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Abstract 

Decision makers’ choices are often influenced by visual background information. This study uses open-ended 
equity funds in Taiwan to investigate three well-known optimal portfolio models, including the mean-vari-
ance, maximin, and minimization of mean absolute deviation. The optimal portfolios are then visualized on 
Decision Balls to assist investors in making investment decisions. By observing the Decision Balls, investors 
can see the optimal portfolios, compare the optimal weights provided by the different models, view the clus-
ter of funds, and even find substitute funds if preferred funds are not available. 
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1. Introduction 
 
Decision makers’ choices are often influenced by visual 
background information [1,2]. Visual representations can 
simplify complex information into meaningful patterns, 
assist people in comprehending their environment, and 
allow for simultaneous perceptions of parts as well as the 
interrelationships between parts [3]. Visual representa-
tions are also recognized as being useful to present fi-
nancial issues. For instance, the efficient frontier [4] is a 
well known visual representation used to help investors 
understand relationships between risks and returns.  

Several graphic methods have been developed to sup-
port the decision-making: for instance, Gower Plots to 
detect any inconsistencies in a decision maker’s prefer-
ences and rank alternatives [5,6], and ELECTRE graphs 
to help decision makers understand investment problems 
[7]. All these methods, however, use a 2-dimensional 
plane to illustrate the multidimensional data. A 2-dimen- 
sional plane model cannot depict three points that do not 
obey the triangular inequality (i.e. the total length of any 
two edges must be larger than the length of the third edge) 
neither can it display four points that are not on the same 
plane [8]. 

The method employed here, is the Decision Ball, 
which has not been used previously for visualizing port-
folio. The Decision Ball method [8,9] is based on multi-
dimensional scaling (MDS) [10,11] which has been 
widely used in marketing and decision-making [12,13]. 
This study extends the Decision Ball method to visualize 
optimal portfolios on the surface of a sphere. The dis-

tance between two securities is used to represent the cor-
relation between them: the larger the correlation, the 
shorter the distance. Also, the fund with the higher return 
is located closer to the North Pole. Mutual funds in Tai-
wan are taken as an example to demonstrate how to as-
sist investors visualize optimal portfolios on the Decision 
Ball. 

Taiwan’s mutual fund industry, which was founded in 
1983, has been growing tremendously during the last 
decade [14,15], with the number of mutual fund corpora-
tions increasing from 4 to 38 by 2008. In 1998, there 
were only 200 funds with a total net asset value of 
NT$745.97 billion. However, by January 2008, there were 
523 funds with a net asset value totaling NT$2,040.91 
billion. This shows that the total net asset values of funds 
have almost tripled during the last decade. In Taiwan, the 
mutual fund industry is dominated by individual inves-
tors who account for over 90% of the market volume. By 
January 2008, over 1.84 million investors, about 8% of 
Taiwan’s population, had invested in mutual funds. 

This study examines 174 open-ended equity mutual 
funds which were issued and invested in Taiwan’s Mar-
ket from January 2002 to December 2006. Three well- 
known optimal portfolio models, including the mean- va- 
riance [4], the maximin [16], and the minimization of mean 
absolute deviation [17], are investigated. The optimal port-
folios are visualized on the Decision Balls. By studying the 
Decision Balls, investors can then see the optimal portfo-
lios, compare the optimal weights provided by different 
models, view the cluster of funds, and even find substitute 
funds if the preferred funds are not available. 
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This paper is organized as follows: Section 2 briefly 
reviews three well-known models for optimal portfolios. 
Section 3 develops an extended Decision Ball model to 
allocate funds on the surface of a sphere. Section 4 uses 
Taiwan’s Open-Ended Equity Funds as an example to 
examine three optimal portfolio models, and Section 5 
demonstrates how to visualize optimal portfolios on the 
Decision Balls. 
 
2. Optimization Models for Portfolio Problem 
 
Three well-known approaches to formulate optimal port- 
folios are illustrated in this section, including a) a mean- 
variable model denoted as MinVar, b) a maximin model 
denoted as MaxiMin, and c) a minimization of mean 
absolute deviation model denoted as MinMAD. 

The mean-variance model, first proposed by Harry 
Markowitz, is a quadratic programming model to mini-
mize the variance given a required return. Suppose there 
are n securities, the mean-variance model is formulated 
as follows: 
 
2.1. Mean-Variance Model (MinVar) 
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where wi denotes the portfolio allocation of security ; i
,i j  denotes the covariance between security i  and 

security ; ij   is the mean return for security ; i   
is the minimum expected return required by a particular 
investor. 

Two important assumptions of the mean-variance model 
are: the investor prefers a low risk; and the expected return 
is multivariate normally distributed. The mean-variance 
model has been widely used in various portfolio problems. 
However, it may take some time to find optimal solutions 
with a large number of securities because the objective 
function is quadratic. 

The maximin model [16] is a linear programming 
model to maximize the minimum portfolio return required 
by an investor. Denoting  as the minimum required 
return by an investor for every time period,  as the 
total number of periods, and  as the return for secu-
rity i over period t, where 
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2.2. Maximin Linear Model (MaxiMin) 
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Contrary to the mean-variance model to lower risk by 
minimizing the variance, the object of this model is to 
maximize the minimum return over a set of past returns. 
The major advantage of this model is its capability to 
deal with portfolio optimization problems involving a 
large number of securities. Also, according to Young 
[16], the maximin model is more appropriate than the 
mean-variance model when data is log-normally distrib-
uted or skewed. However, this model may lead to an in- 
feasible solution if the sum of the weighted expected 
returns is negative for any period of time. 

The minimization of mean absolute deviation model 
[17] is another alternative to simplify the mean-variance 
model. This model uses the mean absolute deviation as a 
risk measure. The mean absolute deviation is defined as: 
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minimization of mean absolute deviation model can be 
linearized as a linear programming formulation as follows: 
 
2.3. Minimization of Mean Absolute Deviation 

Model (MinMAD) 
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The compl model is much lower than that 

of 

xamined by 67 securi-
tie

), 
exity of this 

a mean-variance model since the objective function is 
linear rather than quadratic. This model provides similar 
results as the mean-variance model if the return is multi-
variate normally distributed [17]. 

These three models have been e
s over 48 months traded on the Stockholm Stock Ex-

change [18]. The results show that the maximin model 
provides the highest return and risk, the mean-variance 
model yields the lowest risk and return, and the result of 
the minimization of mean absolute deviation model is 
close to that of the mean-variance model. This study tries 
to use mutual funds in Taiwan to examine these three 

T  , the maximin lin-
ear model is formulated as follows: 
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. An Extended Decision Ball Model 

 order to visualize the relationships among funds, a Deci-

on the concept of a 
m

opted to 
de

models and then visualize the results on Decision Balls. 
 
3
 
In
sion Ball model [8] is applied and extended here to display 
funds on the surface of a hemisphere. 

The Decision Ball model is based 
ultidimensional scaling technique. The arc length be-

tween two alternatives is used to represent the dissimilar-
ity between them, e.g. the larger the difference, the longer 
the arc length. However, because the arc length is mono-
tonically related to the Euclidean distance between two 
points and both approximation methods make little differ-
ence to the resulting configuration [19], the Euclidean 
distance is used for simplification purposes. Also, the al-
ternative with a higher score value is designed to be closer 
to the North Pole so that alternatives will be located on the 
concentric circles in scoring order from top view. 

In this study, the correlation coefficient is ad
scribe the degree of relationship between two funds 

because it is one of the most common statistics and it 
detects linear dependencies between two variables. The 
linear feature makes it easier to be visualized than co-
variance. Consider n funds denoted as iA ,  1, ,i n  . 
Denote ,i j  as the correlation coeffic nt -
curities d j , where ,1 1i j

ie between se
i an     and , 1i j   for 

all ,i j . The closer the coef either − , the 
stro r the correlation between the variables. If the 
variables are 
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The distance between two funds is used to repre
e correlation between them, i.e. the larger the correla-

tion, the shorter the distance. The Euclidean distance 
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 to be lo-
  North Pole. The coordinates of a fund

Ai are denoted on a ball as (xi, yi, zi). Given a radius = 1, 
the coordinate of the North Pole is expressed as (0, 1, 0). 
An extended Decision Ball model for portfolio selection 
is formulated as follows: 

Model 1 (An Extended Decision Ball Model for Port-
folio Selection) 
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(11) is from Expression (9). Constraint (  is designed 
for the fund with a higher return to be located closer to 
the North Pole. Euclidean distance, instead of arc length, 
is used for simplification purposes (13). All alternatives 
are graphed on the surface of a sphere (14) and located 
on the northern hemisphere (15). 

The faithfulness of this visual representation can be 
measured by Stress [20], which is a numerical measure 
of the closeness between the dissimilarities in the lower 
dimension and the original spaces formulated as follows: 
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han 
%. 
Model 1 is a nonlinear model, which can be solved by 

using some commercial optimization software, such as 
Global Solver of Lingo 9.0, to obtain an optimum solu-
tion. This model has good performance results when the 
number of funds is small. However, when n becomes 
large, the computational time will increase greatly since 
the time complexity of Model 1 is 2n . In practice, in the 
case of more than 10 funds, we can choose some target 
funds as anchor points. The coord ates of the anchor 
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iwan 
Open-Ended Equity Funds 

Th  funds, which were 
sued and invested in the Taiwan Market from January 

 1 ~ 30) and 
re

 30 funds. However, the MaxiMin 
m

lio

points are calculated first, and then the coordinates of the 
remaining funds can be obtained by calculating the cor-
relations between those funds and the anchor points. 
Thus, all funds can be displayed on the Decision Ball 
within a tolerable time frame. 
 
4. Empirical Study of Ta

 
is study takes 174 open-ended equity

is
2002 to December 2006 for example to investigate the 
three optimization models. From these 174 funds, 39 
funds are excluded for the following two reasons: 1) 9 
funds were not listed at the starting period 2) 30 funds 
left for various reasons over the examined time period. 
The monthly returns and rankings of the 135 open-ended 
equity funds are listed in Table 1. Fund number 129 has 
the highest monthly return of 0.0170; whereas, fund num-
ber 46 yields the lowest return, –0.0014. The average 
monthly return of the 135 funds is 0.0078. 

To simplify, suppose our investors are only interested 
in the top 30 performance funds (i.e., rank

quest monthly returns of at least 1%, and short selling 
is not allowed. The descriptive statistics for the top 30 
funds are listed in Table 2. The third, fourth, fifth, and 
sixth columns of Table 2 show the mean of the monthly 
return, the standard deviation, and both the minimum and 
maximum values of the funds. The last column describes 
the ranking of funds.  

The MinVar, MaxiMin, and MinMAD models are all 
examined using the top

odel yields infeasible solutions. The reason is that all 
top 30 funds exhibited negative monthly returns in some 
months. For instance, in September 2002, affected by that 
year’s stock market downturn across the United States, 
Europe, and Asia, the average monthly return of the top 
30 funds was –0.0892 ranging from –0.1242 to –0.0577.  

The results of the MinVar and MinMAD models are 
listed in Table 3. Only those funds which appear in portfo-

s at least once, i.e. the funds numbering 12, 86, 129, and 
133, are shown. The weights of the funds in an optimal 
portfolio for four different   are exhibited. Because   
ranging from 1% to 1.3% yields the same portfolio weights, 

%3.10.1   is presente for short. Also, since the 
maximum mean of monthly returns for the top 30 funds is 

, 0.01695), %7.1

d 

0.0170 (exactly   is neglected be-
cause none of top 30 funds yields the mean of monthly 
returns greater than or equal to e bottom two rows 
of Table 3 indicate the portfolio return and variance.  

As shown in Table 3, the portfolio weights in both the 
MinVar and MinMAD models remain unchanged for lo

 1.7%. Th

w 
  values ranging from 1.0% to 1.3%. In this range, the 

MinVar model yields an optimal portfolio return of 
132, a variance of 0.0023, and weights w86 = 0.053, 

w129 = 0.243, and w133 = 0.704. Whereas, the MinMAD 
model yields an optimal portfolio return of 0.0130, a 
portfolio variance of 0.0023, and portfolio weights w129 = 
0.219 and w133 = 0.781. As we can see, the MinVar 
model provides a higher expected return than required, 
and higher also than that of the MinMAD model. Given 

0.0

  = 1.4%, the MinVar and MinMAD models yield ex-
actly the same solutions with a portfolio return of 0.014, 

riance of 0.0024, and with weights w129 = 0.413 and 
w133 = 0.587. Given 
a va

  = 1.5% and 1.6%, an optimal 
portfolio of the MinVar and MinMAD models consists 
of the same funds wit different weights. The expected 
portfolio return and variance are the same. 

In this study, the outcome of the MinMAD model is 
quite close to that of the MinVar model. Th

h 

 Balls 

 rep

is result is the 

s 
on Decision

ll model uses the distance be-
en two funds to resent the correlation between 

sam

An
e

e as the conclusions of Papahristodoulou and Dot-
zauer [18], in which 67 shares traded on the Stockholm 
Stock Exchange between January 1997 and December 
2000 were examined. Both models provide optimal port- 
folio suggestions. However, the investors cannot tell di-
rectly, the correlations among funds through table- list-
ing. The next section will demonstrate how to visualize 
the optimal portfolio on Decision Balls. 
 
5. Visualizing Optimal Portfolio

 
 extended Decision Ba

tw
them, i.e. the larger the correlation, the shorter the dis-
tance. Also, the fund with the higher return is located 
closer to the North Pole. At first, a correlation matrix of 

funds is calculated. From Expression (9), ,
ˆ

i jd  for all i, j 

can be calculated. Since Max{1 },i j  = 0.3064 for all 

i, j, from Expression (10), the scaling constant s is given 
as 4 in this example. If th  funds being con-e number of

e funds numbered 12, 86, 

sidered is small, then Model 1 can be applied directly to 
yield the coordinates of all funds. However, when the 
number of funds is large, the computational time for 
Model 1 will increase greatly. 

In order to increase computational efficiency, the four 
funds listed in Table 3, i.e. th
129, and 133, can be chosen as the target funds. These 
four funds, in which investors may be the most interested, 
are suggested in an optimal portfolio for both the MinVar 
and MinMAD models. The correlation matrix of the target 
funds is calculated first. Applying Model 1 to these four 
funds yields the coordinates of them, the so called anchor 
points. The coordinates of funds numbered 12, 86, 129, 
and 133 are {0.820, 0.565, 0.083}, {0.292, 0.365, 0.883}, 
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No Quote Return Ran

Table 1. The expected monthly turns from 135 mutual funds. 

k  No Quote Return Rank No Quote Return Rank
1 0001 0.000 95 133  46 IC25 –0.001 43 135 91 ML09 0.010 17 38
2 0002 0.008 07 63  47 II01 0.005 57 93  92 NC13 0.006 13 87 
3 0003 0.005 23 100  48 II05 0.008 82 53  93 YC07 0.002 76 124 
4 0004 0.007 75 67  49 II13 0.007 15 74  94 ML15 0.010 92 30 
5 0005 0.008 83 52  50 JF51 0.003 85 114  95 UI05 0.002 61 126 
6 0012 0.002 58 127  51 JS01 0.005 33 96  96 AI05 0.005 28 99 
7 0013 0.003 27 120  52 JS03 0.014 24 7  97 BR05 0.008 70 55 
8 0014 0.012 43 18  53 KG01 0.008 93 50  98 CA09 0.012 22 22 
9 0017 0.011 71 27  54 KY01 0.015 80 2  99 CI07 0.004 22 109 

10 0018 0.003 53 117  55 ML01 0.014 14 8  100 CP03 0.009 62 41 
11 0021 0.010 13 39  56 ML02 0.005 71 91  101 CP14 0.010 71 33 
12 0025 0.015 51 3  57 ML06 0.010 53 35  102 CS07 0.004 65 107 
13 0026 0.009 87 40  58 ML12 0.006 88 77  103 DD04 0.006 39 82 
14 AI01 0.005 08 103  59 NC03 0.006 84 78  104 DF07 0.007 52 69 
15 AP01 0.003 67 115  60 NC07 0.006 26 84  105 DS03 0.002 39 128 
16 AP04 0.006 84 79  61 NC09 0.008 58 57  106 FH06 0.012 15 24 
17 BR01 0.007 30 73  62 PS01 0.006 52 81  107 FP11 0.005 87 90 
18 CA03 0.009 17 46  63 PS02 0.007 06 76  108 FP16 0.008 04 64 
19 CA04 0.003 96 112  64 PS03 0.009 59 43  109 GC05 0.012 35 20 
20 CF01 0.008 87 51  65 PS09 0.006 26 85  110 GC17 0.006 26 86 
21 CI01 0.005 14 102  66 PS14 0.014 08 9  111 IC06 0.007 08 75 
22 CI04 0.005 23 101  67 TC01 0.008 96 49  112 IC30 0.002 83 123 
23 CI05 0.008 23 61  68 TI02 0.007 61 68  113 II11 0.009 61 42 
24 CI12 0.004 10 111  69 TI07 0.012 81 16  114 JF76 0.003 57 116 
25 CP04 0.004 23 108  70 TR01 0.002 08 130  115 JS07 0.005 89 89 
26 CP07 0.002 64 125  71 TS02 0.002 86 122  116 KY06 0.009 20 45 
27 CS02 0.007 83 65  72 TS08 0.008 39 59  117 ML07 0.002 94 121 
28 CS09 0.005 31 97  73 TS13 0.006 80 80  118 NC16 0.013 22 13 
29 CT01 0.007 35 72  74 YT02 0.013 29 12  119 PS10 0.010 76 31 
30 CY01 0.008 73 54  75 YT03 0.009 04 48  120 TC03 0.005 67 92 
31 CY14 0.002 39 129  76 YT04 0.012 44 17  121 TC19 0.013 17 14 
32 DD01 0.005 30 98  77 YT11 0.015 38 4  122 TR04 0.005 90 88 
33 DS04 0.001 15 132  78 YT12 0.013 70 10  123 TS09 0.007 41 71 
34 FD01 0.005 34 95  79 0023 0.011 58 28  124 UI03 –0.000 48 134 
35 FE01 0.006 38 83  80 0029 0.004 67 106  125 YC02 0.007 82 66 
36 FH01 0.003 51 118  81 BR03 0.008 53 58  126 YT09 0.009 11 47 
37 FH03 0.008 68 56  82 CI11 0.005 00 105  127 0015 0.005 07 104 
38 FP03 0.012 23 21  83 CP10 0.011 43 29  128 FP05 0.012 13 25 
39 FP04 0.010 59 34  84 CY03 0.014 79 5  129 JS06 0.016 95 1 
40 FP06 0.01076 32  85 DF05 0.004 16 110  130 TI09 0.003 86 113 
41 FP10 0.014 50 6  86 FH08 0.012 18 23  131 FD02 0.009 52 44 
42 GC01 0.008 29 60  87 IC08 0.010 43 36  132 FP15 0.013 34 11 
43 IC01 0.005 38 94  88 II10 0.003 29 119  133 JF85 0.011 92 26 
44 IC04 0.007 43 70  89 JF83 0.008 21 62  134 NC17 0.012 85 15 
45 IC22 0.001 85 131  90 JS04 0.012 43 19  135 YT16 0.010 31 37 

 
Table 2. Descriptive statistics for the top 30 mutual funds. 

No Quote Return STD Min Max Rank No Quote Return STD Min Max Rank
8 0014 0.0124 0.0662 –0.1157 0.1625 18 83 CP10 0.0114 0.0626 –0.1214 0.1508 29 
9 0017 0.0117 0.0614 –0.1118 0.1472 27 84 CY03 0.0148 0.0587 –0.1157 0.1379 5 
12 0025 0.0155 0.0573 –0.1118 0.1426 3 86 FH08 0.0122 0.0591 –0.1366 0.1951 23 
38 FP03 0.0122 0.0632 –0.1279 0.1529 21 90 JS04 0.0124 0.0731 –0.1405 0.241 19 
41 FP10 0.0145 0.0672 –0.123 0.1985 6 94 ML15 0.0109 0.0721 –0.1263 0.2299 30 
52 JS03 0.0142 0.072 –0.1224 0.1905 7 98 CA09 0.0122 0.0695 –0.1418 0.1755 22 
54 KY01 0.0158 0.071 –0.1139 0.1478 2 106 FH06 0.0121 0.0573 –0.096 0.1554 24 
55 ML01 0.0141 0.0674 –0.1097 0.1909 8 109 GC05 0.0123 0.0664 –0.1297 0.1663 20 
66 PS14 0.0141 0.0679 –0.1141 0.2176 9 118 NC16 0.0132 0.0694 –0.1325 0.1995 13 
69 TI07 0.0128 0.0688 –0.1091 0.1728 16 121 TC19 0.0132 0.0673 –0.1252 0.1621 14 
74 YT02 0.0133 0.0654 –0.1131 0.1948 12 128 FP05 0.0121 0.0687 –0.1219 0.2403 25 
76 YT04 0.0124 0.0658 –0.1486 0.1709 17 129 JS06 0.017 0.0545 –0.0898 0.1418 1 
77 YT11 0.0154 0.0608 –0.1042 0.1757 4 132 FP15 0.0133 0.0712 –0.1271 0.1989 11 
78 YT12 0.0137 0.0723 –0.1359 0.2337 10 133 JF85 0.0119 0.0494 –0.1108 0.1099 26 
79 0023 0.0116 0.0618 –0.1202 0.1698 28 134 NC17 0.0128 0.0616 –0.1109 0.1739 15 
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Table 3. P  models. 

 

ortfolios of the top 30 mutual funds by the MinVar and MinMAD

1.0% 1.3%a  1.4%a  a 1.6%a 1.5%  
No AD V Min nM ar nMAD Quote MinVar MinM Min ar inM MAD Var Mi AD MinV  iM
12 0025 0 0  0 0.084 0.165 6 0.298 

0 0 0 0 
13 0.4 0.552 0.494 7 0.598 
87 0.5 0.364 0.341 27 0.104

 Re 0.0 0.0 0.01 16 0.016 
 Var 23 24 0 0.00 002 26 0026 

0  0.21
86 FH08 0.053 0 0  0 
129 JS06 0.243 0.219 0.4 13 0.65
133 JF85 0.704 0.781 0.5 87 0.1  

P. turn 0.0132 0.013 0.014 14 15 5 0.0
P. iance 0.0023 0.00 0.00 0. 024 25 0. 5 0.00 0.
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vestigate three well-known optimal portfolio models, in-
cluding the mean-variance, maximin, and minimization of 
mean absolute deviation. The maximin model yields infea-
sible solutions because all top 30 funds exhibit neg  
monthly returns in some months during the examined time 
period. The outcome of the minimization of mean absolute 
deviation model is quite close to that of the iance 
model. This result is the same as the co sion
study by Papahristodoulou and Dotzauer i h - 
curities traded on the Stockholm Sto Ex
examined. An extended Decision Ball model is proposed to 
visualize optimal portfolios on the surface 
where the distance between two funds indicates the corre-
lation between them, and the fund with a high n is 
located closer to the North Pole. The scale of optimal port-
folio weights is represented by the size of the circle of the 
selected fund. By o cision Ba

n see the optimal portfolio, compare the optimal weights 
provided by the different models, view the cluster of funds, 
and even find substitute funds if the preferred funds are not 
available. In future studies, the question of how to linearize 
this non-linear model in order to general a global o al 
solution can be addressed. 
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