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Abstract 
We introduce novel methods to determine optimum detection thresholds for the Progressive Mul-
ti-Channel Correlation (PMCC) algorithm used by the International Data Centre (IDC) to perform 
infrasound and seismic station-level nuclear-event detection. Receiver Operating Characteristic 
(ROC) curve analysis is used with real ground truth data to determine the trade-off between the 
probability of detection ( )DP  and the false alarm rate (FAR) at various detection thresholds. 
Further, statistical detection theory via maximum a posteriori and Bayes cost approaches is used to 
determine station-level optimum “family” size thresholds before detections should be considered 
for network-level processing. These threshold-determining methods are extensible for family-cha- 
racterizing statistics other than “size,” such as a family’s collective F-statistic or signal-to-noise ra-
tio (SNR). Therefore, the reliability of analysts’ decisions as to whether families should be pre-
served for network-level processing can only benefit from access to multiple, independent, opti-
mum decision thresholds based upon size, F-statistic, SNR, etc. 
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1. Introduction 
The Progressive Multi-Channel Correlation (PMCC) algorithm is the underground and atmospheric detection 
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method of choice for the international monitoring community that seeks to ensure compliance with the Com-
prehensive Nuclear-Test-Ban Treaty (CTBT). The community, or more specifically the International Monitoring 
System (IMS), leverages four global sensor networks—the radionuclide network, the hydroacoustic network, the 
seismic network, and the infrasound network. The seismic and infrasound networks chiefly employ PMCC to 
detect nuclear testing being conducted underground and in the atmosphere respectively. 

The detection screening process occurs in stages—first at the individual station level and then at the net-
work-processing level. For instance, when infrasonic waves produced by an explosion traverse an infrasound 
array, PMCC data processing at that individual station array should declare a potential nuclear event. When oth-
er adjacent arrays also declare detections, it is the goal of network-level processing to triangulate the location of 
the nuclear testing site based upon the time difference of arrival of the explosion-produced waves at these iden-
tified stations. Improving the efficiency of the automated screening at the station level implies lowering the 
burden on analysts whose collective responsibility it is to nominate station-level detections for network-level 
processing. 

In other words, the goal of station-level processing would ideally be to maintain a high fidelity of true positive 
detections while limiting the number of false alarms. Considering this goal, surprisingly little is known not only 
about the performance capability of PMCC, but also about how the choice of PMCC parameter settings affect 
this performance. This research therefore evaluates the parameter of utmost import to PMCC—the consistency— 
as well as presents a novel method to determine optimum detection thresholds using classical detection theory. 

2. Background 
Any organization with a vested interest in the understanding and performance improvement of PMCC, such as 
the IMS, the IMS’s data processing International Data Centre (IDC), or the Air Force Technical Applications 
Center (AFTAC), stands to benefit from the PMCC parameter evaluation and optimum threshold method herein 
described. Analysis of PMCC should rightly begin with an explanation of its algorithm, the subject of this sec-
tion. 

2.1. PMCC 
As a correlation detector, PMCC begins by assuming that infrasound-producing events are far enough away 
from surrounding sensor arrays that the arrays can treat the propagating infrasound signals as plane waves. Plane 
wave propagation implies that the wave front will traverse an array’s horizontally displaced sensors in succes-
sion. The time delay in plane wave arrival at one sensor element relative to another can be calculated via cross- 
correlation of the two infrasound sensor elements’ measured atmospheric pressure variations. Cross correlations 
are performed within an analyzing time window of length W , where the channel data of sensor ( )is t  is 
shifted over the channel data of sensor ( )js t . Note that an infrasound signal in the time domain ( )s t  can be 
represented in the frequency domain by its Fourier transform 

( ) ( ) ( )e ,i fS f A f ϕ=                                         (1) 

where ( )A f  represents the spectral amplitude, and ( )fϕ  represents the spectral phase. Given plane wave 
presence, the time shift at which the cross correlation is a maximum, 

( ) ( )1 ,
2πij j it f f

f
ϕ ϕ ∆ = −                                    (2) 

indicates the time difference of a signal’s arrival between the two sensors. 
A plane wave produces a consistent set of time delays 

0,ij jk kit t t∆ + ∆ + ∆ =                                         (3) 

satisfying what is known as the closure relation. In the presence of background noise, the cross correlation op-
eration may be less accurate due to random phase combinations, and the delays may not sum exactly to zero. 
The consistency of the set of time delays for n  sensors of sub-array nR  is defined as the mean quadratic re-
sidual of the closure relation, expressed as follows: 

( )( )
26 ,

1 2n ijkc r
n n n

=
− −

                                      (4) 
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where ijk ij jk kir t t t= ∆ + ∆ + ∆  and , , ni j k R∈ . If the calculated consistency is below an established threshold, 
i.e. tolerably close to zero, a detection is declared on nR  [1]. 

Once a detection is declared, the time delays producing that detection are known and are subsequently in-
verted to obtain estimates for the propagating infrasound signal’s velocity and azimuth [2]. To explain how in-
version is possible, consider the following example: A plane wave propagating from a known, fixed location at a 
specific velocity allows one to predict exactly when the signal will arrive at each sensor element within an ar-
ray—and therefore the time differences of arrival from sensor to sensor. Likewise, PMCC calculations yielding 
time differences of arrival from sensor to sensor permit the trace velocity and azimuth to be estimated. 

PMCC begins by determining the consistency on a set of delays for the smallest triangular sub-array. The 
signal’s trace velocity and azimuth, as determined by inverting the closure relation’s time delays, are then used 
to “direct” the search for other sensors that may be added to the initial sub-array. Specifically, the value of the 
expected time delay for a pair of sensors, in which one of the sensors is outside the original consistency-eva- 
luated sub-network, can be estimated. The computed time delay for this sensor pair corresponds to the correla-
tion local maximum that is closest to the given estimate. As long as the detection criterion continues to be valid, 
i.e. the consistency threshold is met, the aperture of the network increases with each added sensor. As a result, 
velocity and azimuth estimates become more and more refined [3]. 

2.2. WinPMCC 
Prior to running PMCC’s detection algorithm, a filter configuration filters the data in infrasound frequency 
passbands of interest. After canvassing an array’s sensor-recorded data for infrasound arrivals, a list of elemen-
tary detections satisfying the consistency threshold remains. These elementary detections are known as pixels 
within the WinPMCC program that implements the PMCC algorithm. An almost constant stream of pixels is 
created in time-frequency space. The seemingly innumerable elementary detection list exists in no small part 
due to the ambiguity involved in the progressive search for distant sensors to add to initial sub-arrays. 

WinPMCC’s solution to this pitfall is to build pixel families, or group pixels that are similar in time-frequen- 
cy-velocity-azimuth space and can therefore be associated with the same infrasound arrival [4]. An example of a 
WinPMCC-produced family is illustrated in Figure 1. In addition to eliminating pixels that cannot be associated 
with neighboring pixels, PMCC families help distinguish multiple arrivals that may exist in the same time win-
dow but in different frequency bands. Two pixels, 1P  and 2P , are grouped into a family if the weighted Eucli-
dian distance between them is less than 

( ) ( ) ( ) ( ) ( )2 2 2 2
2 1 2 1 2 1 2 1

1 2 2 2 2 2
2 1

, ,
t f V

t t f f V V
d P P

V V θ

θ θ
σ σ σ σ
− − − −

= + + +                     (5) 

where 1t  and 2t  are the times of arrival, 1f  and 2f  are the filters’ center frequencies, 1V  and 2V  are the 
estimated trace velocities, and 1θ  and 2θ  are the estimated back-azimuths for 1P  and 2P  [5]. Whereas the 
azimuth indicates the angle of arrival from an infrasound source to a sensor array, the back-azimuth points from 
the array to the source. The σ’s in the equation are weighting factors for their respective units, with only Vσ  
expressed as a unit-less factor. Equation (5) produces potential detections in the form of families, not pix-
els—which have alternatively been referred to as “elementary” detections. 

3. Methodology 
The ultimate question of station-level processing is what to do with its primary product, the list of potential de-
tections or families. Which families were produced as the result of an infrasound event of interest? Stated 
another way, which families should be nominated for network-level processing? And is there a family-characte- 
rizing statistic that can help in discriminating true events from non-events? This research suggests family size is 
a viable candidate. 

3.1. Ground Truth Set 
A prerequisite of this analysis is the establishment of a ground truth (GT) set of true detections. Three indepen-
dent programs assist in building the set. Specifically, detections determined by WinPMCC are compared and 
contrasted with detections determined by Dr. Arrowsmith’s InfraMonitor [6], which is a modified F-statistic de- 
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Figure 1. WinPMCC-produced family resulting from an infrasound arrival on 25 August 2011 at 03:14:15 at 
the BRD array situated along the Korean Demilitarized Zone. The sensor data, as shown, have been filtered 
by a band pass butterworth filter with −3 dB cutoffs of 2.0 Hz and 4.0 Hz.                                

 
tector adapted to account for ambient noise. In other words, InfraMonitor is designed not to declare detections, 
nor one long detection, for infrasound produced by a repetitive/continuous source, such as microbarom ocean 
swells [6]. A third program, SeaTools, proves useful in resolving whether detections flagged by either one or the 
other of these two detectors (but not both) are, in fact, true detections. SeaTools is a waveform analysis program 
initially developed by AFTAC to review seismic data. These three programs are used in concert to ensure the 
GT set is not biased towards any one program. The data analyzed for this research was recorded during the 
month of August 2011 by five infrasound arrays in East Asia. Figure 2 provides more detail on exact station lo-
cations. 

It should be clarified that a true detection, indicating what is considered to be an “event” as opposed to a 
“non-event,” may not actually signify a performed nuclear test and, in fact, is more likely to signify a chemical 
explosion produced as the result of mining operations, for instance. This reality does not affect the legitimacy of 
the method by which optimum detection thresholds are determined, however, since there is no discernible dif-
ference so far discovered between the infrasound produced by a nuclear explosion and the infrasound produced 
by a chemical explosion of an equivalent infrasound-producing explosive yield. Considering that approximately 
50% of a nuclear explosion’s energy is converted into a blast wave as opposed to nearly all of a chemical explo-
sion’s energy, a nuclear explosion’s infrasound-producing equivalent yield is approximately twice that of a 
chemical explosion’s [7]. In the absence of a nuclear signature or “fingerprint,” the best station-level processing 
can do is to reduce the rate of false alarms that are the result of noise, continuous/repetitive sources such as 
ocean swell microbaroms, mountain associated waves, etc., while also avoiding missing infrasound events of 
interest, such as explosions. The goal of optimality, therefore, is to ease the burden on analysts whose responsi-
bility it is to reduce station-level detections to a narrower list for subsequent network-level processing. It is then 
the job of network-level processing to confirm or deny station-level-nominated nuclear testing candidate events. 

3.2. Consistency Threshold 
With a completed GT set, WinPMCC detector performance is now judged based upon how varying the consis-
tency threshold affects the trade-off between the probability of detection DP  and the false alarm rate FAR. Win- 
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Figure 2. The GT set is constructed from signal of interest (SOI) arrivals on the three arrays located along the 
Korean Demilitarized Zone (BRD, CHN, KSG), one array located in Japan (I30), and one array located in 
Russia (I45).                                                                                

 
PMCC producing a family is its way of declaring a detection. That declaration is either a true detection or a false 
alarm, and a receiver operating characteristic (ROC) curve is built based upon the accuracy of these declarations 
at various consistency thresholds. 

WinPMCC families produced as a result of the use of a given consistency threshold that correctly identify a 
detection included in the GT set are counted among true positive detections, while those that cannot be asso-
ciated with GT set detections are categorized as false alarms. The equation governing true detections is, intui-
tively, 

positives correctly classified .
total number of positivesDP =                                  (6) 

Alternatively, the probability of false alarm would be calculated as 

negatives incorrectly classified .
total number of negativesFAP =                                (7) 

However, this probability relies on the ability to assign a finite value to the denominator, the total number of 
negative detections. Considering that WinPMCC analyzes a time window of data within which the absence of 
detections cannot be quantified, false alarm occurrence is expressed on a per day rate basis, calculated as 

Total FAs hoursFAR 24 ,
Total Hours Analyzed day

 
= ×  

 
                            (8) 

and, as a result, the ROC curve characterizing the DP  versus FAR trade-off is known as a pseudo-ROC curve. 

3.3. Optimum Family Size 
From the perspective of an analyst reviewing the list of families produced by WinPMCC, a decision has not yet 
been made as to whether a signal of interest (SOI) is present or not. Though Equation (6) and Equation (8) pro-
vide insight into WinPMCC’s expected performance at various consistency threshold settings, the analysis needs 
to be taken a step further to assist analysts in determining which station-level families should be nominated for 
network-level processing. “Preserve only the largest and most stable families” is about the extent of the guid-
ance analysts are given [8]. However, no clarification is proffered as to what constitutes a “large” or “stable” 
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family. 
The optimum family size is determined with a maximum a posteriori (MAP) approach in which the goal is to 

minimize the total number of false alarm and missed detection categorization decisions. Specifically, the solution 
to this approach indicates how many pixels must comprise a family before it is more likely than not that the 
family represents a true infrasound SOI arrival.  

The first step in this approach requires organizing the GT set according to the number of pixels comprising 
each detection. The frequency with which a particular family size appears as a detection is then recorded. This 
process is repeated until every detection in the GT set is accounted for, and a probability histogram is created to 
visualize the distribution of family sizes. The histogram is then curve-fit with the probability density function 
(pdf) that best characterizes its distribution, as in Figure 3. This pdf is known henceforth as the conditional dis-
tribution of family sizes given the detection is a true event family, or ( )p z T , where z  is the number of pix-
els in the family. The conditional distribution of family sizes given that the detection is a non-event family, 
( )p z R , is determined in much the same way as was ( )p z T . Its distribution is shown in Figure 4. 

 

 
Figure 3. Probability histogram of GT set family sizes. Over-
laid onto the histogram is the Lognormal pdf, ( )p z T , that 
best fits the data.                                       

 

 
Figure 4. Probability Histogram of non-event family sizes. 
Overlaid onto the histogram is the exponential pdf, ( )p z R , 
that best fits the data.                                   
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The decision criteria are arranged in a likelihood ratio test (LRT) 

( )
( )

( )
( )

,
T

R

H

H

p z T p R
p Tp z R

γ=                                     (9) 

which forms an inequality between the ratio of the true detection and rejection conditional probability density 
functions and the ratio of the a priori probabilities of the presence ( )P T  or absence ( )P R  of a SOI, notated 
conventionally as γ . ( )P T  is the fraction of the total number of families that are true detections, and ( )P R  
is the fraction of the total number of families that are true rejections. ( ) ( ) 1P T P R+ = . TH  and RH  are the 
two possible hypotheses [9]. 

Returning to the optimality discussion, the terms of Equation (9) are now rearranged to position the true event 
and non-event likelihood functions on either side of the inequality, as follows: 

( ) ( ) ( ) ( ).
T

R

H

H
P T p z T p R p z R⋅ ⋅                                 (10) 

The true event likelihood function, ( ) ( )P T p z T⋅ , is simply the true detection conditional probability densi-
ty function scaled by the a priori probability that any single family is a member of the GT set. Likewise, the non- 
event likelihood function, ( ) ( )p R p z R⋅ , is the rejection conditional probability density function scaled by the 
a priori probability that any randomly chosen family is a SOI rejection. The graphical intersection of these like-
lihood functions marks the MAP threshold family size. SOI presence and absence categorization decisions based 
upon this threshold minimize the probability of error errorP , defined as error FA MDP P P= + , where FAP  refers to 
the probability of false alarm, and MDP  refers to the probability of missed detection. 

4. Results 
The Methodology section explored the consistency threshold insofar as it presents a trade-off between the prob-
ability of detection and the false alarm rate. The choice of how to set this threshold within the WinPMCC pro-
gram has a direct impact on WinPMCC’s performance prior to any higher level human assessment. Additionally, 
a method was developed by which to determine optimum detection thresholds to assist precisely with the ana-
lysts’ higher-level assessments as to whether or not a SOI is actually present. 

4.1. Consistency Threshold and the Receiver Operating Characteristic 
The consistency-dependent trade-off between DP  and FAR is illustrated in Figure 5’s pseudo-ROC curve. 
These results suggest that threshold consistencies below 61.0 10 sec−×  cause WinPMCC to miss an unaccepta-
ble number of true detections (greater than 20%), while thresholds above 1.0 sec increase the FAR without an 
appreciable increase in DP . Figure 5 reveals that all true detections that satisfied the 10-second consistency 
threshold also satisfied the 1-second threshold. Note further that WinPMCC missed at least two GT set detec-
tions regardless of the employed threshold. Since the difference in the aforementioned trade-off is negligible for 
threshold consistencies between 61.0 10 sec−×  and 0.01 sec, the use of thresholds within the following range is 
recommended: 0.01 1.0nc≤ ≤ . 

4.2. Optimum Family Size Detection Thresholds 
When determining optimum family size detection thresholds, the consistency threshold was set at 0.1 sec. 

4.2.1. Maximum a Posteriori Threshold 
Recall from Figure 3 that the lognormal distribution best fit the true event probability histogram. And, as may 
intuitively be expected, the exponential distribution in Figure 4 captures the higher likelihood of smaller family 
sizes in the case of SOI absence. At least two pixels must be grouped together before constituting a family. 

Ultimately, the intersection of the likelihood functions is depicted in Figure 6. The MAP threshold for this 
examined data is 12 pixels per family, i.e. 

–
12t MAPz = . Families of 12 or more pixels are more likely to indicate 

SOI presence ( )TH  than SOI absence ( )RH , and the use of this threshold minimizes the number of TH  and 
RH  categorization errors. Basing decisions on this threshold yields the following outcomes: 0.77DP = , 

0.23MDP = , 0.13FAP = , and 0.87RP = . The subscripts in these outcomes refer to the probability of a true de- 
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Figure 5. Pseudo-ROC curve presenting the trade-off between the probability of detection DP  and the false 
alarm rate (FAR) for all five GT stations in Figure 2 at the following consistency thresholds ( )nc : 

71.0 10−× , 61.0 10−× , 0.01, 0.1, 0.5, 1.0, and 10 seconds.                                              
 

 

Figure 6. The maximum a posteriori threshold 
–t MAPz  based upon the ratio of true event ( ) ( )p T p z T⋅  

and non-event ( ) ( )p R p z R⋅  likelihood functions in Equation (10). ( ) 0.37P T =  and ( ) 0.63P R = . Fam-
ilies of 12 or more pixels are more likely to indicate SOI presence than SOI absence.                            
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tection, missed detection, false alarm, and rejection respectively. 

4.2.2. Bayes Decision Criteria and Risk Minimization 
If instead of minimizing the probability of categorization error, the goal is to minimize the cost-based risk asso-
ciated with those categorization decisions, Bayes decision theory supplants the MAP approach. At the preroga-
tive of a monitoring agency, such as the IDC, costs can be assigned to each of the following four potential 
events: detection, rejection, false alarm, and missed detection. Although the value for these costs is somewhat 
arbitrary, typically FA RC C>  and MD TDC C> . Risk is modeled as a function of these costs and choices, and the 
minimization of that risk alters Equation (9)’s LRT as follows:  

( )
( )

( )
( )

.
T

R

H
FA R

H MD TD

p z T p R C C
p T C Cp z R

−
⋅

−
                               (11) 

The terms of Equation (11) are now rearranged so as to position the Bayes-scaled likelihood functions on ei-
ther side of the inequality in the following manner [10]: 

( ) ( ) ( ) ( ) ( ) ( ).
T

R

H

MD TD FA R
H

C C p T p z T C C p R p z R− ⋅ ⋅ − ⋅ ⋅                     (12) 

The true event and non-event family size likelihood functions are scaled by the previously assigned costs. As 
was the case for the MAP threshold, the optimum Bayes threshold is marked by the graphical intersection of the 
functions on either side of Equation (12)’s inequality. 

Using 100, 20, 10, and 0 for the costs of a missed detection, false alarm, true detection, and rejection respec-
tively, the resulting Bayes threshold 8t Bz

−
=  implies basing TH  and RH  categorization decisions on a fewer 

number of pixels per family than as suggested by the MAP threshold 
–t MAPz , which equaled 12. The lower 

threshold reflects the high cost assigned to missing a detection. Although not necessary, the choice was made to 
assign a cost to correctly declaring a detection because of the additional work required in network-level 
processing and the resources expended in responding to such a declaration, such as fusing with other intelligence 
and monitoring sources to geolocate the event. 

The Bayes approach seeks to minimize the expected value of the decision outcome costs. Since the highest 
cost was assigned to a missed detection, the least likely outcome for Bayes threshold-based decisions is indeed a 
missed detection. Decisions based upon such a threshold imply the following decision outcomes: 0.92DP = , 

0.08MDP = , 0.29FAP = , and 0.71RP = . 

5. Conclusion 
Consider the impact of these results, WinPMCC consistency settings have been tied to expected detection per-
formance. The optimum threshold determination procedures detailed above can be applied to individual stations 
at the discretion of the IDC, thereby producing station-specific optimum thresholds. The IDC does not currently 
use any family-characterizing statistic as a detection threshold, but this research’s results suggest that family size 
is a viable candidate. Moreover, family size is not the only viable family-discriminating candidate. The optimum 
threshold determination method is extensible to other family characteristics as well, such as a family’s collective 
F-statistic or signal-to-noise (SNR) ratio. Each of these characteristics can be used to create optimum thresholds. 
The reliability of analysts’ decisions as to whether families should be preserved for network-level processing 
can only improve with access to multiple decision thresholds based upon various family attributes, such as fam-
ily size, F-statistic, and SNR. 
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