12]:

()1

,1

1det .n

k k kk

A
A−

=

=

∏
 (14)

Here, Ak denotes the k × k leading principal (north-western) submatrix of A so that nA A= for 1, ,k n=  .
Moreover, () ,k kB denotes the (),k k -th entry of a matrix B. In order to use Formula (14), we must have the
inverses of Ak available modulo a fixed prime integer p for all k . A nonsingular matrix A modulo p is called
strongly nonsingular if the inverses of all submatrices Ak exist modulo p. In general, a matrix A is called strongly
nonsingular if A is nonsingular and all k × k leading principle submatrices are nonsingular. Here, we assume that
A is strongly nonsingular for a choice of p. Finally, Algorithm 4 can be extended to lifting det A (see Algo-
rithm 5).

Algorithm 5. (p-adic lifting of matrix determinant.)
Input: An integer 1p > , an n × n matrix A, the matrices ()1

0, mod k kS A p−= , and a natural number h.
Output: ()2det mod HA p , 2hH = .
Computations:
1) Apply Algorithm 4 to all pairs of matrices kA and 0,kS , (replacing the matrices A and 0S in the algo-

rithm), so as to compute the matrices ()1
, mod H

h k kS A p−= , for 1, ,k n=  .
2) Compute the value

() ()2 2
, , ,1

1 mod 2 mod .
det

n
H H

h k k h k k kk
p S I A S p

A =

   = −    
∏ (15)

3) Compute and output the value ()()2det mod HA p , as the reciprocal of ()21 mod
det

Hp
A

 
 
 

.

The overall computational cost of Algorithm 5 at stage 1 is ()4O hn arithmetic operations performed with
precision at most 2logH p   bits. However, at stage 2, the algorithm uses ()3O n operations with precision

22 logH p   bits. At stage 3, only one single multiplication is needed. All the above operations are calculated
modulo p2H. Now, we will estimate the value of H and p that must satisfy the bound 2 2 detHp A> . But, due to

Hadamard’s bound (11), we have () () 22 det 2
n HA a n p< < which implies that

2 log log log 2p p pH n a n n> + + . Therefore, it is suffices to choose p and H satisfying the inequalities

() 22
n Ha n p< and ()2 log 2

n

pH a a >  
 

. In the next section, we will present an alternative faster tech-

nique to computing matrix determinant that uses only ()3O n based on the divide-and-conquer algorithm.

Example 1. Let
1 17 18
1 18 19 .
5 16 20

A
 
 =  
 
 

 Then, []1 1 ,A = 2

1 17
1 18

A  
=  
 

, and 3

1 17 18
1 18 19 .
5 16 20

A
 
 =  
 
 

 By Algorithm 4,

compute the matrices: []1
1 1 ,A− = 1

2

18 17
,

1 1
A− − 

=  − 
 and 1

3

56 52 1
75 70 1 .

74 69 1
A−

− 
 = − 
 − − 

 Now, we compute

M. M. Tabanjeh

470

[]1
0,1 1 mod 3 1 ,S A−= = 1

0,2 2

0 1
mod 3 ,

2 1
S A−  

= =  
 

 and 1
0,3 3

1 1 1
mod 3 0 1 1 .

2 0 2
S A−

 
 = =  
 
 

 We apply Algorithm 4

(that is, ()0, 0,2 mod , 2 , 1, ,J j
k k k kS S I A S p J j h= − = = ) to all pairs of matrices:

() []2
1,1 1 0,1 1 0,12 mod 3 1 ,S S S I A S= = − =

() 2
1,2 2 0,2 2 0,2

0 1
2 mod 3 ,

8 1
S S S I A S  

= = − =  
 

and

() 2
1,3 3 0,3 3 0,3

7 7 1
2 mod 3 6 7 1 .

2 3 8
S S S I A S

 
 = = − =  
 
 

We then compute the value

() () ()

[]

()()()

32 2 2 1
1,1 1 1,1 1,2 2 1,2 1,3 3 1,31 1,1 2,2 3,3

1,1
2,2

3,3

1 mod 2 2 2 mod 3
det

2243 2783 2510
144 17

1 2100 2603 2348
1216 161

2113 2580 2269

1 161 2269 365309 mo

H
kp S I A S S I A S S I A S

A
× ×

=
     = − ⋅ − ⋅ −     

− − − 
− −   = ⋅ ⋅ − − −   − −   − − − 

= − − =

∏

()d 81 80.=

Therefore, we output the value of () 2 2 1det mod 3 1A × × = − , since 1 80 mod 81− ≡ .

5.3. Faster p-Adic Lifting of the Determinant
Assuming A is strongly nonsingular modulo p, block Gauss-Jordan elimination can be applied to the block 2 × 2

matrix
B C

A
E G

 
=  
 

 to obtain the well-known block factorization of A:

1

1 ,
I O B O I B C

A
EB I O S O I

−

−

   
=    
   

where 1S G EB C−= − is the Schur complement of B in A. The following is the divide-and-conquer algorithm
for computing ()det A .

Algorithm 6. (Computing the determinant of a strongly nonsingular matrix.)
Input: An n × n strongly nonsingular matrix A.
Output: ()det A .
Computations:

1) Partition A according to the block factorization above, where B is an
2 2
n n   ×      

 matrix. (⋅   refers to

the floor of
2
n .) Compute 1B− and S using the matrix equation 1S G EB C−= − .

2) Compute ()det B and ()det S .
3) Compute and output () ()det det detA B S= .
Since A is strongly nonsingular modulo p, we can compute the inverse of k × k matrix by
() ()3 logO k H I k= arithmetic operations using Algorithm 4. From the above factorization of A, we conclude

that () () () ()2 2 2D n D n D n I n≤ + +           . The computational cost of computing the determinant is
() ()3 logD n O n H= . This can be derived from the above factorization of A using recursive factorization ap-

plied to B and S and the inverses modulo 2Hp . Here, ()I k is the cost of computing the inverse and ()D k is

M. M. Tabanjeh

471

the cost of computing the determinant.

6. Improving the Precision of the p-Adic Lifting Algorithm
Definition 6. Let e be a fixed integer such that 2log e β> where β is the computer precision. Then any integer
z, such that 0 1z e≤ ≤ − , will fit the computer precision and will be called short integer or e-integer. The integ-
ers that exceed 1e α− = will be called long integers and we will associate them with the e-polynomials
() i

iip x p x=∑ , 0 ip e≤ < for all i.
Recall that Algorithm 4 uses 2logj p   bits at stage j. For large j, this value is going to exceed β. In this

section we decrease the precision of the p-adic algorithm and keep it below β. In order to do this, we choose the
base Ke p= where K is a power of 2, 2K H≤ , K divides 2H , and

2

2log .nHK
K

α β
 

≤ < 
 

 (16)

Now, let us associate the entries of the matrices mod J
kA p and 1, mod J

j kS p− with the e-polynomials in x
for = 2 jJ and for all j and k. These polynomials have degrees () 1J K − and take values of the entries for
x e= . Define the polynomial matrices (), mod J

j k kA e A p= and (), , mod J
j k j kS e S p= . Then for J K≥ , we

associate the p-adic lifting step of (13) with the matrix polynomial

() () () () ()(), 1, 1, , 1,2 mod .J K
j k j n j n j n j nS x S x S x A x S x x− − −= − (17)

The input polynomial matrices are ()1,j nS x− and (),j nA x for 1, 2, ,j h=  . We perform the computations
in (17) modulo J Kx . The idea here is to apply e-reduction to all the entries of the output matrix polynomial
followed by a new reduction modulo J Kx . The resulting entries are just polynomials with integer coefficients
ranging between 1 e− and 1e − . This is due to the recursive e-reductions and then taking modular reductions
again. Note that the output entries are polynomials with coefficients in the range γ− to γ for 2βγ ≤ even
before applying the e-reductions. This shows that the β-bit precision is sufficient in all of the computations due
to (16). The same argument can be applied to the matrices ,j kS for all j and k n< .

7. Numerical Implementation of Matrix Determinant
In this section we show numerical implementation of the determinant of n × n matrices based on the triangular
factorization LU, PrLU, and PrLUPc. Algorithm 1 computes the triangular matrices LL L E= + and

UU U E= + , the permutation matrices rP and cP , where EL and EU are the perturbations of L and U. In gener-
al, we can assume that r rP P= and c cP P= since the rounding error is small.

Definition 7. Let
1 1, ,r cA P AP LU A E− −′ ′ ′= − =    (18)

and let e′ , a, l , and u denote the maximum absolute value of the entries of the matrices E′ , A, L , and
U . Also, E′ is the error matrix of the order of the roundoff in the entries of A.

Assuming floating point arithmetic with double precision (64-bits) and round to β -bit. Then the upper
bound on the magnitude of the relative rounding errors is 2 β−= , where  is the machine epsilon. Our goal is
to estimate e′ .

Theorem 2. ([13]) For a matrix (),i jA a= , let A denote the matrix (),i ja . Then under (18),
() ,E A L U′ ′≤ +    and

() .e e a nlu+′ ≤ = + 

  (19)

From the following matrix norm property , ,
1 maxi j i jq qA a A
n

  ≤ ≤ 
 

, for 1, 2,q = ∞ , we obtain the bound

.e E
∞

′ ′≤
Theorem 3. Let a+ denotes the maximum absolute value of all entries of the matrices ()iA computed by

Gaussian elimination, which reduces A′ to the upper triangular form and let  as defined above. Then

M. M. Tabanjeh

472

()22 42 1.8 .
ln

e e E n a an
++

+ ∞
′ ′≤ = ≤ <  (20)

By using the following results, we can estimate the magnitude of the perturbation of det A and det A′
caused by the perturbation of A′ . Here we assume that ,r cP P I A A′= = = and write,

(), det det .de e e A E A′= = + − (21)

We use the following facts to estimate de of (21) in Lemma 5 below.
Fact 3. det n

qA A≤ , 1,2,q = ∞ .
q qB A≤ , 1,q = ∞ , if B A≤ ;

q qB A≤ , 1,2,q = ∞ , if B is a
submatrix of A.

q qA E A ne+ ≤ + , for 1,2,q = ∞ ; 2 2

2 2A E A ne+ ≤ + .

Lemma 5. () 1
2 , for 1, 2, .

n

d qe A ne n e q
−

≤ + = ∞

Combining Lemma 5 with the bound (19) enables us to extend Algorithm 1 as follows:
Algorithm 7. (Bounding determinant.)
Input: An n n× real matrix A and a positive  .
Output: A pair of real numbers d− and d+ such that det .d A d− +≤ ≤
Computations:
1) Apply Algorithm 1 in floating point arithmetic with unit roundoff bounded by  . Let UU U E= + denote

the computed upper triangular matrix, approximating the factor U of A from (2) or (3).
2) Compute the upper bound e+ of (20) where e e′= .

3) Substitute e+ for e and ()
1
2

1 1min | , , A A A A
∞ ∞

 
 
 

 for
qA in Lemma 5 and obtain an upper bound

de+ on de .
4) Output the values det dd U e+

− = − and det dd U e+
+ = + .

Example 2. Let

5 310
3 6 0 1.6667 5.1667

19 3 16 4.7500 1.5000 3.2000 .
4 2 5

3.4000 5.2500 1.333317 21 12
5 4 9

A

 − 
−  

  = ≈   
    

  
 

 Using Matlab, Gaussian elimination

with complete pivoting gives the matrix U rounded to 4 bits:
5.2500 1.3333 3.4000

0 5.5899 1.0794
0 0 3.2342

U
 
 = − − 
 
 

,

1 0 0
0.3175 1 0
0.2857 0.5043 1

L
 
 =  
 − 

, UU U E= + , LL L E= + where EU and EL are the matrices obtained from accu-

mulation of rounding errors. Also
0 0 1
1 0 0
0 1 0

rP
 
 =  
 
 

, and
0 0 1
1 0 0 .
0 1 0

cP
 
 =  
 
 

 Then

5 5

5

0 6 10 6 10
0 0 0
0 0 3 10

AE

− −

′
−

 × ×
 

=  
 × 

is a perturbation in A, and 41.2 10AE −
′ ∞

= × . We now compute the upper bound e+ of (20). Therefore,
62.9618e e+′ ≤ ≤ , where 5.25a = is the maximum of ,i ja of A, l = 1 is the maximum of ,i jl of L, 2 β−= ,

4β = , and 3n = is the size of the input matrix A . Hence we obtain the following upper bound de+ on de

by Lemma 5. That is, ()
11

2 72
1 1min , , 2.2347 10

n

de A A A A ne n e
−

+ +∞ ∞

  
≤ + = ×     

, where
1 9.7A = ,

9.9833A
∞
= , and 1 9.8406A A

∞
= . Hence, 72.2347 10de+ = × is an upper bound of de .

7det 2.2347 10dd U e+
− = − = − × and 7det 2.2347 10dd U e+

+ = + = × . Since ()det 94.91597A = − , we have

M. M. Tabanjeh

473

()det detd dU e A U e+ +− ≤ ≤ +  . On the other hand () ()det det 0.00123de A EA A= + − = which is less than the
upper bound 72.2347 10× we have computed.

Acknowledgements
We thank the editor and the referees for their valuable comments.

References
[1] Muir, T. (1960) The Theory of Determinants in Historical Order of Development. Vol. I-IV, Dover, New York.
[2] Fortune, S. (1992) Voronoi Diagrams and Delaunay Triangulations. In: Du, D.A. and Hwang, F.K., Eds., Computing in

Euclidean Geometry, World Scientific Publishing Co., Singapore City, 193-233.
[3] Brönnimann, H., Emiris, I.Z., Pan, V.Y. and Pion, S. (1997) Computing Exact Geometric Predicates Using Modular

Arithmetic. Proceedings of the 13th Annual ACM Symposium on Computational Geometry, 174-182.
[4] Brönnimann, H. and Yvinec, M. (2000) Efficient Exact Evaluation of Signs of Determinant. Algorithmica, 27, 21-56.

http://dx.doi.org/10.1007/s004530010003
[5] Pan, V.Y. and Yu, Y. (2001) Certification of Numerical Computation of the Sign of the Determinant of a Matrix. Algo-

rithmica, 30, 708-724. http://dx.doi.org/10.1007/s00453-001-0032-8
[6] Clarkson, K.L. (1992) Safe and Effective Determinant Evaluation. Proceedings of the 33rd Annual IEEE Symposium

on Foundations of Computer Science, IEEE Computer Society Press, 387-395.
[7] Avnaim, F., Boissonnat, J., Devillers, O., Preparata, F.P. and Yvinec, M. (1997) Evaluating Signs of Determinants Us-

ing Single-Precision Arithmetic. Algorithmica, 17, 111-132. http://dx.doi.org/10.1007/BF02522822
[8] Pan, V., Yu, Y. and Stewart, C. (1997) Algebraic and Numerical Techniques for Computation of Matrix Determinants.

Computers & Mathematics with Applications, 34, 43-70. http://dx.doi.org/10.1016/S0898-1221(97)00097-7
[9] Golub, G.H. and Van Loan, C.F. (1996) Matrix Computations. 3rd Edition, John Hopkins University Press, Baltimore.
[10] Edmonds, J. (1967) Systems of Distinct Representatives and Linear Algebra. Journal of Research of the National Bu-

reau of Standards, 71, 241-245. http://dx.doi.org/10.6028/jres.071B.033
[11] Bareiss, E.H. (1969) Sylvester’s Identity and Multistep Integer-Preserving Gaussian Elimination. Mathematics of

Computation, 22, 565-578.
[12] Bini, D. and Pan, V.Y. (1994) Polynomial and Matrix Computations, Fundamental Algorithms. Vol. 1, Birkhäuser,

Boston. http://dx.doi.org/10.1007/978-1-4612-0265-3
[13] Conte, S.D. and de Boor, C. (1980) Elementary Numerical Analysis: An Algorithm Approach. McGraw-Hill, New

York.

http://dx.doi.org/10.1007/s004530010003
http://dx.doi.org/10.1007/s00453-001-0032-8
http://dx.doi.org/10.1007/BF02522822
http://dx.doi.org/10.1016/S0898-1221(97)00097-7
http://dx.doi.org/10.6028/jres.071B.033
http://dx.doi.org/10.1007/978-1-4612-0265-3

http://www.scirp.org/
http://www.scirp.org/
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
mailto:submit@scirp.org

	Combining Algebraic and Numerical Techniques for Computing Matrix Determinant
	Abstract
	Keywords
	1. Introduction
	2. Definitions, Basic Facts, and Matrix Norms
	3. Numerical Computations of Matrix Determinant
	3.1. Triangular Factorizations
	3.2. Orthogonal Factorization

	4. Algebraic Computations of Matrix Determinant
	4.1. Determinant Computation Based on the Chinese Remainder Theorem
	4.2. Modular Determinant

	5. Alternative Approach for Computing Matrix Inverses and Determinant
	5.1. p-Adic Lifting of Matrix Inverses
	5.2. p-Adic Lifting of Matrix Determinant
	5.3. Faster p-Adic Lifting of the Determinant

	6. Improving the Precision of the p-Adic Lifting Algorithm
	7. Numerical Implementation of Matrix Determinant
	Acknowledgements
	References

