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Abstract 
Computing the sign of the determinant or the value of the determinant of an n × n matrix A is a 
classical well-know problem and it is a challenge for both numerical and algebraic methods. In 
this paper, we review, modify and combine various techniques of numerical linear algebra and ra-
tional algebraic computations (with no error) to achieve our main goal of decreasing the bit-  
precision for computing detA or its sign and enable us to obtain the solution with few arithmetic 
operations. In particular, we improved the precision   H p2log  bits of the p-adic lifting algorithm 
(H = 2h for a natural number h), which may exceed the computer precision β (see Section 5.2), to at 
most   β  bits (see Section 6). The computational cost of the p-adic lifting can be performed in 
O(hn4). We reduced this cost to O(n3) by employing the faster p-adic lifting technique (see Section 
5.3). 
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1. Introduction 
Computation of the sign of the determinant of a matrix and even the determinant itself is a challenge for both 
numerical and algebraic methods. That is, to testing whether ( )det 0A > , ( )det 0A < , or det 0A =  for an n × 
n matrix A. In computational geometry, most decisions are based on the signs of the determinants. Among the 
geometric applications, in which the sign of the determinant needs to be evaluated, are the computations of con-
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vex hulls, Voronoi diagrams, testing whether the line intervals of a given family have nonempty common inter-
section, and finding the orientation of a high dimensional polyhedron. We refer the reader to [1]-[5], and to the 
bibliography therein for earlier work. These applications have motivated extensive algorithmic work on compu-
ting the value and particulary the sign of the determinant. One of the well-known numerical algorithms is 
Clarkson’s algorithm. In [6], Clarkson uses an adaption of Gram-Schmidt procedure for computing an ortho-
gonal basis and employs approximate arithmetics. His algorithm runs in time ( )3O d b  and uses 2 1.5b d+  bits 
to represent the values for a d × d determinant with b-bit integer entries. On the other hand, the authors of [7] 
proposed a method for evaluating the signs of the determinant and bounding the precision in the case where 

3n ≤ . Their algorithm asymptotic worst case is worse than that of Clarkson. However, it is simpler and uses re-
spectively b and ( )1b + -bit arithmetic. In this paper we examine two different approaches of computing the de-
terminant of a matrix or testing the sign of the determinant; the numerical and the algebraic approach. In partic-
ular, numerical algorithms for computing various factorizations of a matrix A which include the orthogonal fac-
torization A QR=  and the triangular factorizations A LU= , rA P LU= , and r cA P LUP=  seem to be the 
most effective algorithms for computing the sign of ( )det A  provided that det A  is large enough relative to 
the computer precision. Alternatively, the algebraic techniques for computing det A  modulo an integer M 
based on the Chinese remainder theorem and the p-adic lifting for a prime p use lower precision or less arith-
metic operations. In fact, the Chinese remainder theorem required less arithmetic operations than the p-adic lift-
ing but with higher precision due to (9). We also demonstrate some effective approaches of combining algebraic 
and numerical techniques in order to decrease the precision of the computation of the p-adic lifting and to intro-
duce an alternative technique to reduce the arithmetic operations. If det A  is small, then obtaining the sign of 
the determinant with lower precision can be done by effective algebraic methods of Section 4. Although, the 
Chinese remainder algorithm approach requires low precision computations provided that the determinant is 
bounded from above by a fixed large number. This motivated us to generalize to the case of any input matrix A 
and to decrease the precision at the final stage of the Chinese remaindering at the price of a minimal increase in 
the arithmetic cost. Furthermore, in Section 5 we extend the work to an algorithm that computes ( )det modA M  
using low precision by relying on the p-adic lifting rather than the Chinese remaindering.  

2. Definitions, Basic Facts, and Matrix Norms  
Definition 1. For an n × n matrix A, the determinant of A is given by either 

( ) ( ) ( )1det 1 det , for 1, , ,i jn
ij ijjA A a A i n+

=
= = − =∑   or ( ) ( ) ( )1det 1 det , for 1, , ,i jn

ij ijiA A a A j n+

=
= = − =∑    

where ijA  is ( )1n − -by- ( )1n −  matrix obtained by deleting the i-th row and j-th column of A.  
Fact 1. Well-known properties of the determinant include ( ) ( ) ( )det det detAB A B= , ( ) ( )Tdet detA A= , 

and ( ) ( )det detncA c A=  for any two matrices , n nA B ×∈  and c∈ .  
Definition 2. If A is a triangular matrix of order n, then its determinant is the product of the entries on the 

main diagonal.  
Definition 3. For a matrix A of size m × n, we define 1-norm: 1 11 max m

j n ijiA a≤ ≤ =
= ∑ , ∞ -norm:  

1 1max n
i m ijjA a≤ ≤ =∞

= ∑ , p-norms: 0 0 1sup sup max
p

p
x x xp p

p p p

Ax xA A Ax
x x≠ ≠ =

 
 = = =
 
 

, and 2-norm: 

2

2
02

2

= max x

Ax
A

x≠ .  

3. Numerical Computations of Matrix Determinant  
We find the following factorizations of an n × n matrix A whose entries are either integer, real, or rational by 
Gaussian elimination.  

A LU=                                          (1) 

rA P LU=                                         (2) 

.r cA P LUP=                                        (3) 
We reduce A to its upper triangular form U. The matrix L is a unit lower triangular whose diagonal entries are 
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all 1 and the remaining entries of L can be filled with the negatives of the multiples used in the elementary oper-
ations. Pr is a permutation matrix results from row interchange and Pc is a permutation matrix results from col-
umn interchange.  

Fact 2. If P is a permutation matrix, then det 1P = ± . Moreover, det 1I = , where I is an identity matrix.  

3.1. Triangular Factorizations  
The following algorithm computes ( )det A  or its sign based on the factorizations (1)-(3). 

Algorithm 1. Triangular factorizations. 
Input: An n × n matrix A. 
Output: ( )det A . 
Computations:  
1) Compute the matrices L, U satisfying Equation (1), or Pr, L, U satisfying Equation (2), or Pr, L, U, Pc 

satisfying Equation (3).  
2) Compute det L , detU  for Equation (1), or det rP , det L , detU  for Equation (2), or det rP , det L , 

detU , det cP  for Equation (3).  
3) Compute and output ( )( )det det detA L U=  for Equation (1), or ( )( )( )det det det detrA P L U=  for Eq-

uation (2), or ( ) ( )( )( )( )det det det det detr cA P L U P=  for Equation (3).  
One can easily output the sign of det A  from the above algorithm. We only need to compute the sign of 

det rP , det L , detU , and det cP  at stage 2 and multiply these signs. The value of det rP  and det cP  can be 
easily found by tracking the number of row or column interchanges in Gaussian elimination process which will 
be either 1 or −1 since those are permutation matrices. As L is a unit lower triangular matrix, det 1L = . Finally, 
the computations of detU  required 1n −  multiplications since U is an upper triangular matrix. Therefore, the 
overall arithmetic operations of Algorithm 1 will be dominated by the computational cost at stage 1, that is,  
( )( ) 1 2

1

1 2 1
6

n
i

n n n
i−

=

− −
=∑  multiplications, the same number for additions, subtractions, and comparisons, but 

( ) 1
1

1
2

n
i

n n
i−

=

−
=∑  divisions. However, Algorithm 1 uses 1

1
n
i i−

=∑  comparisons to compute (2) rather than 1 2
1

n
i i−

=∑ .  

3.2. Orthogonal Factorization  
Definition 4. A square matrix Q is called an orthogonal matrix if T .Q Q I=  Equivalently, 1 TQ Q− = , where 
QT is the transpose of Q.  

Lemma 1. If Q is an orthogonal matrix, then ( )det 1Q = ± .  
Proof. Since Q is orthogonal, then TQ Q I= . Now T 1Q Q I= =  and thus T 1Q Q = , but TQ Q=  

which implies that 21 Q Q Q= = , hence 1Q = ± .  
Definition 5. If m nA ×∈ , then there exists an orthogonal matrix m mQ ×∈  and an upper triangular matrix 

m nR ×∈  so that  
.A QR=                                          (4) 

Algorithm 2. QR-factorization. 
Input: An n × n matrix A. 
Output: ( )det A . 
Computations:  
1) Compute an orthogonal matrix Q satisfying the Equation (4).  
2) Compute det Q .  
3) Compute the matrix ( )T

,i jR Q A r= = .  
4) Compute ( ) ( ) ,det det i iiA Q r= ∏ , where ,i ir  are the main diagonal entries of R.  
Here, we consider two well-known effective algorithms for computing the QR  factorization; the House-

holder and the Given algorithms. The Householder transformation (or reflection) is a matrix of the form 
T2H I= − vv  where 

2 1=v .  
Lemma 2. H is symmetric and orthogonal. That is, TH H=  and T .H H I⋅ =   
Proof. T2 ,H I= − vv  and since TI I=  and ( )TT T ,=vv vv  then ( )TT T T T2 2 .H I I H= − = − =vv vv  Hence, 
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H is symmetric. On the other hand, ( )( ) ( )T T T T T T T T2 2 4 4 4 4 .H H I I I v I I= − − = − + = − + =vv vv vv v v v vv vv  
Therefore, H is orthogonal, that is, 1 TH H− = .  

The Householder algorithm computes 1n
iiQ H−=∏  as a product of 1n −  matrices of Householder trans-

formations, and the upper triangular matrix TQ A R= .  
Lemma 3. ( ) ( ) 1det 1 nQ −= −  for a matrix Q computed by the Householder algorithm.  
Proof. Since T2i i iH I= − v v  for vectors iv , 1, , 1i n= − , Lemma 2 implies that T

i iH H I=  and hence 
( )2det 1iH = . Notice that ( )T

1 1det 2 1I − = −e e  where ( )T
1 1,0, ,0e =  . Now for 0 1t≤ ≤ , we define the trans-  

formation ( ) ( )1 1iv t t v e e= − + . Then the function ( ) ( ) ( )( )TdetD t I v t v t= −  is continuous and 2 1D =  t∀ .  

Hence ( ) ( )T
1 11 det 2 1D I v v= − = −  since 

2 1=v  and ( ) ( )T
1 10 det 2 1D I e e= − = − . This proves that  

det 1iH = −  i∀ . But 1
1

n
iiQ H−

=
=∏ , we have ( ) 1det 1 nQ −= − .  

The Givens rotations can also be used to compute the QR factorization, where 1 tQ G G=  , t is the total 
number of rotations, Gj is the the j-th rotation matrix, and TQ A R=  is an upper triangular matrix. Since the 
Givens algorithm computes Q as a product of the matrices of Givens rotations, then ( )det 1Q = . We define 

( ) ( ), ,, ,i i k kG W c s W c s c= = = , , ,i k k iG W W s= = − =  for two fixed integers i and k, and for a pair of nonzero real 
numbers c and s that satisfies 2 2 1c s+ =  such that TG G I= . If the Householder is used to find the QR, Algo-  

rithm 2 uses 1n −  multiplications at stage 3. It involves ( )3 24
3

n O n+  multiplications at stage 1, and ( )O n   

evaluations of the square roots of positive numbers. If the Givens algorithm is used to find the QR, then it in-
volves ( )3 22n O n+  multiplications at stage 3, ( )3 2n O n+  multiplications at stage 1, and ( )2O n  evalua-
tions. This shows some advantage of the Householder over the Givens algorithm. However, the Givens rotations 
algorithm allows us to update the QR of A successively by using only ( )2O kn  arithmetic operations and 
square root evaluations if ( )O k  rows or columns of A are successively replaced by new ones. Therefore, in 
this case, the Givens algorithm is more effective.  

4. Algebraic Computations of Matrix Determinant  
4.1. Determinant Computation Based on the Chinese Remainder Theorem  
Theorem 1. (Chinese remainder theorem.) Let 1 2, , , km m m  be distinct pairwise relatively prime integers 
such that  

1 2 1.km m m> > > >                                    (5) 

Let 
1

k
iiM m

=
=∏ , and let D denote an integer satisfying the inequality  

0 .D M≤ <                                        (6) 
Let  

( )mod .i ir D m=                                      (7) 

( ) ( ), mod , 1 mod ,  1, , .i i i i i i i
i

MM s M m y s m i k
m

= ≡ ≡ ∀ =                     (8) 

Then D is a unique integer satisfying (6) and (7). In addition,  

( )( )
1

mod .
k

i i i
i

D M r y M
=

= ∑                                 (9) 

Algorithm 3. (Computation of ( )det mod A M  based on the Chinese remainder theorem.) 
Input: An integer matrix A, an algorithm that computes ( )det mod A m  for any fixed integer 1m > , k in-

tegers 1, , km m  satisfying (5) and are pairwise relatively prime, and 1 2 kM m m m=  . 
Output: ( )det mod A M . 
Computations:  
1) Compute ( )det mod i ir A m= , 1, ,i k=  .  
2) Compute the integers Mi, si, and yi as in (8)  1, ,i k∀ =  .  
3) Compute and output D as in (9).  
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The values of yi in (8) are computed by the Euclidean algorithm when applied to si and mi for 1, ,i k=  . 
Algorithm 3 uses ( )3O kn  arithmetic operations (ops) at stage 1, ( )( )1 1log log logO k m m  ops at stage 2, and 
( )2logO k k  ops at stage 3. The computations of the algorithm are performed with precision of at most 

2 1log m    bits at stage 1, and at most 2log M    bits at stages 2 and 3. The latest precision can be decreased at 
the cost of slightly increasing the arithmetic operations [8].  

Lemma 4. For any pair of integers M and d such that 2M d> , we have  

( ) ( ) ( ) mod  if   mod , and  mod  otherwise.
2
Md d M d M d d M M= < = −             (10) 

Suppose that the input matrix A is filled with integers and an upper bound detud A≥  is known. Then we 
may choose an integer M such that 2 uM d>  and compute ( )det mod A M . Hence, det A  can be recovered 
by using (10).  

4.2. Modular Determinant  
Let n nA ×∈  and ( )detd A= . In order to calculate ( )det mod A p , we choose a prime p that is bigger than 
2 d  and perform Gaussian elimination (2) on ( )mod n n

pA p ×∈ . This is the same as Gaussian elimination over 
 , except that when dividing by a pivot element a we have to calculate its inverse modulo p by the ex-  

tended Euclidean algorithm. This requires ( )3 22
3

n O n+  arithmetic operations modulo p. On the other hand, if  

we need to compute ( )det mod A p  for the updated matrix A, we rely on the QR factorization such that 
( )( )modA QR p=  and ( )T modQ Q D p= , where D is a diagonal matrix and R is a unit upper triangular matrix. 

The latest factorization can be computed by the Givens algorithm [9]. If the entries of the matrix A are much 
smaller than p, then we do not need to reduce modulo p the results at the initial steps of Gaussian elimination. 
That is, the computation can be performed in exact rational arithmetics using lower precision. In this case, one 
may apply the algorithm of [10] and [11] to keep the precision low. The computations modulo a fixed integer 

1M >  can be performed with precision 2log M    bits. In such a computation, we do not need to worry about 
the growth of the intermediate values anymore. However, to reduce the cost of the computations, one can work 
with small primes modular instead of a large prime, that is, these primes can be chosen very small with loga-
rithmic length. Then the resulting algorithm will have lower cost of ( )3O n k  and can be performed in parallel. 
Now, one can find a bound on the det A  without actually calculating the determinant. This bound is given by 
Hadamard’s inequality which says that  

( )2det ,
n nnA n a a n≤ =                                (11) 

where 1 ,max i j n ija a +
≤ ≤= ∈  (nonnegative integers) is the maximal absolute value of an entry of A.  

5. Alternative Approach for Computing Matrix Inverses and Determinant 
5.1. p-Adic Lifting of Matrix Inverses  
In this section, we present an alternative approach for computing matrix determinant to one we discussed in ear-
lier sections. The main goal is to decrease the precision of algebraic computations with no rounding errors. The 
technique relies on Newton’s-Hensel’s lifting (p-adic lifting) and uses ( )4 logO n n  arithmetic operations. 
However, we will also show how to modify this technique to use order of n3 arithmetic operations by employing 
the faster p-adic lifting. Given an initial approximation to the inverse, say S0, a well-known formula for New-
ton’s iteration rapidly improves the initial approximation to the inverse of a nonsingular n × n matrix A:  

( ) ( )1 2 2 2 , 0.i i i i i i i iS S I AS S S AS I S A S i+ = − = − = − ≥                    (12) 

Algorithm 4. (p-adic lifting of matrix inverses.) 
Input: An n × n matrix A, an integer 1p > , the matrix ( )1

0 mod S A p−= , and a natural number h. 
Output: The matrix ( )1 mod HA p− , 2hH = . 
Computations:  
1) Recursively compute the matrix jS  by the equation,  
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( )( )1 12 mod , where 2 , 1, , .J j
j j jS S I AS p J j h− −= − = = 

                   (13) 

2) Finally, outputs hS .  
Note that, ( )1 mod J

jS A p−= , 2 jJ = , j∀ . This follows from the equation ( ) ( )2
1 mod J

j jI AS I AS p−− = − . 
The above algorithm uses ( )3O n  arithmetic operations performed modulo pJ at the j-th stage, that is, a total of 
( )3O hn  arithmetic operations with precision of at most 2logJ p    bits.  

5.2. p-Adic Lifting of Matrix Determinant 
We can further extend p-adic lifting of matrix inverses to p-adic lifting of matrix determinants, that is 

( )det mod A p , using the following formula [12]:  

( )1

,1

1det .n

k k kk

A
A−

=

=

∏
                                   (14) 

Here, Ak denotes the k × k leading principal (north-western) submatrix of A so that nA A=  for 1, ,k n=  . 
Moreover, ( ) ,k kB  denotes the ( ),k k -th entry of a matrix B. In order to use Formula (14), we must have the 
inverses of Ak available modulo a fixed prime integer p for all k . A nonsingular matrix A modulo p is called 
strongly nonsingular if the inverses of all submatrices Ak exist modulo p. In general, a matrix A is called strongly 
nonsingular if A is nonsingular and all k × k leading principle submatrices are nonsingular. Here, we assume that 
A is strongly nonsingular for a choice of p. Finally, Algorithm 4 can be extended to lifting det A  (see Algo-
rithm 5).  

Algorithm 5. (p-adic lifting of matrix determinant.) 
Input: An integer 1p > , an n × n matrix A, the matrices ( )1

0, mod k kS A p−= , and a natural number h. 
Output: ( )2det mod HA p , 2hH = . 
Computations:  
1) Apply Algorithm 4 to all pairs of matrices kA  and 0,kS , (replacing the matrices A and 0S  in the algo-

rithm), so as to compute the matrices ( )1
, mod H

h k kS A p−= , for 1, ,k n=  .  
2) Compute the value  

( ) ( )2 2
, , ,1

1 mod 2 mod .
det

n
H H

h k k h k k kk
p S I A S p

A =

   = −    
∏                     (15) 

3) Compute and output the value ( )( )2det mod HA p , as the reciprocal of ( )21 mod 
det

Hp
A

 
 
 

.  

The overall computational cost of Algorithm 5 at stage 1 is ( )4O hn  arithmetic operations performed with 
precision at most 2logH p    bits. However, at stage 2, the algorithm uses ( )3O n  operations with precision 

22 logH p    bits. At stage 3, only one single multiplication is needed. All the above operations are calculated 
modulo p2H. Now, we will estimate the value of H and p that must satisfy the bound 2 2 detHp A> . But, due to  

Hadamard’s bound (11), we have ( ) ( ) 22 det 2
n HA a n p< <  which implies that  

2 log log log 2p p pH n a n n> + + . Therefore, it is suffices to choose p and H satisfying the inequalities  

( ) 22
n Ha n p<  and ( )2 log 2

n

pH a a >  
 

. In the next section, we will present an alternative faster tech-  

nique to computing matrix determinant that uses only ( )3O n  based on the divide-and-conquer algorithm.  

Example 1. Let 
1 17 18
1 18 19 .
5 16 20

A
 
 =  
 
 

 Then, [ ]1 1 ,A =  2

1 17
1 18

A  
=  
 

, and 3

1 17 18
1 18 19 .
5 16 20

A
 
 =  
 
 

 By Algorithm 4, 

compute the matrices: [ ]1
1 1 ,A− =  1

2

18 17
,

1 1
A− − 

=  − 
 and 1

3

56 52 1
75 70 1 .

74 69 1
A−

− 
 = − 
 − − 

 Now, we compute 
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[ ]1
0,1 1 mod 3 1 ,S A−= =  1

0,2 2

0 1
mod 3 ,

2 1
S A−  

= =  
 

 and 1
0,3 3

1 1 1
mod 3 0 1 1 .

2 0 2
S A−

 
 = =  
 
 

 We apply Algorithm 4 

(that is, ( )0, 0,2  mod , 2 , 1, ,J j
k k k kS S I A S p J j h= − = =  ) to all pairs of matrices:  

( ) [ ]2
1,1 1 0,1 1 0,12 mod 3 1 ,S S S I A S= = − =   

( ) 2
1,2 2 0,2 2 0,2

0 1
2 mod 3 ,

8 1
S S S I A S  

= = − =  
 

 

and 

( ) 2
1,3 3 0,3 3 0,3

7 7 1
2 mod 3 6 7 1 .

2 3 8
S S S I A S

 
 = = − =  
 
 

 

We then compute the value  

( ) ( ) ( )

[ ]

( )( )( )

32 2 2 1
1,1 1 1,1 1,2 2 1,2 1,3 3 1,31 1,1 2,2 3,3

1,1
2,2

3,3

1 mod 2 2 2 mod 3
det

2243 2783 2510
144 17

1 2100 2603 2348
1216 161

2113 2580 2269

1 161 2269 365309 mo

H
kp S I A S S I A S S I A S

A
× ×

=
     = − ⋅ − ⋅ −     

− − − 
− −   = ⋅ ⋅ − − −   − −   − − − 

= − − =

∏

( )d 81 80.=

 

Therefore, we output the value of ( ) 2 2 1det mod 3 1A × × = − , since 1 80 mod 81− ≡ .  

5.3. Faster p-Adic Lifting of the Determinant 
Assuming A is strongly nonsingular modulo p, block Gauss-Jordan elimination can be applied to the block 2 × 2 

matrix 
B C

A
E G

 
=  
 

 to obtain the well-known block factorization of A: 

1

1 ,
I O B O I B C

A
EB I O S O I

−

−

   
=    
   

 

where 1S G EB C−= −  is the Schur complement of B in A. The following is the divide-and-conquer algorithm 
for computing ( )det A .  

Algorithm 6. (Computing the determinant of a strongly nonsingular matrix.) 
Input: An n × n strongly nonsingular matrix A. 
Output: ( )det A . 
Computations:  

1) Partition A according to the block factorization above, where B is an 
2 2
n n   ×      

 matrix. ( ⋅    refers to 

the floor of 
2
n .) Compute 1B−  and S using the matrix equation 1S G EB C−= − .  

2) Compute ( )det B  and ( )det S .  
3) Compute and output ( ) ( )det det  detA B S= .  
Since A is strongly nonsingular modulo p, we can compute the inverse of k × k matrix by  
( ) ( )3 logO k H I k=  arithmetic operations using Algorithm 4. From the above factorization of A, we conclude 

that ( ) ( ) ( ) ( )2 2 2D n D n D n I n≤ + +           . The computational cost of computing the determinant is 
( ) ( )3 logD n O n H= . This can be derived from the above factorization of A using recursive factorization ap- 

plied to B and S and the inverses modulo 2Hp . Here, ( )I k  is the cost of computing the inverse and ( )D k  is 



M. M. Tabanjeh 
 

 
471 

the cost of computing the determinant. 

6. Improving the Precision of the p-Adic Lifting Algorithm 
Definition 6. Let e be a fixed integer such that 2log e β>  where β is the computer precision. Then any integer 
z, such that 0 1z e≤ ≤ − , will fit the computer precision and will be called short integer or e-integer. The integ-
ers that exceed 1e α− =  will be called long integers and we will associate them with the e-polynomials 
( ) i

iip x p x=∑ , 0 ip e≤ <  for all i.  
Recall that Algorithm 4 uses 2logj p    bits at stage j. For large j, this value is going to exceed β. In this 

section we decrease the precision of the p-adic algorithm and keep it below β. In order to do this, we choose the 
base Ke p=  where K is a power of 2, 2K H≤ , K divides 2H , and  

2

2log .nHK
K

α β
 

≤ < 
 

                                   (16) 

Now, let us associate the entries of the matrices  mod J
kA p  and 1,  mod J

j kS p−  with the e-polynomials in x 
for = 2 jJ  and for all j and k. These polynomials have degrees ( ) 1J K −  and take values of the entries for 
x e= . Define the polynomial matrices ( ),  mod J

j k kA e A p=  and ( ), ,  mod J
j k j kS e S p= . Then for J K≥ , we 

associate the p-adic lifting step of (13) with the matrix polynomial  

( ) ( ) ( ) ( ) ( )( ), 1, 1, , 1,2 mod .J K
j k j n j n j n j nS x S x S x A x S x x− − −= −                    (17) 

The input polynomial matrices are ( )1,j nS x−  and ( ),j nA x  for 1, 2, ,j h=  . We perform the computations 
in (17) modulo J Kx . The idea here is to apply e-reduction to all the entries of the output matrix polynomial 
followed by a new reduction modulo J Kx . The resulting entries are just polynomials with integer coefficients 
ranging between 1 e−  and 1e − . This is due to the recursive e-reductions and then taking modular reductions 
again. Note that the output entries are polynomials with coefficients in the range γ−  to γ  for 2βγ ≤  even 
before applying the e-reductions. This shows that the β-bit precision is sufficient in all of the computations due 
to (16). The same argument can be applied to the matrices ,j kS  for all j and k n< . 

7. Numerical Implementation of Matrix Determinant  
In this section we show numerical implementation of the determinant of n × n matrices based on the triangular 
factorization LU, PrLU, and PrLUPc. Algorithm 1 computes the triangular matrices LL L E= +  and  

UU U E= + , the permutation matrices rP  and cP , where EL and EU are the perturbations of L and U. In gener-
al, we can assume that r rP P=  and c cP P=  since the rounding error is small.  

Definition 7. Let  
1 1, ,r cA P AP LU A E− −′ ′ ′= − =                                   (18) 

and let e′ , a, l , and u  denote the maximum absolute value of the entries of the matrices E′ , A, L , and 
U . Also, E′  is the error matrix of the order of the roundoff in the entries of A.  

Assuming floating point arithmetic with double precision (64-bits) and round to β -bit. Then the upper 
bound on the magnitude of the relative rounding errors is 2 β−= , where   is the machine epsilon. Our goal is 
to estimate e′ .  

Theorem 2. ([13]) For a matrix ( ),i jA a= , let A  denote the matrix ( ),i ja . Then under (18),  
( ) ,E A L U′ ′≤ +     and  

( ) .e e a nlu+′ ≤ = + 

                                    (19) 

From the following matrix norm property , ,
1 maxi j i jq qA a A
n

  ≤ ≤ 
 

, for 1, 2,q = ∞ , we obtain the bound 

.e E
∞

′ ′≤   
Theorem 3. Let a+  denotes the maximum absolute value of all entries of the matrices ( )iA  computed by 

Gaussian elimination, which reduces A′  to the upper triangular form and let   as defined above. Then  
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( )22 42 1.8 .
ln

e e E n a an
++

+ ∞
′ ′≤ = ≤ <                             (20) 

By using the following results, we can estimate the magnitude of the perturbation of det A  and det A′  
caused by the perturbation of A′ . Here we assume that ,r cP P I A A′= = =  and write,  

( ),  det det .de e e A E A′= = + −                               (21) 

We use the following facts to estimate de  of (21) in Lemma 5 below.  
Fact 3. det n

qA A≤ , 1,2,q = ∞ . 
q qB A≤ , 1,q = ∞ , if B A≤ ; 

q qB A≤ , 1,2,q = ∞ , if B is a  
submatrix of A. 

q qA E A ne+ ≤ + , for 1,2,q = ∞ ; 2 2

2 2A E A ne+ ≤ + .  

Lemma 5. ( ) 1
2 , for 1, 2, .

n

d qe A ne n e q
−

≤ + = ∞   

Combining Lemma 5 with the bound (19) enables us to extend Algorithm 1 as follows:  
Algorithm 7. (Bounding determinant.) 
Input: An n n×  real matrix A and a positive  . 
Output: A pair of real numbers d−  and d+  such that det .d A d− +≤ ≤  
Computations:  
1) Apply Algorithm 1 in floating point arithmetic with unit roundoff bounded by  . Let UU U E= +  denote 

the computed upper triangular matrix, approximating the factor U of A from (2) or (3). 
2) Compute the upper bound e+  of (20) where e e′= .  

3) Substitute e+ for e and ( )
1
2

1 1min | , , A A A A
∞ ∞

 
 
 

 for 
qA  in Lemma 5 and obtain an upper bound 

de+  on de .  
4) Output the values det dd U e+

− = −  and det dd U e+
+ = + .  

Example 2. Let 

5 310
3 6 0 1.6667 5.1667

19 3 16 4.7500 1.5000 3.2000 .
4 2 5

3.4000 5.2500 1.333317 21 12
5 4 9

A

 − 
−  

  = ≈   
    

  
 

 Using Matlab, Gaussian elimination 

with complete pivoting gives the matrix U rounded to 4 bits: 
5.2500 1.3333 3.4000

0 5.5899 1.0794
0 0 3.2342

U
 
 = − − 
 
 

,  

1 0 0
0.3175 1 0
0.2857 0.5043 1

L
 
 =  
 − 

, UU U E= + , LL L E= +  where EU and EL are the matrices obtained from accu-

mulation of rounding errors. Also 
0 0 1
1 0 0
0 1 0

rP
 
 =  
 
 

, and 
0 0 1
1 0 0 .
0 1 0

cP
 
 =  
 
 

 Then 

5 5

5

0 6 10 6 10
0 0 0
0 0 3 10

AE

− −

′
−

 × ×
 

=  
 × 

  

is a perturbation in A, and 41.2 10AE −
′ ∞

= × . We now compute the upper bound e+  of (20). Therefore, 
62.9618e e+′ ≤ ≤ , where 5.25a =  is the maximum of ,i ja  of A, l = 1 is the maximum of ,i jl  of L, 2 β−= , 

4β = , and 3n =  is the size of the input matrix A . Hence we obtain the following upper bound de+  on de   

by Lemma 5. That is, ( )
11

2 72
1 1min , , 2.2347 10

n

de A A A A ne n e
−

+ +∞ ∞

  
≤ + = ×     

, where 
1 9.7A = ,  

9.9833A
∞
= , and 1 9.8406A A

∞
= . Hence, 72.2347 10de+ = ×  is an upper bound of de .  

7det 2.2347 10dd U e+
− = − = − ×  and 7det 2.2347 10dd U e+

+ = + = × . Since ( )det 94.91597A = − , we have 
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( )det detd dU e A U e+ +− ≤ ≤ +  . On the other hand ( ) ( )det det 0.00123de A EA A= + − =  which is less than the 
upper bound 72.2347 10×  we have computed.  
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