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Abstract

Decision makers’ choices are often influenced by visual background information. This study uses open-ended
equity funds in Taiwan to investigate three well-known optimal portfolio models, including the mean-vari-
ance, maximin, and minimization of mean absolute deviation. The optimal portfolios are then visualized on
Decision Balls to assist investors in making investment decisions. By observing the Decision Balls, investors
can see the optimal portfolios, compare the optimal weights provided by the different models, view the clus-
ter of funds, and even find substitute funds if preferred funds are not available.
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1. Introduction

Decision makers’ choices are often influenced by visual
background information [1,2]. Visual representations can
simplify complex information into meaningful patterns,
assist people in comprehending their environment, and
allow for simultaneous perceptions of parts as well as the
interrelationships between parts [3]. Visual representa-
tions are also recognized as being useful to present fi-
nancial issues. For instance, the efficient frontier [4] is a
well known visual representation used to help investors
understand relationships between risks and returns.

Several graphic methods have been developed to sup-
port the decision-making: for instance, Gower Plots to
detect any inconsistencies in a decision maker’s prefer-
ences and rank alternatives [5,6], and ELECTRE graphs
to help decision makers understand investment problems
[7]. All these methods, however, use a 2-dimensional
plane to illustrate the multidimensional data. A 2-dimen-
sional plane model cannot depict three points that do not
obey the triangular inequality (i.e. the total length of any
two edges must be larger than the length of the third edge)
neither can it display four points that are not on the same
plane [8].

The method employed here, is the Decision Ball,
which has not been used previously for visualizing port-
folio. The Decision Ball method [8,9] is based on multi-
dimensional scaling (MDS) [10,11] which has been
widely used in marketing and decision-making [12,13].
This study extends the Decision Ball method to visualize
optimal portfolios on the surface of a sphere. The dis-
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tance between two securities is used to represent the cor-
relation between them: the larger the correlation, the
shorter the distance. Also, the fund with the higher return
is located closer to the North Pole. Mutual funds in Tai-
wan are taken as an example to demonstrate how to as-
sist investors visualize optimal portfolios on the Decision
Ball.

Taiwan’s mutual fund industry, which was founded in
1983, has been growing tremendously during the last
decade [14,15], with the number of mutual fund corpora-
tions increasing from 4 to 38 by 2008. In 1998, there
were only 200 funds with a total net asset value of
NT$745.97 billion. However, by January 2008, there were
523 funds with a net asset value totaling NT$2,040.91
billion. This shows that the total net asset values of funds
have almost tripled during the last decade. In Taiwan, the
mutual fund industry is dominated by individual inves-
tors who account for over 90% of the market volume. By
January 2008, over 1.84 million investors, about 8% of
Taiwan’s population, had invested in mutual funds.

This study examines 174 open-ended equity mutual
funds which were issued and invested in Taiwan’s Mar-
ket from January 2002 to December 2006. Three well-
known optimal portfolio models, including the mean- va-
riance [4], the maximin [16], and the minimization of mean
absolute deviation [17], are investigated. The optimal port-
folios are visualized on the Decision Balls. By studying the
Decision Balls, investors can then see the optimal portfo-
lios, compare the optimal weights provided by different
models, view the cluster of funds, and even find substitute
funds if the preferred funds are not available.
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This paper is organized as follows: Section 2 briefly
reviews three well-known models for optimal portfolios.
Section 3 develops an extended Decision Ball model to
allocate funds on the surface of a sphere. Section 4 uses
Taiwan’s Open-Ended Equity Funds as an example to
examine three optimal portfolio models, and Section 5
demonstrates how to visualize optimal portfolios on the
Decision Balls.

2. Optimization Models for Portfolio Problem

Three well-known approaches to formulate optimal port-
folios are illustrated in this section, including a) a mean-
variable model denoted as MinVar, b) a maximin model
denoted as MaxiMin, and c¢) a minimization of mean
absolute deviation model denoted as MinMAD.

The mean-variance model, first proposed by Harry
Markowitz, is a quadratic programming model to mini-
mize the variance given a required return. Suppose there
are n securities, the mean-variance model is formulated
as follows:

2.1. Mean-Variance Model (MinVar)
Min Var :anznlai’jWin
i=1 j=1

subject to:

iwi =1 (1)

WU, > a 2)

M-

i=1l

0<w, <1, forall i 3)

where w; denotes the portfolio allocation of security i ;
O;; denotes the covariance between security i and
security j; g4 is the mean return for security i; «
is the minimum expected return required by a particular
investor.

Two important assumptions of the mean-variance model
are: the investor prefers a low risk; and the expected return
is multivariate normally distributed. The mean-variance
model has been widely used in various portfolio problems.
However, it may take some time to find optimal solutions
with a large number of securities because the objective
function is quadratic.

The maximin model [16] is a linear programming
model to maximize the minimum portfolio return required
by an investor. Denoting P as the minimum required
return by an investor for every time period, T as the
total number of periods, and F; as the return for secu-
rity i over period t, where t=1,---,T , the maximin lin-
ear model is formulated as follows:
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2.2. Maximin Linear Model (MaxiMin)

Max P

subject to: drw =P, vt )
i=1
P>0 (5)
1, 2),3)

Contrary to the mean-variance model to lower risk by
minimizing the variance, the object of this model is to
maximize the minimum return over a set of past returns.
The major advantage of this model is its capability to
deal with portfolio optimization problems involving a
large number of securities. Also, according to Young
[16], the maximin model is more appropriate than the
mean-variance model when data is log-normally distrib-
uted or skewed. However, this model may lead to an in-
feasible solution if the sum of the weighted expected
returns is negative for any period of time.

The minimization of mean absolute deviation model
[17] is another alternative to simplify the mean-variance
model. This model uses the mean absolute deviation as a
risk measure. The mean absolute deviation is defined as:
1 T
53

t=1

n

Z(ri,t _ﬂi)Wi

i=1

n

Z(ri,t _/ui)Wi

i=1

, Let Q = , the

minimization of mean absolute deviation model can be
linearized as a linear programming formulation as follows:

2.3. Minimization of Mean Absolute Deviation
Model (MinMAD)

1 T
Min —>Q
Ta
subject to: Q, > —Zn:(ri,t — U )Wi , Vvt (6)
i=1
QtZ_Z(ri,t_/“i i, Vi (7)
i=1
Q =20, vt (8)

(1), 2), 3)

The complexity of this model is much lower than that
of a mean-variance model since the objective function is
linear rather than quadratic. This model provides similar
results as the mean-variance model if the return is multi-
variate normally distributed [17].

These three models have been examined by 67 securi-
ties over 48 months traded on the Stockholm Stock Ex-
change [18]. The results show that the maximin model
provides the highest return and risk, the mean-variance
model yields the lowest risk and return, and the result of
the minimization of mean absolute deviation model is
close to that of the mean-variance model. This study tries
to use mutual funds in Taiwan to examine these three
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models and then visualize the results on Decision Balls.
3. An Extended Decision Ball Model

In order to visualize the relationships among funds, a Deci-
sion Ball model [8] is applied and extended here to display
funds on the surface of a hemisphere.

The Decision Ball model is based on the concept of a
multidimensional scaling technique. The arc length be-
tween two alternatives is used to represent the dissimilar-
ity between them, e.g. the larger the difference, the longer
the arc length. However, because the arc length is mono-
tonically related to the Euclidean distance between two
points and both approximation methods make little differ-
ence to the resulting configuration [19], the Euclidean
distance is used for simplification purposes. Also, the al-
ternative with a higher score value is designed to be closer
to the North Pole so that alternatives will be located on the
concentric circles in scoring order from top view.

In this study, the correlation coefficient is adopted to
describe the degree of relationship between two funds
because it is one of the most common statistics and it
detects linear dependencies between two variables. The
linear feature makes it easier to be visualized than co-
variance. Consider n funds denoted as A, ie{l,---,n}.
Denote A£ij as the correlation coefficient between se-
curities i and j, where —1<p;; <1 and £; =1 for
all i, j. The closer the coefficient is to either —1 or 1, the
stronger the correlation between the variables. If the
variables are independent then the correlation is 0.

The distance between two funds is used to represent
the correlation between them, i.e. the larger the correla-
tion, the shorter the distance. The Euclidean distance

and (Aii,j as the

mapped distance of correlation. The relationship between

between A and A, is denoted as d

ij»

ai, i and £ isdefined as below:

ai,jZSX(l—pi’j), )

where s is a scaling constant. It is obvious d;; =d;;.

The scaling constant can be given as
. N2/ Max{l-p,; },if Max{l- pi’j};tO,Vi,j.(lo)
V2 , if Max{I1- p,;}=0,7 i, ].

In Expression (10), V2 s used because the distance
between the North Pole and the Equator is V2 when
the radius = 1. From Expressions (9) and (10), if 0,; =

| then dij= 0; if P ;= 0 then dij=s; if A= —1

then ai, i=2xs =/2 . That is, the larger the correlation,
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the shorter the distance. The range of ai,,- is 0< dAi’ i

<\2.

The fund with the higher return is designed to be lo-
cated closer to the North Pole. The coordinates of a fund
Ai are denoted on a ball as (X;, i, zj). Given a radius = 1,
the coordinate of the North Pole is expressed as (0, 1, 0).
An extended Decision Ball model for portfolio selection
is formulated as follows:

Model 1 (An Extended Decision Ball Model for Port-
folio Selection)

Min Yy, -4,y

6.YiZi) i=1 joi
Subject to
dj=sx(-p;), Vi,j>i, (1)
Y2y, ifwzu, Vij, (12)

2 2 2 2 F H

di,j:(xi_xj) +(yi_yj) +(Zi_zj) » Vi j>1, (13)
X +y+zl =1, Vi, (14)
“1<x <1, 0<y, <1, 1<z <1, Vi (15)

The objective of Model 1 is to minimize the sum of
the squared differences between d;;and dAL ; - Constraint

(11) is from Expression (9). Constraint (12) is designed
for the fund with a higher return to be located closer to
the North Pole. Euclidean distance, instead of arc length,
is used for simplification purposes (13). All alternatives
are graphed on the surface of a sphere (14) and located
on the northern hemisphere (15).

The faithfulness of this visual representation can be
measured by Stress [20], which is a numerical measure
of the closeness between the dissimilarities in the lower
dimension and the original spaces formulated as follows:

ii(di,j _di,j)2
i=l j>i (16)

iidfj

i=l j>i

Stress =

A solution is desirable if its stress value is less than
10%.

Model 1 is a nonlinear model, which can be solved by
using some commercial optimization software, such as
Global Solver of Lingo 9.0, to obtain an optimum solu-
tion. This model has good performance results when the
number of funds is small. However, when n becomes
large, the computational time will increase greatly since
the time complexity of Model 1 is n” . In practice, in the
case of more than 10 funds, we can choose some target
funds as anchor points. The coordinates of the anchor
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points are calculated first, and then the coordinates of the
remaining funds can be obtained by calculating the cor-
relations between those funds and the anchor points.
Thus, all funds can be displayed on the Decision Ball
within a tolerable time frame.

4. Empirical Study of Taiwan
Open-Ended Equity Funds

This study takes 174 open-ended equity funds, which were
issued and invested in the Taiwan Market from January
2002 to December 2006 for example to investigate the
three optimization models. From these 174 funds, 39
funds are excluded for the following two reasons: 1) 9
funds were not listed at the starting period 2) 30 funds
left for various reasons over the examined time period.
The monthly returns and rankings of the 135 open-ended
equity funds are listed in Table 1. Fund number 129 has
the highest monthly return of 0.0170; whereas, fund num-
ber 46 yields the lowest return, —0.0014. The average
monthly return of the 135 funds is 0.0078.

To simplify, suppose our investors are only interested
in the top 30 performance funds (i.e., rank 1 ~ 30) and
request monthly returns of at least 1%, and short selling
is not allowed. The descriptive statistics for the top 30
funds are listed in Table 2. The third, fourth, fifth, and
sixth columns of Table 2 show the mean of the monthly
return, the standard deviation, and both the minimum and
maximum values of the funds. The last column describes
the ranking of funds.

The MinVar, MaxiMin, and MinMAD models are all
examined using the top 30 funds. However, the MaxiMin
model yields infeasible solutions. The reason is that all
top 30 funds exhibited negative monthly returns in some
months. For instance, in September 2002, affected by that
year’s stock market downturn across the United States,
Europe, and Asia, the average monthly return of the top
30 funds was —0.0892 ranging from —0.1242 to —0.0577.

The results of the MinVar and MinMAD models are
listed in Table 3. Only those funds which appear in portfo-
lios at least once, i.e. the funds numbering 12, 86, 129, and
133, are shown. The weights of the funds in an optimal
portfolio for four different « are exhibited. Because «
ranging from 1% to 1.3% yields the same portfolio weights,
1.0<a <1.3% is presented for short. Also, since the
maximum mean of monthly returns for the top 30 funds is
0.0170 (exactly, 0.01695), « >1.7% is neglected be-
cause none of top 30 funds yields the mean of monthly
returns greater than or equal to 1.7%. The bottom two rows
of Table 3 indicate the portfolio return and variance.

As shown in Table 3, the portfolio weights in both the
MinVar and MinMAD models remain unchanged for low
a values ranging from 1.0% to 1.3%. In this range, the
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MinVar model yields an optimal portfolio return of
0.0132, a variance of 0.0023, and weights wgs = 0.053,
Wi = 0.243, and wi33 = 0.704. Whereas, the MinMAD
model yields an optimal portfolio return of 0.0130, a
portfolio variance of 0.0023, and portfolio weights W=
0.219 and w33 = 0.781. As we can see, the MinVar
model provides a higher expected return than required,
and higher also than that of the MinMAD model. Given
a = 1.4%, the MinVar and MinMAD models yield ex-
actly the same solutions with a portfolio return of 0.014,
a variance of 0.0024, and with weights W= 0.413 and
W33 = 0.587. Given a = 1.5% and 1.6%, an optimal
portfolio of the MinVar and MinMAD models consists
of the same funds with different weights. The expected
portfolio return and variance are the same.

In this study, the outcome of the MinMAD model is
quite close to that of the MinVar model. This result is the
same as the conclusions of Papahristodoulou and Dot-
zauer [18], in which 67 shares traded on the Stockholm
Stock Exchange between January 1997 and December
2000 were examined. Both models provide optimal port-
folio suggestions. However, the investors cannot tell di-
rectly, the correlations among funds through table- list-
ing. The next section will demonstrate how to visualize
the optimal portfolio on Decision Balls.

5. Visualizing Optimal Portfolios
on Decision Balls

An extended Decision Ball model uses the distance be-
tween two funds to represent the correlation between
them, i.e. the larger the correlation, the shorter the dis-
tance. Also, the fund with the higher return is located
closer to the North Pole. At first, a correlation matrix of

funds is calculated. From Expression (9), dAi, ; foralli,j
can be calculated. Since Max{l-p, ;} = 0.3064 for all

i, j, from Expression (10), the scaling constant s is given
as 4 in this example. If the number of funds being con-
sidered is small, then Model 1 can be applied directly to
yield the coordinates of all funds. However, when the
number of funds is large, the computational time for
Model 1 will increase greatly.

In order to increase computational efficiency, the four
funds listed in Table 3, i.e. the funds numbered 12, 86,
129, and 133, can be chosen as the target funds. These
four funds, in which investors may be the most interested,
are suggested in an optimal portfolio for both the MinVar
and MinMAD models. The correlation matrix of the target
funds is calculated first. Applying Model 1 to these four
funds yields the coordinates of them, the so called anchor
points. The coordinates of funds numbered 12, 86, 129,
and 133 are {0.820, 0.565, 0.083}, {0.292, 0.365, 0.883},
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Table 1. The expected monthly returns from 135 mutual funds.
No Quote Return Rank No Quote Return Rank No Quote Return Rank
1 0001 0.000 95 133 46 1C25  -0.001 43 135 91 ML09 0.010 17 38
2 0002 0.008 07 63 47 1101 0.005 57 93 92 NC13 0.006 13 87
3 0003 0.005 23 100 48 1105 0.008 82 53 93 YCO07 0.002 76 124
4 0004 0.007 75 67 49 113 0.007 15 74 94 ML15 0.010 92 30
5 0005 0.008 83 52 50 JF51 0.003 85 114 95 uI05 0.002 61 126
6 0012 0.002 58 127 51 JS01 0.005 33 96 96 AT05 0.005 28 99
7 0013 0.003 27 120 52 JS03 0.014 24 7 97 BRO5 0.008 70 55
8 0014 0.012 43 18 53 KGOl  0.008 93 50 98 CA09 0.012 22 22
9 0017 0.011 71 27 54 KYOl  0.01580 2 99 CI107 0.004 22 109
10 0018 0.003 53 117 55 MLO1  0.014 14 8 100  CPO3 0.009 62 41
11 0021 0.010 13 39 56 ML02 0.005 71 91 101 CP14 0.010 71 33
12 0025 0.015 51 3 57 MLO06 0.010 53 35 102 CS07 0.004 65 107
13 0026 0.009 87 40 58 ML12 0.006 88 77 103 DD04 0.006 39 82
14 AIO1 0.005 08 103 59 NCO03 0.006 84 78 104 DF07 0.007 52 69
15 APO1 0.003 67 115 60 NCO07 0.006 26 84 105 DS03 0.002 39 128
16 AP04 0.006 84 79 61 NC09 0.008 58 57 106 FHO06 0.012 15 24
17 BRO1 0.007 30 73 62 PSO1 0.006 52 81 107 FP11 0.005 87 90
18 CAO03 0.009 17 46 63 PS02 0.007 06 76 108 FP16 0.008 04 64
19 CA04 0.003 96 112 64 PS03 0.009 59 43 109 GCO05 0.012 35 20
20 CFO01 0.008 87 51 65 PS09 0.006 26 85 110 GC17 0.006 26 86
21 CI01 0.005 14 102 66 PS14 0.014 08 9 111 1C06 0.007 08 75
22 CI04 0.005 23 101 67 TCO1 0.008 96 49 112 1C30 0.002 83 123
23 CI0S 0.008 23 61 68 TIO2 0.007 61 68 113 111 0.009 61 42
24 CI12 0.004 10 111 69 TIO7 0.012 81 16 114 JF76 0.003 57 116
25 CP04 0.004 23 108 70 TRO1 0.002 08 130 115 JS07 0.005 89 89
26 CP07 0.002 64 125 71 TS02 0.002 86 122 116 KY06 0.009 20 45
27 CS02 0.007 83 65 72 TS08 0.008 39 59 117 MLO07 0.002 94 121
28 CS09 0.005 31 97 73 TS13 0.006 80 80 118 NC16 0.013 22 13
29 CTO1 0.007 35 72 74 YTO02 0.013 29 12 119 PS10 0.010 76 31
30 CYO01 0.008 73 54 75 YT03  0.009 04 48 120 TCO3 0.005 67 92
31 CY14 0.002 39 129 76 YT04  0.012 44 17 121 TC19 0.013 17 14
32 DDOI 0.005 30 98 77 YTI1 001538 4 122 TRO4 0.005 90 88
33 DS04 0.001 15 132 78 YTI12  0.01370 10 123 TS09 0.007 41 71
34 FDO1 0.005 34 95 79 0023 0.01158 28 124 U103 ~0.000 48 134
35 FEO1 0.006 38 83 80 0029 0.004 67 106 125  YCO02 0.007 82 66
36 FHO1 0.003 51 118 81 BRO0O3 0.008 53 58 126 YT09 0.009 11 47
37 FHO3 0.008 68 56 82 CIl11 0.005 00 105 127 0015 0.005 07 104
38 FPO3 0.012 23 21 83 CP10 0.01143 29 128 FPO5 0.012 13 25
39 FP04 0.010 59 34 84 CY03 0.014 79 5 129 JS06 0.016 95 1
40 FP06 0.01076 32 85 DF05 0.004 16 110 130 TIO09 0.003 86 113
41 FP10 0.014 50 6 86 FHO8 0.012 18 23 131 FDO02 0.009 52 44
42 GCO01 0.008 29 60 87 1C08 0.01043 36 132 FP15 0.013 34 11
43 1C01 0.005 38 94 88 1110 0.003 29 119 133 JF85 0.011 92 26
44 1C04 0.007 43 70 89 JF83 0.008 21 62 134 NC17 0.012 85 15
45 1C22 0.001 85 131 90 JS04 0.012 43 19 135 YTI16 0.010 31 37
Table 2. Descriptive statistics for the top 30 mutual funds.

No Quote  Return STD Min Max Rank No Quote Return STD Min Max Rank
8 0014 0.0124  0.0662 —0.1157 0.1625 18 83 CP10 0.0114 0.0626 —0.1214 0.1508 29
9 0017 0.0117  0.0614 —0.1118 0.1472 27 84 CY03 0.0148 0.0587 —0.1157 0.1379 5
120025 0.0155 0.0573 -0.1118 0.1426 3 86 FHOS 0.0122  0.0591 —0.1366  0.1951 23
38 FPO3 0.0122  0.0632 —0.1279  0.1529 21 90 JS04 0.0124 0.0731  —0.1405 0.241 19
41  FPI0  0.0145 0.0672 —0.123  0.1985 6 94  MLI5 00109 0.0721 -0.1263  0.2299 30
52 JS03 0.0142 0.072  -0.1224  0.1905 7 98 CA09 0.0122 0.0695 —0.1418 0.1755 22
54  KYO01 0.0158 0.071 -0.1139  0.1478 2 106 FHO06 0.0121 0.0573 -0.096 0.1554 24
55  MLO1 0.0141 0.0674 -0.1097  0.1909 8 109 GCO05 0.0123 0.0664 —0.1297 0.1663 20
66 PS14 0.0141 0.0679 -0.1141 0.2176 9 118 NC16 0.0132 0.0694 —0.1325 0.1995 13
69 TIO7 0.0128  0.0688 —0.1091 0.1728 16 121 TC19 0.0132 0.0673  —0.1252 0.1621 14
74 YTO2 0.0133  0.0654 —0.1131 0.1948 12 128 FPO5 0.0121 0.0687 —0.1219 0.2403 25
76 YTO04 0.0124  0.0658 —0.1486  0.1709 17 129 JS06 0.017 0.0545  —0.0898 0.1418 1
77  YTI11 0.0154  0.0608 —-0.1042 0.1757 4 132 FP15 0.0133 0.0712  -0.1271 0.1989 11
78  YTI12 0.0137  0.0723  -0.1359  0.2337 10 133 JF85 0.0119 0.0494 —0.1108 0.1099 26
79 0023 0.0116  0.0618 —-0.1202  0.1698 28 134 NC17 0.0128 0.0616 —0.1109 0.1739 15
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Table 3. Portfolios of the top 30 mutual funds by the MinVar and MinMAD models.

1.0%<a<1.3% a=14% a=15% a=1.6%
No Quote MinVar MinMAD MinVar MinMAD MinVar MinMAD MinVar MinMAD
12 0025 0 0 0 0 0.084 0.165 0.216 0.298
86 FHO8 0.053 0 0 0 0 0 0 0
129 JS06 0.243 0.219 0.413 0.413 0.552 0.494 0.657 0.598
133 JF85 0.704 0.781 0.587 0.587 0.364 0.341 0.127 0.104
P. Return 0.0132 0.013 0.014 0.014 0.015 0.015 0.016 0.016
P. Variance 0.0023 0.0023 0.0024 0.0024 0.0025 0.0025 0.0026 0.0026
Table 4. Coordinates of the top 30 mutual funds.
No Quote X y z No Quote X y z
8 0014 0.854 0.415 -0.312 83 CP10 0.525 0.189 0.83
9 0017 0.677 0.325 0.659 84 CY03 0.476 0.545 0.689
12 0025 0.82 0.565 0.083 86 FHO8 0.292 0.365 0.883
38 FPO3 0.621 0.385 0.682 90 JS04 0.085 0.405 0911
41 FP10 0.503 0.535 0.678 94 ML15 0.598 0.179 0.782
52 JS03 0.154 0.525 0.836 98 CA09 0.56 0.375 0.738
54 KYO01 0.59 0.575 0.566 106 FHO06 0.596 0.355 0.719
55 MLO1 0.667 0.515 0.538 109 GCO05 0.545 0.395 0.739
66 PS14 0.597 0.505 0.622 118 NC16 0.159 0.465 0.87
69 TI07 -0.043 0.435 0.899 121 TC19 0.449 0.455 0.768
74 YTO02 0.486 0.475 0.733 128 FPO5 0.456 0.345 0.82
76 YT04 0.841 0.425 -0.334 129 JS06 0.183 0.856 0.483
77 YT11 0.616 0.555 0.558 132 FP15 0.641 0.485 0.594
78 YTI12 0.463 0.495 0.734 133 JF85 0.914 0.335 0.227
79 0023 0.507 0.199 0.838 134 NC17 0.674 0.445 0.589

{0.183, 0.856, 0.483}, and {0.914, 0.335, 0.227} respec-
tively. The coordinates for the remaining funds can be
obtained by calculating the correlations between those
funds and the target funds. The locations of all top 30
funds are listed in Table 4 and depicted in Figure 1.

In Figure 1, the four target funds are shown as bold
font. Since the expected return is 4, > 1, > L™ ths3
fund 129 is closest to the northern point followed by
funds 12, 86, 133. Also, the distance between the two
funds is used to represent the correlation between them:
the larger the correlation, the shorter the distance. Take
fund 12 for example, because the correlation between
funds 12 and 133 (p,,3; =0.9087) is higher than that
between funds 12 and 129 ( p,, 5, =0.7501), then the dis-
tance between the former is shorter than that of the later.

The optimal portfolios obtained by the MinVar and
MinMAD models are graphed on the Decision Ball and
represented respectively with “dotted” and “dash” circles.
The scale of the circle represents the weight of the fund:
the higher the weight, the larger the circle. Given a re-
quired return o <1.3%, the optimal portfolio weights of
the MinVar and MinMAD models are {Wgs = 0.053, W)y =
0243, Wiz = 0704} and {leg = 0219, Wi33 = 0781} re-
spectively, as listed in Table 3. This result is depicted in
Figure 2 where funds 86, 129, and 133 are marked by
dotted circles, and funds 129 and 133 are marked by dash
circles. Since the weight of fund 133 by the MinMAD
model is higher than the one by the MinVar model, the
dash circle of fund 133 is bigger than the dotted circle.
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The optimal portfolios suggested by both models are quite
diversified because the locations of the selected funds
(funds 86, 129, and 133) are far apart from each other.

Given a = 1.4% and 1.6%, the Decision Balls for
optimal portfolios are shown in Figures 2 and 3. In Fig-
ure 2, the optimal portfolio weights by the MinVar and
MinMAD models are exactly the same, {W;,y = 0.413,
w33 = 0.587}. In Figure 3, the optimal portfolio weights
by MinVar and MinMAD are {w;; =0.216, Wy = 0.657,
W33 = 0127} and {W]Q = 0298, Wiy = 0598, W3z =
0.104} respectively.

When comparing Figures 1, 2, and 3, the circle of fund
129 becomes bigger and fund 133’s circle becomes
smaller when the given expected return « is increased.
That is, the optimal portfolio weights shift from the lower
to the upper part of the Ball because the funds located in
the upper part imply a higher return. Also, there is an ob-
vious cluster, including most of the top 30 funds, except
for funds 129, 12, 133, 76, and 8. The correlation between
the funds can be examined, both visually and directly,
through the Decision Balls. Take fund 86 for instance, if
the selected fund 86 is not available, funds 121, 109, 118,
or 90 may be good substitutes because they have a high
correlation with fund 86 plus a higher return.

6. Conclusions

This study uses open-ended equity funds in Taiwan to in-
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Figure 3. Given a<1.6% yields MinVar (dotted circle) and MinMAD (dash circle).

Copyright © 2011 SciRes. AJOR
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vestigate three well-known optimal portfolio models, in-
cluding the mean-variance, maximin, and minimization of
mean absolute deviation. The maximin model yields infea-
sible solutions because all top 30 funds exhibit negative
monthly returns in some months during the examined time
period. The outcome of the minimization of mean absolute
deviation model is quite close to that of the mean-variance
model. This result is the same as the conclusions for the
study by Papahristodoulou and Dotzauer [18], in which se-
curities traded on the Stockholm Stock Exchange were
examined. An extended Decision Ball model is proposed to
visualize optimal portfolios on the surface of a sphere,
where the distance between two funds indicates the corre-
lation between them, and the fund with a higher return is
located closer to the North Pole. The scale of optimal port-
folio weights is represented by the size of the circle of the
selected fund. By observing the Decision Balls, investors
can see the optimal portfolio, compare the optimal weights
provided by the different models, view the cluster of funds,
and even find substitute funds if the preferred funds are not
available. In future studies, the question of how to linearize
this non-linear model in order to general a global optimal
solution can be addressed.
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