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Abstract 
This contribution is the third of a series of articles devoted to the physics of discrete spaces. After 
the building of space-time [1] and the foundation of quantum theory [2] one studies here how the 
three fundamental interactions could emerge from the model of discrete space-time that we have 
put forward in previous contributions. The gauge interactions are recovered. We also propose an 
original interpretation of gravitational interactions. 

 
Keywords 
Gauge Interactions, Gravitation, Mond Theory, Cosmological Constant, Principle of Equivalence 

 
 

1. Introduction 
The particle to particle interactions are carried by three sorts of fields, the electroweak field, the strong field, and 
the gravitation field. The most striking feature is the enormous difference between their intensities. The electric 
force is stronger than the gravitation force by more than forty orders of magnitude. This is the hierarchy prob-
lem. 

We have put forward in [1] a model of discrete space-time where the universe is comprised of the simplest 
physical systems that one can imagine, namely the cosmic bits. The cosmic bits interact through 2-bodies (bi-
nary) random links such as ( )2

a bJ σ σ±  and 4-bodies (quarternary) random links such as ( )4
a b c dJ σ σ σ σ± . We 

associate the gauge interactions (electroweak and strong) with ( )2J  and the gravitation interactions with ( )4J . 
This will be the guideline of this contribution. 

The article is, accordingly, divided in two main sections. In the first section we show how the gauge symme-
try interactions naturally emerge from the model of discrete spaces that we propose. In the second section we in-
troduce a new interpretation of gravitation based on a mechanism, somehow similar to the Van der Waals inter-
action, where quantum wave fluctuations play the role of electric dipole fluctuations. 
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2. Gauge Interactions 
2.1. The Yang-Mills Theory of Interactions: A Reminder 
According to Yang-Mills theory [3], the physical space is not limited to the usual 4-dimensional continuum: to 
every point of the continuum one must also associate an internal space. Then the physical space becomes a fibre 
bundle, a space that can be locally defined as the Cartesian product of two manifolds, the fibres and a basis. In 
the Yang-Mills fibre bundle the usual 4-dimensional continuum plays the role of fibres, and the internal spaces 
the role of a basis of the fibre bundle. 

Whereas a position increment dx is enough to define the derivative operator in a 4-dimensional continuous 
space that is into a fibre, in a fibre bundle one must also take into account an increment dθ  between the inter-
nal spaces of neighbouring world points. Then the usual derivative x∂  is to be replaced by a covariant deriva-
tive ( )x A x∂ + . The term ( )A x  is called a parallel displacement. Some symmetry transformations may be de-
fined in internal spaces and, if physics is left invariant under these transformations, there are called gauge trans-
formations. Yang-Mills theory assumes that the gauge transformations are Lie groups ( )LSU N , where LN  is 
the dimension of the matrix representation of the group. The theory associates a particular interaction to a given 
Lie group: U(1) for electromagnetic interaction, SU(2) for weak interactions, and finally, SU(3) for strong in-
teractions. Each Lie group then introduces a specific parallel displacement ( )A x  called a gauge field. 

In this section we show that the Yang-Mills theory can be transposed in the framework of the model of dis-
crete spaces that we propose. The ill-defined concepts used by the Yang-Mills theory, such as the notion of in-
ternal spaces, are now given a physical meaning. Moreover unanswered questions posed by this theory, for ex-
ample the choice of the relevant Lie groups, are also given a response. 

2.2. Gauge Symmetry 
In the model of discrete spaces that we put forward, the universe is made of basic cells called world points, and 
the physical points of the Yang-Mills theory are similar to world points. The internal space of a world point is 
the space spanned by its possible states. This space is d-dimensional with ( )( )2Intd bJ=  (for more information 
see [1]). A gauge symmetry group is a group whose elements leave physics unchanged. Nothing determines a 
particular orientation of the d axes of coordinates in the internal space of world points. Therefore any permuta-
tion of axes ( )1, , dµ =   or any unitary transformation of the internal space must leave physics unchanged. 
Physics, therefore, must be invariant with respect to permutations of axes, that is, to the operations of symmetric 
permutation group S4 (since 4d = ). It must also be indifferent to unitary transformations U(4) of the internal 
space. S4 and U(4) are gauge symmetry groups of the model of discrete spaces. The relevant symmetry groups, 
however, must comply with both gauge groups. The group S4 has five irreducible representations, namely two 
1-dimensional representations ( 1Γ  and 1Γ ), one 2-dimensional representation ( )2Γ , and two 3-dimensional 
representations ( 3Γ  and 3Γ ) (the table of characters of 4S  is given in [1]). The particles that transform ac-
cording to 2Γ  are fermions and those that transform according to 1Γ  and 3Γ  are bosons [2]. The operations 
of U(4), however, must be compatible with the representations of 4S  and therefore there are three, and only 
three, relevant unitary gauge symmetry groups: 

a) U(1) which is associated with irreducible representations 1Γ  or 1Γ . 
b) SU(2) which is associated with irreducible representation 2Γ . 
c) and, finally, SU(3) which is associated with irreducible representations 3Γ  or 3Γ . 
There are no other gauge groups. 

2.3. Covariant Derivatives in Discrete Spaces 
All properties of discrete spaces are derived from a very general Lagrangian ( )ψΛ , where ψ  is the state of 
the physical system, that is a set of states iφ  with { }iψ φ=  of the N world points i of the physical system. A 
state iφ  is a 4-dimensional vector: 

1

2

3

4

i

i
i

i

i

ϕ
ϕ

φ
ϕ
ϕ

 
 
 =
 
 
 

. 
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The Lagrangian writes 

( ) { }( )T Gψ ψ ψΛ = ∆⊗                                   (1) 

∆  is square, random, N N×  matrix that describes the world points to world points interactions. { }G  is a set 
of N 4 4×  matrices iG  that describes the interactions between the four components iµϕ  of iφ  (for a more 
detailed presentation of the model see [1] and [2]). 

The notion of partial derivatives is introduced in discrete spaces through the matrix D obtained by factorizing 
the operator ∆  of Lagrangian (1). 

According to the LDU (Lower triangular, Diagonal, Upper triangular) Banaciewicz theorem ∆  may, indeed, 
be written as TD D∆ =  where D is a random, N N× , upper triangular matrix that can be interpreted as a dis-
crete differential operator. An increment iµδϕ  along the axis µ  of component iµϕ  of state iφ  of world 
point i is defined by 

i ij j
j

Dµ µδϕ ϕ= ∑ , 

and the partial derivative by 

( )* *

1 1
i ij ji

j
D D

l lµ µ µµ
ϕ φ ϕ∂ = = ∑                              (2) 

an operation that can be symbolized by Dφ φ→ ∂  in the usual 4-dimensional continuum. *l  is the size of a 
world point. 

Physics must be left unchanged under the operations ( )U θ  of a unitary gauge group ( )LSU N . As dis-
cussed above, the physical system is a fibre bundle where the fibres are given by D and the basis by ( )U θ . In a 
specific transformation ( )U θ  in Equation (2) iDφ  becomes ( )U i iD θ φ  where ( )U iθ , an element of Lie 
group ( )LSU N , is given by ( )2i 1= −  

( ) ,U exp ii i α α
α

θ θ τ = − 
 
∑  

( )U iθ  is a unitary matrix and therefore ( ) ( )C 1U Ui iθ θ−=  where C stands for hermitian conjugation. The 
operators τα are the generators of ( )LSU N  and the parameters ,i αθ  determine a particular transformation of  

the internal space of world point i. We consider infinitesimal transformations , , ,i i ij j
j

Dα α αθ δθ θ
 

→ = 
 

∑ . A  

first order expansion approximation of ( )U iθ  is: 

( ) ,U 1 ii i α α
α

δ θ δθ τ≅ − ∑ . 

Then the derivation operation becomes 

, , ,* * *

1 1 i1 i ii ij j i
j

D D D A
l l lα α α α α α

α α α
δθ τ τ θ τ

  − = − = ∂ −  
   

∑ ∑ ∑ ∑ .             (3) 

Finally, one finds ,i iD A α α
α

φ φ τ→ ∂ − ∑  a covariant derivative indeed. ,iA α , one of the 2
L 1N −  associated  

parameters, materializes a gauge field. 

2.4. The Lagrangians of Gauge Fields 
In the Lagrangian (1), rewritten as 

T T
i ik k kj j

k ij
D G Dφ φ

 
Λ =  

 
∑ ∑                                 (4) 

one replaces the operators D by their covariant expressions (3). Then (4) is made of three terms. 
a) We first recover the Lagrangian term of the free quantum particle field: 
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T T
f i ik k kj j

k ij
D G Dφ φ

 
Λ =  

 
∑ ∑ . 

b) Then we obtain the Lagrangian term of gauge fields 

( ) ( )T C
G i i k j j

k ij
A G Aα α β β

α β
φ τ τ φ

 
Λ =  

 
∑ ∑ ∑ ∑ . 

If we only consider local contributions we must look at terms with i j= . Since T 1i iφ φ =  this expressions 
becomes: 

( ) ( ), ,
C

G i k i
k i

A G Aα α β β
αβ

τ τ
 

Λ =  
 

∑ ∑∑ . 

c) and finally, a local interaction term between the particle and the gauge fields: 

( )T
, ,i i

C
g i i k i i i

k i
A G Aφ α α α α

α α
τ τ φ

    Λ = ∂ + ∂ −        
∑ ∑ ∑ ∑ . 

2.5. Electro-Weak Interactions 
In this section we recover the results of the GSW (Glashow, Salam, and Weinberg) theory of electroweak inter-
actions [4]. The interest of this section is less in the derivation of the theory, which is classical, but, rather, in the 
answers to questions posed by this theory. 

According to the GSW theory the gauge group for leptons would not be U(1) or SU(2) or SU(3) but a com-
bined group, namely ( ) ( )U 1 SU 2× . We consider the contribution of this gauge symmetry group to the local 
Lagrangian where the vacuum state is the state that minimizes the local Lagrangian  

( ) T vacuum
i i iGφ φ φΛ = , 

with 
2

vacuum

1 c
1

1
1

G

 −
 
 =  
  
 

 

under the constraint T 1i iφ φ =  (see [1]). One finds 

vacuum

1
0
0
0

φ

 
 
 =
 
 
 

.                                     (5) 

The contribution writes 

vacuum,T vacuum vacuum 2 vacuum,T vacuum
, , , ,1 cC C C C

i i i iA G A A Aα α β β α α β β
α β α β

φ τ τ φ φ τ τ φ
         = −         
            
∑ ∑ ∑ ∑ . 

Here the matrices ατ  are the generators of Lie group ( ) ( )U 1 SU 2× . The generators of SU(2) are the three 
Pauli matrices 1 2 3, ,σ σ σ  and the generators of U(1) are scalar numbers. For electroweak interactions one has, 
accordingly, 

1, ,3
A g A g Bµ µ
α µ α µ

µ µ
τ σ

=

′= +∑ ∑


. 

From a mathematical point of view this expression is meaningless because it mixes a scalar with two dimen-
sional matrices. The problem is resolved by introducing the simple following transformation between the scalar 
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1 and the two dimensional matrix ( )21 . 

( )21
1 1

1
 

⇒ = 
 

. 

The value of the electroweak Lagrangian in vacuum is then given by (with c = 1) 

( )
( )

( )
( )

3 1 2 3 1 2

vacuum,T vacuum

1 2 3 1 2 3

i i

i g i
A

g B gA g A A g B gA g A A

g A A g B gA A A g B gA
φ φ

   ′ ′+ − + +
   Λ ∝
   ′ ′+ − − −   

.        (6) 

Instead of a 4-dimensional real representation of iφ , a two dimensional complex representation may also be 
used, namely 

,1 ,2

,3 ,4

i
i

i i
i

i i

ϕ ϕ
φ

ϕ ϕ
+ 

=  + 
. 

In this representation the vacuum state is written 

vacuum 1
0

φ
 

=  
 

. 

By introducing this state in Equation (7) and by defining 
1 2iW A A+ = +  

and 
1 2iW A A− = −  

one has 

( ) ( )
22 2 32

3 2A

Wg gg
g W W W B

Bgg g
+ −  ′−  

Λ = + +   ′ ′−   
. 

Finally with 

3cos sinW WA B Wθ θ= −  
0

3sin cosW WZ B Wθ θ= − +  

the results of the Glashow, Salam and Weinberg (GWS) theory are recovered. The eigenvalues of the last 
2-dimensional matrix are 0

2 2
Z

g gλ ′= +  associated with the field 0Z  and 0Aλ =  associated with the elec-
tromagnetic field A. The electroweak interaction therefore compels the photon mass to be strictly zero but this 
result only holds for the chosen vacuum (5). The GSW theory, however, does not answer the following ques-
tions. 

a) What is the mechanism that binds the groups U(1) and SU(2)? 
We shall not treat that subject here in detail but it can be shown that the entire organization of particles of the 

Standard Model can be recovered by assuming that the seed of a particle does not involve a single world point 
but a pair of world points, instead, one with a bosonic character, the other with a fermionic character, an idea 
close to super-symmetric (Suzy) approaches. According to this interpretation the leptons would transform as 

1 2Γ ⊗Γ  and the quarks as 3 2Γ ⊗Γ  where 1 2 3, ,Γ Γ Γ  are three irreducible representations of the symmetric 
group 4S  of permutations of four objects. Combined with the unitary symmetry group U(4) the gauge group of 
leptons is ( ) ( )U 1 SU 2×  accordingly. The Suzy mechanism has been introduced to (partly) remedy the diver-
gences that appear in Feynman diagrams but the price to pay is a doubling of the number of particles (bosinos 
that are fermions associated with bosons and sfermions that are bosons associated with fermions). Here there is 
no need for such a doubling because, in our approach, the ordinary particles are made of pairs of bosonic and 
fermionic world points and are super-symmetric in essence. For the time being no super-symmetric particles has 
been experimentally found. One also could say that the success of the GSW theory is a good support of our 
Suzy-like model of particles. 

b) What is the vacuum state? 
The vacuum state vacuumφ  is chosen in the GSW theory so as to make the photon mass vanish. How to justify 
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this choice whereas the Higgs vacuum states 

1 1
vac

2 2

expi
expi

ρ θ
φ

ρ θ
 

=  
 

 

with 2 2
1 2 1ρ ρ+ =  are all equivalent? 

In our interpretation the vacuum state of an isolated world point is necessarily asymmetric. It is given by 
Equation (6) which is precisely the vacuum state used in the GSW theory.  

c) How to determine the Weinberg parameter 2sin Wθ ? 
The vacuum state vacuumφ  is fully oriented along the time axis. The three Pauli matrices are associated with 

the three space dimensions. The three dimensions of space and the time dimension constitute an affine space 
with a dilatation factor given by c. It is then convenient to assume that cg g′ = . In [1] we have seen that the 
(dimensionless) speed of light is given by ( )2c 1 1bJ= −  (with ( )2J J= ) and that the dimensionality d of space- 
time is determined by ( )Intd bJ= . The Weinberg angle Wθ  is defined by 

( )tan .W g gθ ′=  

The experimentally accessible parameter is 

( ) ( )
( )

( )
( )

2 2
2

2 2

tan 1 1c 1sin
1 1 11 tan 1 c

W
W

W

bJ
bJ bJ

θ
θ

θ
−

= = = =
+ −+ +

. 

Since 4d = , one has 4 5bJ< <  and therefore 

( )20.20 sin 0.25.Wθ< <  

The experimental value is 
2sin 0.231Wθ =  

which is consistent with the prediction. With this value as a datum we find 
c 0.548.=  

3. Gravitation 
3.1. A Link between Discrete Spaces and General Relativity 
A state of vacuum with vacuum

i iφ φ= , given by Equation (6), for all world points i is not acceptable because such 
a vacuum would have no space dimensions. One observes that vacuum

iφ  is not allowed because it ignores the 
uncertainty principle or, more precisely, the notion of zero point motion. Let ground

iφ  be the state of the funda-
mental mode of the harmonic oscillator that represents the dynamics of the electromagnetic field. ground

iφ  is a  
Gaussian function. Then vacuum is defined as a state { }ground ground

iψ φ=  with 

2

ground

1 3 2

i

ε
ε

φ
ε
ε

 −
 
 ≅  
  
 

 

with 1ε  . Vacuum then recovers spatial dimensions. 
The central hypothesis of general relativity is that the metric matrices are site dependent in space-time and 

that these modifications are caused by masses and, more generally, by non vanishing energy densities. In our 
model this hypothesis transforms the vacuum metric matrix into ( )vacuumG G i→ . The developed Lagrangian of 
a free particle in a space is then given by 

( ) { }( ) ( )T T T
j ij ik k

i j k
G D G i Dµν

µ ν
µν

ψ ψ ψ ϕ ϕ
   Λ = ∆⊗ =    

  
∑∑ ∑ ∑ . 

The length increments idx µ  of space along the dimension µ  at world point i are given by 
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* ground * ground
i i ij j

j
dx l l Dν ν νδϕ ϕ= = ∑  

where l* is the size of a world point. This gives 

( ) ( )2

1
l l

i
dx G i dx

l
µν

µ ν
µν

ψ ∗Λ = ∑∑ . 

In the continuous limit the expression reads 

( )S dx G x dxµν
µ ν

µν
= ∑∫ . 

This action is the starting point of General Relativity. The main conclusions of General Relativity, in particu-
lar the Einstein equation, may then be derived by using the usual (covariance) arguments. More precisely Gen-
eral Relativity may also be seen as a gauge field theory where space-time is analogous to a fiber bundle. The fi-
bers of the bundle are (approximate) copies of the Minkowskian metrics and the basis of the bundle is space- 
time itself. This is exactly the scheme that appears in the present approach. The fibers are (approximate) copies 
( )G i  of vacuumG  and the basis of the bundle, that is the connection between the fibers, is provided by the ma-

trix TD D∆ = . In the present approach there is no longer a contradiction between quantum and general relativ-
ity theories because both theories become irrelevant below the metric limit l*, quantum theory because a quan-
tum state iψ  can no longer be defined and general relativity because the metric matrices iG  disappear. 

3.2. Weak Gravitation Fields 
Let us now consider weak gravitation fields. In weak gravitation fields the local metric matrix ( )G x  may be 
written as 

( ) ( )( )vacuumx 1 xG G γ= +  

where ( )x ,x t=  is the four dimensional coordinate associated with world point i and 1γ  . The Lagrangian 
of a free particle is modified accordingly 

( ) ( ) ( )( )T T vacuum T T vacuum xD D G D D Gψ ψ ψ γ ψΛ Ψ = ⊗ + ⊗ . 

The second term on the right hand side may be seen as a three-body interaction ( )T xψ γ ψ  where the field 
ψ  is scattered by a tensor field ( )xγ . If the perturbation is assumed to be so weak that the modifications of 
the (inertial) masses of particles are negligible, the Lagrangian is not modified either, and one must write 

( )( )T T vacuum x 0D D Gψ γ ψ⊗ = , 

that can be satisfied only if 

( ) ( )T vacuum x 0D D G γ⊗ = . 

This expression is a propagation equation that describes the dynamics of a massless tensor field ( )xγ  im-
plying 10 independent components. Let us consider the trace of this tensor (its dilatation component) 

( ) ( )x xµµ

µ
γ γ= ∑ . 

Its dynamics is then given by 

( ) ( ) ( )
2

T vacuum
2 2x x 0

c
D D G

t
γ γ

 ∂
⊗ = −∆ = ∂ 

. 

This is the propagation equation of a massless gravitation wave travelling at the speed of light c. Its propaga-
tor writes 

( ) 22

1,k
k

π ω
ω

=
−

.                                  (7) 
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3.3. Quantum Mechanics in Curved Spaces 
In this section we look for the quantum dynamics of a particle evolving in such curved spaces. The Lagrangian 

( ) ( )T T
i ij jk k

ijk
D G j Dψ φ φΛ = ∑  

is minimized under the set of N constraints T 1i iφ φ = . The expression to be minimized is 

( ) ( )( )T T T 1i ij jk k i i
ijk i

D G j D iφ φ κ φ φ− −∑ ∑  

where ( )iκ  is a site dependent Lagrange multiplier. This yields the following eigenvalue equation 

( ) ( )T
ij jk k i

jk
D G j D iφ κ φ=∑ . 

Making explicit every component of world point polarizations, this equation gives 

( ) ( )T

,
ij jk k i

jk
D G j D iν µµν

ν
ϕ κ ϕ=∑ . 

Following the argument already given in [1] the 4-dimensional wave function { },i i µψ φ=  satisfies the fol-
lowing equation 

( ) ( ) ( )( ) ( )
2

2

2
1, ,4

c x
x

G x m x
x
ν

νµµ
µ µ

ψ
ψ

=

∂
=

∂∑


. 

This equation describes the quantum dynamics of a particle in the framework of the theory of general relativ-
ity. In flat spaces, the Klein-Gordon equation is recovered. This description of quantum states in gravitation 
fields is similar to the approach called “quantum mechanics in curved spaces” [5]. There is, however, an essen-
tial difference: the mass of the particle is site-dependent, ( ),m m x t= , which makes the calculations much more 
difficult. In strongly distorted space-time metrics, the particle can even lose its identity. 

3.4. Indirect (Fluctuation) Interactions 
Particles interact through gauge interactions by an exchange of bosonic particles (photons, vector bosons or 
gluons) that result from the quantization of gauge fields. These are direct interactions, but besides those interac-
tions there are also indirect interactions where two physical systems interact through fluctuations of their inter-
nal structures. 

The best known example of indirect interactions is the Van der Waals interaction. In physical systems housing 
positive and negative electric charges, the centres of gravity of positive and negative charges may not match, 
giving rise to fluctuating electric dipoles. The dipoles interact and some dipole orientations lower the energy, the 
closer the systems the larger the energy lowering. The result is an attractive force that decreases as 6r− . 

Another example is the nuclear indirect interaction between nucleons. The mechanism at work arises from the 
fluctuations of quark colour charges. The fluctuations are transmitted between the various quarks that compound 
a nucleus through gluons (which are colour charged). The result is a strong, attractive, short range interaction. 

Since the fluctuation interactions are always attractive and since the gravitation interaction is also attractive, 
we suggest that the gravitational interaction is an indirect interaction. The polarization of a world point, in fact 
the quantum wave ψ , may indeed fluctuate due both to cosmic noise b and finite size n of a world point. 

3.5. Newton Gravitational Attraction 
The polarization amplitude φ ψ=  of a world point is given by the thermal average of an order parameter s 

1

1 n
s

n α
α

φ σ
=

= = ∑  

with 1ασ = ± . The cosmic noise parameter b may be interpreted as the inverse of a temperature. We have seen 
in [1] that the partition function of this system writes 

( )expZ nbF φ= −  
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where 

( ) ( ) ( )2 1 1 1Ln 1 Ln 1
2 2 2
JF

b
ϕ ϕφ ϕ ϕ ϕ

  + −    = − + + −          
. 

The polarization φ  is therefore a random Gaussian variable with a mean square deviation ζ  given by 

1
nbJ

ζ = .                                      (8) 

The fluctuations vanish when n, or b, or J, goes to infinity. The vanishing of fluctuations characterizes the so- 
called mean field approximation. Then the realized state is the state φ  that minimizes the free energy ( )F φ , a 
technique called saddle point approximation. A large fluctuation of φ  destabilizes the eigenstates ψ  solu-
tions of the equation ψ κψΛ = . If φ  is a random Gaussian variable with standard deviation ζ , κφ  (where 
κ  is a constant) is also a random Gaussian variable with standard deviation κζ  and therefore the relevant 
standard deviation of the world points polarizations must be modified along the following formula  

nbJ
κζ = . 

The eigenvalue of a system where a world point i houses a particle P is ( )Pκ . Since ( ) ( )2cPP mκ =  (see 
[1]) the fluctuations modify the polarization of world point i of the system by an amount Pν  

cP
P

m
nbJ

ν ηζ η= =  

where η  is a factor of the order of 1. 
Similarly, the polarization perturbation of a world point j housing another particle Q is 

( ) cQ
Q

mQ
nbJ nbJ
κ

ν η η= = . 

The propagation of gravitation waves creates an interaction between the two particles P and Q that, owing to 
the weakness of vertices, may be calculated by using a low order perturbation expansion. The lowest order 
writes 

( ) ( ) ( ) ( )
2c cc

, , ,QP
P Q

mmV q q m m q
nbJnbJ nbJ

η ηη
ω π ω π ω= = . 

By using Equation (8) the static ( )0ω =  gravitation interaction is given by 

( ) ( )2

2

c 1,0 P QV q m m
nbJ q

η
= − .                            (9) 

The Fourier transform of 21 q  in a d-dimensional space behaves as 2 dr − . This expression yields for d = 3. 

( ) ( )2c 1
P QV r m m

nbJ r
η

= − . 

Finally, the Newton expression of attractive gravitational forces is recovered: 

( ) ( )
Newton 2

d 1
d P Q

V r
f r Gm m

r r
= − = − .                           (10) 

The gravitation constant G  is proportional to 1/n. Let us see how the experimental value of the gravitation 
constant G  gives an indication as regards the orders of magnitude of n and l* the size of a world point. 

The Planck length is given by 2c cPl PlL M=  . PlM  is the Planck mass: ( )1 2cPlM G=  . One has  
( )19 21.221 10 GeV cPlM = ×  and 331.615 10 cmPlL −= × . PlL  is the smallest length that has still a physical 

meaning. Since a cosmic bit is the most simple system one can imagine, one assumes that PlL  is the (non phy- 
sically measurable) size of a cosmic bit. 
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In other respects, the electric potential between two electrons at a distance r  is 

( ) 2
eV r e r=  

whereas the gravitational potential between these two electrons is ( ) 2
gV r Gm r= . 

With 20.511 MeV cm =  and ( ) 239 26.707 10 c GeV cG
−−= ×   the ratio between the two potentials is  

( )
( )

2 2
46

2 1.910 10
2 c

g
Ge

e fsc

V r m mG G
V r he

α
α

−= = = = ×  

( fxcα  is the fine structure constant). According to the present interpretation this ratio varies as 2 1
Ge nα η −≅ . 

Assuming that 1η ≅  the number n  of bits belonging to a world point is then of the order of 
1 455.2 10ge nα− = × ≅ , 

a very large number indeed. n is determined by the ratio of second order ( )( )2J  comic bits interactions to  
fourth order ( )( )4J  interactions and, more precisely, by minimizing a Landau-type free energy  

( ) ( ) ( )2 42 4n J n J nΛ = − +  [1].  

One has ( ) ( ) 1 22 4n J J≅  and ( ) ( )2 4J J  as assumed above.  

This large difference between ( )2J  and ( )4J  would explain the large intensity gap between the gauge in-
teractions and gravitation interaction (the hierarchy problem). 

The number n  of cosmic bits in a world point is given by 
4*

Pl

ln
L

 
=  
 

 

that is ( )1 4*
Pll L n=  and therefore 

* 210.43 10 cml −= × , 

the size scale of world points that has been used so far. The energy corresponding to this size is 

* 5
* 2.883 10 TeVhcE

l
= = ×  

very far (by four orders of magnitude) from the possibilities of available machines even those of the LHC.  
Finally the size CDl  of a coherent domain [2], that is the limit of classical mechanics, is such that 

( )3*
CDN n l l= =  and 

( )1 3* 100CDl l n= × ≅ Å  

about two hundred times the size of an hydrogen atom. 

3.6. Mond Theory 
The anomalous motion of outer stars in a galaxy has led the astrophysicists to introduce an invisible matter that 
they called dark or hidden matter [6]. No such matter has been directly found so far and its only experimentally 
measurable effect is the bending of light rays, a consequence of general relativity. Milgrom has put forward an-
other explanation for the anomaly. At very large distances the Newton dynamics would have to be modified [7] 
(Mond is for Modified Newton dynamics). Instead of the classical Newton attraction 

2
NewtonF GMm r= −  

Milgrom suggests that one must write 

( ) 2
Milgrom MF GMm r r rµ= −  

with ( ) 1xµ =  for Mr r , and ( )x xµ =  for Mr r . At large distances, the gravitation force is then given 
by 
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Milgrom MF GMm r r= −  

Mr  is the Milgrom range. There is, in principle, a way to deduce the parameter Mr  from experimental obser-
vation. In Newton dynamics, the speed ( )Nv r  of stars in a galaxy disk is given by 2 2

Nmv r GmM r= , that is 

( )1 2
Nv GM r= . 

In Milgrom dynamics 2
M Mmv r GmM r r= , that is 

( )1 2
M Mv GM r= , 

a constant as observed. Mv  can be measured and one has 2
M Mr GM v= . The problem is that one does not 

know the value of M the mass of the galaxy bulb. 
Since the motion of stars in the disks of galaxies is determined by the Mond dynamics the Milgrom parameter 

Mr  must be of the order of, or less than, the galactic bulbs radii. The galaxy bulbs diameters Bulbφ  are of the 
order of 32 10 ly×  (light year) to 410 ly . We chose the value 3

Bulb Bulb 2 10 lyr φ= =  but the value of Mr  
could be smaller. 

The model of discrete universe that we propose can provide an explanation of Mond theory based upon the 
possible modifications of world point dimensionality d under the influence of polarization fluctuations. Let us 
recall that the internal space of a world point may be considered as a d-dimensional space where the polarization 
φ  is a d-dimensional vector [1]: 

1

2

d

ϕ
ϕ

φ

ϕ

 
 
 =
 
 
 



 

and ( )Intd bJ= . The Lagrangian of a world point is expressed in term of polarization components µϕ  and 
the partition function Z in term of their thermal averages µϕ . Z, given by 

( )( )expZ bF φ= − , 

has been computed in [1]. The result is 

( ) ( ) ( ) ( )( )
,

2exp 1 Ln 1 1 Ln 1
22

Jbn nZ
dd

µ ν

µ ν µ µ µ µ
µν µϕ

ϕ ϕ ϕ ϕ ϕ ϕ
 

= − − + + + − − 
 

∑ ∑ ∑ . 

Every component µϕ  fluctuates with a standard deviation dζ  

d
d d
nbJ

ζ ζ= = × .                                 (11) 

If the fluctuations of one component µϕ  of φ  exceed dζ  the associated dimension µ  is lost, and the 
internal space of world point, instead of being a (3 + 1)-dimensional, becomes a (2 + 1)-dimensional space. The 
proportion of such world points is given by 

( ) ( ) ( )d d 2 d
d

d d
g x x g x x g x x

ζ

ζ ζ
ξ

− +∞ ∞

−∞
= + =∫ ∫ ∫  

where ( )g x  is the Gauss distribution 

( )
2

2

1 exp
22π
xg x
ζζ

 
= − 

 
. 

Then by letting 22 1ζ =  one has 

( ) ( ) ( ) ( ) ( )2 2 2 2
0 0

2 2 2exp d exp d exp d 1 Erf exp
π π π

d

d
x x x x x x d dξ

∞ ∞
= − = − − − = − ≅ −∫ ∫ ∫ . 

Since 4d =  we find 
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71.12 10ξ −= × . 

The form of the gravitation interaction associated with (2 + 1)-dimensional world points is modified because 
the Fourier transform (7) is now 2-dimensional. The potential in a 2-dimensional space becomes  

( ) ( ) ( ) ( ) ( )
2 2c c

Ln 1 LnP Q P QV r m m r m m r
nbJ nbJ
η η

= − = . 

Finally, the Milgrom attractive gravitational forces is 

( ) ( )
Milgrom

d 1
d P Q

V r
F r Gm m

r r
= − ≅ − . 

As a whole the gravitation interaction becomes 

( )2 2 2

1 1 1 11N M P Q P Q P Q
M M

r
F Gm m Gm m Gm m x

r r rr r r
µ+

   
 = − + = − + = −     

 

with ( ) 1 Mx r rµ = + . Then ( ) 1xµ =  if Mr rξ  and ( )
M

r
x

r
µ ξ=  if Mr rξ  as assumed by Mil- 

grom. 
The disappearance of a dimension may be interpreted as the shrinking of the lengths associated to that dimen-

sion by a factor ξ . This reminds the shrinking of non observable dimensions in string theories (where 10 or 11 
dimensional spaces are reduced to the classical 4-dimensional spaces) with the difference that we have here a 
mechanism that really put the process at work. For example a standard length Mr  is now seen as a length Mrξ . 

3.7. Cosmological Constant 
A world point i eventually loses another dimension if the fluctuations perturb simultaneously two field compo-
nents ,i µϕ  and ,i νϕ  of the polarization iφ  of i. The probability for such a situation to occur is  

2 141.2 10ξ −≅ × . Then the internal space of world point becomes (1 + 1)-dimensional and the interaction poten-
tial becomes 

( ) ( )2c
P QV r m m r

nbJ
η

= − . 

The associated gravitation force is 
( ) ( )2

Einstein

d
d P Q

V r c
F m m

r nbJ
η

= − = +  

a repulsive constant force that acts as a negative pressure exactly as does the cosmological constant. 
The formula gathering the various contributions to the gravitation forces is 

( )
( )2 2

1 1 1
N M E N P Q

M E

F r G m m
r r rr

+ +

 
 = − + −
 
 

.                     (12) 

In Equation (13) 2
E ErΛ =  is the cosmological constant. 

Since the distance travelled by light in one year is 159.5 10 m× , 19
Bulb 10 mr ≅  and, with 71.1 10ξ −≅ × , 

1 260.9 10 mE Mr rξ −= ≅ × . Finally, 52 21.2 10 mE
− −Λ ≅ ×  which is close to the experimental observed value 

52 21.4 10 mE
− −Λ ≅ × . The agreement is striking but it must not be taken too strictly because it depends on a 

poorly known parameter, the Milgrom range Mr . The main interest of the derivation is that it seems to give the 
right orders of magnitude to the cosmological constant. 

The distance rM where the cosmological expansion takes the lead over the Milgrom dynamics is 1
Bulbr rξ −≅  

1010 ly= , a value of the order of the size of the observable universe. 

3.8. On Dark Matter 
Up to now the possible effect of dark matter has not been taken into account. Dark matter has been introduced to 
account for the rotation curves of stars gravitating at the peripheries of galaxies. The Mond theory proposes an-
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other explanation and dark matter seems to be no longer necessary. The study of galaxies clusters shows that this 
is not the case. The gravitation forces are, in the Mond theory, exactly known. They are central and enable an 
exact calculation of the motions of galaxies in a cluster of galaxies to be carried out. The observation of the gal-
axy cluster 1E0657-56 (the Bullet) does not support the calculations. Dark matter is still necessary. Moreover 
dark matter is also necessary to account for the formation of galaxies. There is, however, no direct experimental 
evidence for their material existence except for their gravitational lens effects. 

The model of discrete space-time that we put forward may provide another interpretation. Let us consider the 
metric matrix of the model [1]. It writes 

vacuum

1
1

1
1

bJ

G

− 
 
 =
 
 
 

 

This metric matrix is sensitive to variations of cosmic noise b and since the speed of light is given by 
c 1 1bJ= −  a variation of cosmic noise b leads to a variation of the speed of light c. Space then behaves as a 
refractory medium and a non uniform repartition of cosmic noise is reflected by the bending of light rays exactly 
as gravitational lenses would do. Astrophysicists generally tend to interpret the deviations by the presence of 
matter although no matter is necessarily involved in the process. Given the agreement between the experimental 
and the computed values of the cosmological constant, a theory that does not take dark matter into account, is 
satisfactory, and one must conclude that the universe is flat and its dimension is 4d =  everywhere. This re-
mark does not jeopardize the existence of dark matter. We can define our universe as a set of world points where 
4 5bJ≤ <  and define dark matter as regions where bJ  is in between these two limits. 

3.9. Principle of Equivalence 
The parameter Pm  that appears in the Klein Gordon equation is called the mass of particle P. It is given by 

cP Pm κ=  where Pκ  is the eigenvalue of the following equation 

{ }( )T
P P PPD D G ψ κ ψ⊗ = . 

In the classical limit this mass is the mass parameter that appears in the Schrödinger equation and, finally, 
through the Erhenfest equations, the mass of the Newton equation 

2

2

d d
d dP
V xF m
x t

= − = . 

Therefore Pm  is the inertial mass inertial
Pm  of P. 

Pm  is also the parameter that appears in the Newton gravitational force (9). Therefore Pm  is the gravita-
tional mass gravitational

Pm  of P. We conclude that inertial gravitational
P Pm m≡ , a proof of the principle of equivalence. 

4. Discussions and Conclusions 
In contribution [1] we put forward a model of discrete space-time that we consider to be a convenient frame-
work for the description of natural phenomena. To be accepted, this statement must be supported by a proof that 
the model can account for the main issues of theoretical physics. Some have been studied in [1] and [2]. Here we 
show that the four fundamental interactions may be understood in the framework of this model. It allows a natu-
ral introduction of gauge interactions. Moreover, it suggests the idea that gravitation could be an effect of fluc-
tuations of world point polarizations (quantum states). The fluctuations are caused, on one hand, by the finite 
size n of world points and, on the other, by the cosmic noise b. The former effect gives a solution to the hierar-
chy problem because n is so large that the gravitation forces are extremely weak compared to gauge interactions. 
The later, the cosmic noise b, leads to the idea that the dimensionality d is not given once and for all. Large 
enough cosmic noise fluctuations may result as a decrease of d. For 1 3d = +  the attractive gravitation law is 
that of Newton, for 1 2d = +  one finds the attractive gravitation law of Milgrom and, finally, for d = 1 + 1, one 
finds an extremely weak, repulsive interaction that reminds the effects of the cosmological constant EΛ . In-
stead of increasing d, as in string theories, we think that the physical phenomena can be better understood by 
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decreasing d. 
Obviously, the introduction of a cosmic noise must have large consequences in cosmology. Although this is-

sue is out of the scope of this article we would like to mention briefly a few effects of b. 
Below 1bJ =  everything disappears, space, fields and particles, a situation that reminds a pre Big-Bang 

state. 
If 1bJ <  the speed of light c 1 1bJ= −  becomes imaginary and so is the case of time. The concept of 

imaginary times has been proposed by Hawking to cope with the difficulties set by the initial state of the uni-
verse [8]. One also sees that the metric matrix vacuumG  becomes Euclidean which yields another solution to 
these difficulties [9]. 

Finally the speed of light diverges for 1bJ =  which could give a physical solution to the inflation problem. 
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