American Journal of Computational Mathematics, 2014, 4, 455-463 #%5* Scientific
Published Online December 2014 in SciRes. http://www.scirp.org/journal/ajcm 00:0 Research
http://dx.doi.org/10.4236/ajcm.2014.45038

Exact Traveling Wave Solutions for the
System of Shallow Water Wave Equations
and Modified Liouville Equation Using
Extended Jacobian Elliptic Function
Expansion Method

Emad H. M. Zahran?, Mostafa M. A. Khaterz*

'Department of Mathematical and Physical Engineering, College of Engineering, University of Benha, Shubra,
Egypt

2Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt

Email: mostafa.Khater2024@yahoo.com

Received 11 September 2014; revised 21 October 2014; accepted 15 November 2014

Copyright © 2014 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract

In this work, an extended Jacobian elliptic function expansion method is proposed for construct-
ing the exact solutions of nonlinear evolution equations. The validity and reliability of the method
are tested by its applications to the system of shallow water wave equations and modified Liou-
ville equation which play an important role in mathematical physics.
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1. Introduction

The nonlinear partial differential equations of mathematical physics are major subjects in physical science [1].
Exact solutions for these equations play an important role in many phenomena in physics such as fluid mechan-
ics, hydrodynamics, optics, plasma physics and so on. Recently many new approaches for finding these solu-
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tions have been proposed, for example, tanh-sech method [2]-[4], extended tanh-method [5]-[7], sine-cosine
method [8]-[10], homogeneous balance method [11] [12], F-expansion method [13]-[15], exp-function method

’

[16], the modified simple equation method [17], the exp(—¢(§)) -expansion method [18], (%j -expansion

method [19]-[22], Jacobi elliptic function method [23]-[26] and so on.

The objective of this article is to apply the extended Jacobian elliptic function expansion method for finding
the exact traveling wave solution the system of shallow water wave equations and modified Liouville equation
which play an important role in mathematical physics.

The rest of this paper is organized as follows: In Section 2, we give the description of the extended Jacobi el-
liptic function expansion method. In Section 3, we use this method to find the exact solutions of the nonlinear
evolution equations pointed out above. In Section 4, conclusions are given.

2. Description of Method
Consider the following nonlinear evolution equation
F (U,Uq, Uy, Uy, Uy, +-) =0, )

tr My Mt s Yxxr "

where F is polynomial in u(x,t) and its partial derivatives in which the highest order derivatives and nonlinear
terms are involved. In the following, we give the main steps of this method [23]-[26].
Step 1. Using the transformation

u=u(¢&), &=x—ct, 7))
where ¢ is wave speed, to reduce Equation (1) to the following ODE:
P(u,u’,u”,u”,--)=0, 3)

where P is a polynomial in u(f) and its total derivatives, while :E .

Step 2. Making good use of ten Jacobian elliptic functions, we assume that (3) has the solutions in these

forms:
u(ég):ao+zfij_l(§)|:aj fi(§)+bjgi(§):|v 1=12,3,, (@)

with

f.(&)=sng, g9,(&)=cns,

f,(&)=sng, g,(&)=dng,

f,(£)=nsé, g;(&)=csé, -

f4(§)=n55, g4(§)=d35,

fs(&)=scs, gs(&)=ncs,

fs(&)=sdé,  gg(&)=nd¢,

where sn&, cn&, dn&, are the Jacobian elliptic sine function, the jacobian elliptic cosine function and the
Jacobian elliptic function of the third kind and other Jacobian functions which is denoted by Glaisher’s symbols
and are generated by these three kinds of functions, namely

nsé :i, ncéf :i, ndg :i’ ch :%’
sné cné dné sné ©)
csé =ﬂ, dsé =dﬁ, sd& =ﬁ,
cné sné dné
that have the relations
sn’E+cen’é =1, dn’E+m?sn’E =1, ns’E =1+cs?E, o

ns’E =m? +ds’&, sc’&+1=nc’s, m’sd? +1=nd?&,
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with the modulus m (0 <m<1). Inaddition we know that
d d d
—sné& =cnédné, —cené = —snédné, — dné& = —m?snéené. 8
d§§ §§d§§ fégdg? éeng (8)

The derivatives of other Jacobian elliptic functions are obtained by using Equation (8). To balance the highest
order linear term with nonlinear term we define the degree of u as D[u] =n which gives rise to the degrees of

other expressions as
du du Y
D|—|=n+q, D|u?|—| |=np+s(n+q). 9

According the rules, we can balance the highest order linear term and nonlinear term in Equation (3) so that n
in Equation (4) can be determined.

Noticed that sn& — tanh<&, cné —seché, dné — seché when the modulus m—1 and sné —siné,
cné —»cosé, dné —1 when the modulus m — O, we can obtain the corresponding solitary wave solutions and
triangle function solutions, respectively, while when therefore Equation (5) degenerate as the following forms

(€)= + San (&) 2, anh () byseen(£)], (10)
0(£) =2+ Rt (£)[a, ol (£) b, ot (£)]. (1)
0(£)=a+ St (¢)[a; an(£) b, eo() (12)
(€)= + Dot (£)[ cot(£) by ese(£) ] (13)

Therefore the extended Jacobian elliptic function expansion method is more general than sine-cosine method,
the tan-function method and Jacobian elliptic function expansion method.
3. Application
3.1. Example 1: The System of Shallow Water Wave Equations

We first consider the system of the shallow water wave equation [27] in order to demonstrate the exp(—¢(§)) -
expansion method

{ul +(Uv) +Vy, =0, 14)

v, +U, +w, =0.

We use the wave transformation u(x,t)=u(&), &£=x—ct to reduce Equations (14) to the following nonli-
near system of ordinary differential equations:

—cu’+vu'+uv' +v" =0,
Pt ! (15)
u'—cv'+w'=0,
where by integrating once the second equation with zero constant of integration, we find
V2
u=ecv—— 16
5 (16)
substituting Equation (16) into the first equation of Equation (15) we obtain
2
v’”+[3cv—3%—chv’ =0. 17)

Integrating Equation (17) with zero constant of integration, we find
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v’ +§cv2 le_eyoo, (18)
2 2

Balancing v" and Vv® in Equation (18) yields, N +2=3N = N =1. This suggests the choice of v(e;) in
Equation (18) as

u=a,+asn+hecn, (19)

where a,, a and b, areconstantsuchthat a =0 or b =0.From (19), itis easy to see that
u’=a,cndn—b;sndn, (20)
u” =-m?sna, +2a,sn’m* +2m?sn’cnb, —a,sn —bycn. (21)

Substituting Equations (19) and (21) into Equation (18) and equating all coefficients of sn®, sn’cn, sn?,

sncn, sn, cn, sn® respectively to zero, we obtain:

2am* ~2a +Sapf =0, (22)
2 2
2m?h, — 8, + 247 = 0, (23)
2 2
3.2 3.2 3 5, 3
—ca’ ——cb’ —— — = 24
Scal —o bl —agal +agh =0, (24)
3cahy —3a,ab =0, (25)
3 3
—am’ —a, +3ca,3, —- 8@, — ab ~¢’a, =0, (26)
3 2 1 3 2
by + 3cah, — agl, ~Jb ~c’ =0, (27)
3 1 3
Ec(ag +bf)—5a§ —anbf —c’a, =0. (28)

Solving the above system with the aid of Maple or Mathematica, we have the following solution:
Case 1.

c=a, =+V2m*+2,a =+2m, b =0.
So that the solution of Equation (18) can be written as

U=+y/2m* +2 +2msn, (29)

when m =1, the solution can be in the form
u==+2+2tanh(¢). (30)
Case 2.
c=a, :i\/m,alzim,blziim.

So that the solution of Equation (18) can be written as

U=+y2-m? £msn+imen, (31)
when m=1, the solution can be in the form
u =+l+tanh(&)+isech(&). (32)

Case 3.
C=a, =+/2-4m*, a =0,b =+2im.
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So that the solution of Equation (18) can be written as
U =+v2-4m? +2imen, (33)
when m =1, the solution can be in the form

U =2+ 2isech(¢). (34)

3.2. Example 2: Modified Liouville Equation
Now, let us consider the modified Liouville equation [28].
a’u, —u, +be =0, (35)

respectively, where a, g and b are non zero and arbitrary coefficients. Using the wave transformation
u(x,t)=u(¢), é=kx+at, v=e™ toreduce Equation (35) to be in the form:

2,2 2 2,2 2
[k a o ]v”v—(k a w—Jv’erbvB:O. (36)

poB) LB B
Balancing v'v and Vv in Equation (36) yields, N+2+N =3N = N =2. Consequently, we have the for-
mal solution:
u(&)=a, +a,sn+hcn+a,sn’ +b,snen, (37)
where a,, a,, a, areconstants to be determined, such that a, #0 or b, 0. Itis easy to see that

u’ = a,cndn —b,sndn + 2dna,sncn — 2dnb,sn’ +dnb, , (38)
u” =-m?sna, +2a,sn’m® + 2m*sn°cnb, —4a,m’sn® + 6a,sn*m? +6m?sn’cnb, 39)
—m?sncnb, —a,sn—b,cn + 2a, —4a,sn” —4b,snen.

Substituting (37) and (39) into Equation (36) and equating all the coefficients of sn®, sn°cn, sn°, sn‘cn,

sn*, sn’cn, sn®, sn’n, sn®, sncn, sn, cn, sn’ to zero, we deduce respectively
2,2 2
(k; —%](—Zmzbz2 +2a§m2)+b(a§ —3a2b22):0, (40)
2,42 2
4("; —%j a,m’b, +b(3azh, ~b:) =0, (41)
k’a’ o’
( 5 _7](_4m2blb2 +4a,m’a, ) +b(3a,a; - 6ba,b, ~3a,b7 ) =0, (42)
k’a’® o’
[ 5 _?j(Aaimsz +4m’ba, ) + b<—3b1b22 +3bal + 6aia2b2) =0, (43)

2,2 2
[kﬂa —%](—mzbf +2m°b} +a,’m’ +6a,m’a, ) +b(3a7a, +3aa; —6a,byb, +3a,b; —307a, —3a,b7 ) =0, (44)

2,2 2
[k; _%j(%hmzbl +6m’b,a, —a,m’h, ) +b(~3b b, +3ab, +b; +6a,a,h, +6a,ba, | =0, (45)
k’a® o’
-~ |(bb, —aa, —am?a, +2a,m?a, + 7m?bb
[/3 ﬁj(b”a”ai SRS (@6)

+b(af —3ah’ —6ajbb, + 63,33, +3a,0] +6ba,b, ) =0,
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(kzaz *
g B

——j(—bla2 —ajb, +2m’ba, - 4m’ba, )+ b(3afb, — b + 30b +6ayah, +6ajba, ) =0, (47)

2,2 2
(k; —%)(—4a2a0 +2m’bf —4a,m’a, — 2a; ) + b(3aya; —3agby +3a,a; +30a, +3ah,” +6ab, ) =0, (48)

2,2 2
(" ; —%)(—Zazbz —4b,a, —m?b,a, —a,m’h, )+ b(6ayab, +3b,a; +307b, ) =0, (49)
2,2 2
(k; —%}(—aobﬁZblaz—2a1b2)+b(3a§bl+bf):0, (50)
k’a’® o° 2 2 2 2
a— (—a,a, —30b, —2a,3, —a,m’a, —m’byb, ) + b(3aa, +3a,b; +6a,bb, ) =0, (51)
k2a2 wz bZ 2 2a a 2 b 3 3 2\ _ 0 52
Y _7 (_2_b1+ 20_a1)+ (ao+ aobl)—' (52)
Solving the above system with the aid of Maple or Mathematica, we have the following solution:
—2(k2a2 —a)z)
a:a,b:ﬁ—a, k=k,m=4%1, f=p,8,=-8,,8 =0,a,=a, b =b,=0.
2

So that the solve of Equation (36) can be written in the form

~ 2(k2a2 —a)z) Z(kza2 —a)z)

V= b b sn<, (53)
u:lln 2(ka —a))_Z(ka - )Snz | (54)
it Bb pb
When m=1, the solution can be in the form

2(k2a2—w2) 2(k2a2—a)2) ,
V= 7 - 7 tanh® (&), (55)

1 (2(kar-o?) 2(kKa-e?)
u_Eln{ I - b tanh® (&) |. (56)

4. Conclusions

We establish exact solutions for the system of shallow water wave equations and modified Liouville equation
which are two of the most fascinating problems of modern mathematical physics.

The extended Jacobian elliptic function expansion method has been successfully used to find the exact travel-
ing wave solutions of some nonlinear evolution equations. As an application, the traveling wave solutions for
the system of shallow water wave equations and modified Liouville equation, have been constructed using the
extended Jacobian elliptic function expansion method. Let us compare between our results obtained in the
present article with the well-known results obtained by other authors using different methods as follows: our re-
sults of the system of shallow water wave equations and modified Liouville equation are new and different from
those obtained in [27] and [28] and Figure 1 and Figure 2 show the solitary wave solution of Equations
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Figure 2. Solitary wave solution of Equation (56).

(30) and (56). It can be concluded that this method is reliable and proposes a variety of exact solutions NPDEs.
The performance of this method is effective and can be applied to many other nonlinear evolution equations.
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