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Abstract 
An interesting semi-analytic solution is given for the Helmholtz equation. This solution is obtained 
from a rigorous discussion of the regularity and the inversion of the tridiagonal symmetric matrix. 
Then, applications are given, showing very good accuracy. This work provides also the analytical 
inverse of the skew-symmetric tridiagonal matrix. 
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1. Introduction 
We focus on the inverse of the matrix (M) defined in the Equation (1) below. We are interested in applications 
of this matrix, because the latter allows solving many important differential equations in science and technology, 
especially mathematics, physics, engineering, chemistry, biology and other disciplines. The formula of the inverse 
of (M) was determined in [1]. But in this study, a different approach is presented with a rigourus and complete 
discussion of its regularity and complement, discussing the regularity of the matrix in great detail. In addition, 
the inverse of the antisymmetric tridiagonal matrix is determined analytically. 
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where, 2N ≥ , 0a ≠ , and 
bd
a

= . In case where a  is zero, the inversion of the matrix (M) presents no 

difficulty.  
So we will focus on the matrix (A) and we will determine the exact form of its inverse, (B). We proceed as 

follows: first, we determine the determinant of (A) and give a very detailed discussion of its invertibility. 
Therefore, we formulate its inverse analytically and exactly. Then, we solve the Helmholtz equation, with the 
finite difference method, using the obtained inverse matrix. Additionally, we treat the skew-symmetric tridiagonal 
matrix and give the formula of its inverse. 

2. Determinant of the Matrix (A) 
2.1. Characteristic Equation and Discriminant ∆   
The calculation of the determinant of (A) and the discussion of the existence of its inverse constitute a very 
important part of this work. The determinant of (A) depends on N and is denoted NA . We define 0 1A =  and 

1A d= . We also define 
2A  as follows:   

2
2

1
1.

1
d

A d
d

= = −                                      (2) 

By developing the determinant NA  with respect to the first row, one finds that it follows a second-order 
linear homogeneous recurrence relation with constant coefficients [2] [3]: 

1 2 , 2.N N NA d A A N
− −

= ⋅ − ≥                                  (3) 

The term 1NA
−  is the determinant of the submatrix of (A), obtained by eliminating its first row and its first 

column. 2NA
−  denotes the determinant of the submatrix of order N − 2, obtained by deleting the first two rows 

and first two columns of (A).  
The characteristic equation of the recurrence relation, given by the Equation (3), is:  

2 1 0.r d r− ⋅ + =                                         (4) 

The resolution of this Equation (4) yields the expression of NA  in terms of N.  
The solutions of the characteristic equation are determined by the sign of the discriminant 2 4d∆ = − . 

2.2. Case ∆ = 0 : d = ±2  
The discriminant is zero for two values of d : 2d = −  or 2d = . For this case, the characteristic equation 

admits one double real solution: 1 2 2
dr r r= = = . Then, the general expression of the determinant is:  

( ) ,N
NA r A B N′ ′= ⋅ + ⋅                                     (5) 

where A' and B' are two constants which are determined taking into account the first two terms of the sequence 

NA . The constant A' is obtained by considering:  

( )0
0 0 1.A r A B A′ ′ ′= ⋅ + ⋅ ⇒ =                                 (6) 

The constant B' is determined in the following manner:  

( ) ( )1
1 1 1 1 1.

2
dA r B d B B′ ′ ′= ⋅ + ⋅ = = ⋅ + ⇒ =                           (7) 

So the determinant of the matrix (A), in the case where 2d = ± , is given by the following formula:  

( )
( ) ( )

1 , 2

1 1 , 2NN

N d
A

N d

 + == 
− + = −

                              (8) 
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The Equation (8) is the exact formula of NA , when the discriminant of the characteristic equation is zero. 
One remarks that, in this case, the matrix (A) is regular: its inverse exists. This regularity of (A) can be deduced 
from the expression of NA . Because N is positive and therefore, the determinant cannot vanish. 

2.3. Case ∆ > 0 : d > 2  

It corresponds to the case where 2bd
a

= > . Then, the characteristic Equation (4) has two distinct real solu- 

tions:  

.
2

dr±
± ∆

=                                         (9) 

The general expression of the determinant is for this case:  
N N

NA A r B r+ −′ ′= ⋅ + ⋅                                   (10) 

The constants A' and B' can be determined, considering the values of NA  for the first two orders: 0 and 1. 
One gets:  

0

1

1A A B
A A r B r d+ −

′ ′ = + =
 ′ ′= ⋅ + ⋅ =

                                  (11) 

It holds:  

and
r rA B+ −′ ′= = −
∆ ∆

                                (12) 

Thus, the determinant of (A) is obtained:  

1 11 N N
NA r r+ +

+ − = − ∆
                                   (13) 

This equation is equivalent to:  
1 1

2 2

2

1 4 4
2 24

N N

N

d d d dA
d

+ +    + − − − = −    
   −      

 

The determinant of (A) is different from zero, for the considered case ( )2d > . Then, the tridiagonal 
symmetric matrix (A) is regular and its inverse exists. The remarkable Equation (14) gives the determinant of the 
matrix (A) in the case where the discriminant of the characteristic equation, ∆ , is strictly positive. One can 
verify, for example, that for 4d =  and 3N = , we get 

3 56A = . This value can be obtained with Equation (14) 
or directly. 

An observation of the determinant, for this case, allows another formulation of the formula in Equation (14). 
Because, one remarks that the determinant is a polynomial and can be developed. It holds:  

2 3 4 2
0 1 2 3 4

5 3 6 4 2 7 5 3
5 6 7

8 6 4 2
8

1; ; 1; 2 ; 3 1;
4 3 ; 5 6 1; 6 10 4 ;
7 15 10 1; etc.

A A d A d A d d A d d
A d d d A d d d A d d d d
A d d d d

 = = = − = − = − +


= − + = − + − = − + −
 = − + − +

             (14) 

From the analysis of these polynomial expressions, one can demonstrate using mathematical induction that 
the determinant given by the Equation (14) can be formulated as follows:  

( )
[ ]2

2

0
1 ,

N
i N i

N
i

N i
A d

i
−

=

− 
= −  

 
∑                                    (15) 

where [N/2] est equivalent to (N div 2). This latter formula in Equation (15) is given in [1]. But, we prefer the 
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formulation of Equation (14) for two reasons. 
The first is that we look for a matrix inverse. Then, it is important to know about the annulation of the 

determinant. Choosing the Equation (15) means that we have to search the zero of the polynomials, to know the 
invertibility of the matrix. While the Equation (14) shows clearly that the determinant does not vanish and thus, 
the matrix (A) is regular.  

The second reason to prefer Equation (14) to Equation (15) is that programming the Equation (14) is more 
confortable than programming Equation (15). Because the latter needs loops for the sum, and it also needs 
recursions for the binomial coefficients. 

2.4. Case ∆ < 0 : d < 2  

It corresponds to the case where 2 2bd
a

 − < = < 
 

. Then, the characteristic Equation (4) admits two complex 

conjugate solutions:  

.
2

d jr±
± −∆

=                                         (16) 

These solutions r+  and r−  belong to the complex unit circle. Because their magnitude is equal to unity: 
1r± = . Therefore, they can be written in the following manner:  

e ,jr θ±
± =                                           (17) 

with  

atan , 0 2

π atan , 2 0

π , 0
2

d
d

d
d

d

θ

±

  −∆
< <     


 −∆= + − < < ⋅   

  

± =



                             (18) 

Then, the general expression of NA  is:  

( ) ( )cos sinNA A N B Nθ θ′ ′= +                                  (19) 

The constants A' and B' are determined considering 0A  and 
1A .  

( ) ( ) ( )0 11 et cos sin cot .dA A A A B d Bθ θ θ′ ′ ′ ′= = = + = ⇒ = =
−∆

               (20) 

One obtains the following relation that gives the determinant of (A), in the case where 2d < :  

( ) ( ) ( )cos cot sinNA N Nθ θ θ= +  

Regularity of the Matrix (A) for ( )2d <   

In this case, the regularity of (A) has to be studied. One solves:  

( ) ( ) ( )cos cot sin 0NA N Nθ θ θ= + =                                (21) 

This Equation (21) admits N solutions kθ θ=  that nullify the determinant of the matrix (A). These solutions 
are:  
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24
π atan , 1,2, , .

1
k

k
k

dk k N
N d

θ
 −
 = = =
 +  


                            (22) 

For these values of kθ θ= , corresponding to kd d= , the determinant of the matrix (A) is zero and therefore 
its inverse does not exist. This result is very interesting. Because it shows that the eigenvalues kλ  of the matrix 
can be expressed in the following manner:  

2cos π , 1, 2, , .
1k

kd k N
N

λ  = − = + 
                               (23) 

In the treated case ( )0 2d< < , the inverse of the matrix (A) does not exist for  

2cos π , 1, 2, ,
1k

kd d k N
N

 = = = + 
 . So any formulation of the inverse for the considered case should ex-  

clude sub-cases where d  takes one of the values kd . Because for such values of d , the matrix (A) is not 
regular.  

Special Case d = 0 
This corresponds to 2−∆ = . In this case, we have: r j± = ± ; so π

2
θ = ± . The determinant of the matrix (A) 

is:  

( )1 , 2πcos , 1,2,3,
2 0, 2 1

p

N

N pA N p
N p

 − = = = = 
  = +

                        (24) 

The Equation (24) is a very interesting result. First, it gives the exact formula of determinant for the case 
where d  is zero. In addition, it shows that the matrix for this case is regular for even N , and non-reversible 
for odd N . So, we can always guarantee the existence of the inverse matrix (A), taking an even number of 
mesh nodes N . What deserves to be emphasized is that for odd N , 0 is an eigenvalue of the matrix (A). 

1 1 1
2 2 2

π0 and .
2N N Nd d λ θ θ+ + += = = = =                                (25) 

This closes the discussion of the determinant of a symmetric tridiagonal matrix, similar to the (M). All cases 
were studied in a very detailed manner. In each of these cases, the exact value of the determinant of (A) is given 
and its regularity has been widely discussed. 

3. Inverse of the Matrix A 
Before starting the determination of the inverse of the matrix (A), it is appropriate to discuss its properties. The 
symmetries of (A) will be found in its inverse (B).  

First, the matrix (A) is symmetric: ij jia a= . So its inverse is symmetric: ij jib b= . In addition, (A) is 
persymmetric i.e. it is symmetrical in relation to its anti-diagonal. This property also appears in its inverse, (B): 

1, 1ij N j N ib b − + − += . 
These two properties show that the matrix (B) is determined when one fourth of its elements is known. 
Determining (B) means to determine the cofactor matrix of (A). While these cofactors are obtained using 

determinants of submatrices of (A), it is not difficult to determine them. Because, a detailed work has been done 
in the previous section, concerning the determinant of (A) and its submatrices. 

Thus, it is easy to see that: 11 1Ncof A A
−

= . In the same way, it holds: 12 2Ncof A A
−

= − . One has 

13 3Ncof A A
−

= ; and for every element of the first line of (B), we have: ( )11 1 j
j N jcof A A+

−
= − ⋅  and:  

( )11 1 1 , 1, 2, , .j N j
j j

N

A
b b j N

A
+ −= = − ⋅ =                                (26) 

So the first and last lines, and also the first and last columns of the matrix (B) are known exactly using the 
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symmetry and the persymmetry matrix (A).  
We remember the previous section gives the formulas of all the determinants NA . 

The matrix (B) being the inverse of (A), its components satisfy the following relations:  
1

1 2

1 1

1

, 1 , ,
j j j

j
i j ij i j i

N
N j Nj j

d b b

b d b b i j N

b d b

δ

δ

δ
− +

−

 ⋅ + =
 + ⋅ + = < <


+ ⋅ =

                               (27) 

where j
iδ  is the Kronecker’s delta. 

From the first line of Equation (27), it is possible to obtain the second column of the matrix (B) from the first 
column, which is already known. Then, with the symmetry of the matrix (B), we have:  

2 1 11 , 2 .j j jb d b A b i N= − ⋅ = − ⋅ ≤ ≤                                  (28) 

With the symmetry and the persymmetry of (B), we also have:  

2 2 1, 1 1, 1, 2 .i i N N i N i Nb b b b i N− − + − + −= = = ≤ ≤                             (29) 

The second line of Equation (27) allows to find the elements of the third row and the third column of the 
matrix (B):  

1 2 3 0, 3 .j j jb d b b j N+ ⋅ + = ≤ ≤                                 (30) 

Considering the Equation (28), the following relation is obtained:  

( )2
3 1 121 , 3 .j j jb d b A b j N= − ⋅ = ⋅ ≤ ≤                              (31) 

The second line of Equation (27) also allows to find the elements of the fourth row and the fourth column of 
(B):  

2 3 4 0, 4 .j j jb d b b j N+ ⋅ + = ≤ ≤                                  (32) 

Considering the Equations (28) and (31), the following relation is obtained:  

( )3
4 1 132 , 4 .j j jb d d b A b j N= − − ⋅ = − ⋅ ≤ ≤                             (33) 

The analysis of each element of the matrix (B) leads to the complete and exact formulation of this remarkable 
matrix:  

( ) 1
111 , .i

ij jib A b i j−

−
= − ⋅ ≤                                   (34) 

The Equation (34), combined with the Equation (26), gives:  

( ) 11 , .i j i N j
ij

N

A A
b i j

A
+ − −

⋅
= − ⋅ ≤                                (35) 

The Equation (35) determines all the elements of the upper triangle of the matrix (B). So the symmetry of the 
matrix allows to get the closed form of (B), inverse of the symmetric tridiagonal the matrix (A). Thus, (B) is 
known and each of its components is given by the following equation:  

( )

( )

1

1

1 ,

, 1 ,

1 ,

i j i N j

N
ij

i j j N i

N

A A
i j

A
b i j N

A A
i j

A

+ − −

+ − −

 ⋅
− ⋅ ≤


= ≤ ≤

⋅
− ⋅ >



 

This beautiful relations is very important. It is an interesting result to solve any differential equation whose 
discretization leads to algebraic equations of the form 1 1 , 1, 2, ,i i i id f i N+ −Φ + Φ +Φ = =


. It is clear that 

effective solutions for such equations exist. But, the exact formulation of this matrix (B) allow us to avoid 
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inversion methods that use the RHS. 
However, it deserves to be precised that the formula of the Equation (36) is not new. Indeed, it has already 

been determined in [1]. But the present study follows another approach and additionally provides a deeper and 
complete discussion of the regularity of (A): this work completes the study in [1].  

As application, we will solve the Helmholtz equation, which is a very important equation in physics, using the 
matrix (B). We could also take the equation of heat diffusion and the Poisson equation. But we prefer the former, 
which corresponds to the wave equation for harmonic excitation. 

4. Application with the Resolution of Helmholtz Equation 
Knowing the matrix (B) allows to solve all the boundary problems posed in following manner:  

( ) ( ) ( ) ] [
( ) ( )

, ,
,a b

x c x f x x a b
a b
′′Φ + ⋅Φ = ∈

Φ = Φ Φ = Φ
                              (36) 

( )xΦ  is a scalar field that obeys to the Helmholtz equation (or to the harmonic heat diffusion equation). This 
latter corresponds to the wave equation for harmonic excitation. The boundary conditions are of first kind: 
Dirichlet-Dirichlet i.e. ( ) aaΦ = Φ  and ( ) bbΦ = Φ . The RHS, f , is a specified function. The constant k is 
also known.  

We consider an one-dimensional mesh with N + 2 discrete points ( )ix . Each point ( )ix  is defined by 

ix i x= ⋅∆ , where 
1

b ax h
N
−

∆ = =
+

 being the step size. We define ( )i ixΦ ≈ Φ , ( )i if f x= , 0,1, , 1i N= + .  

The application of the finite difference method to the Equation (36), with the centered difference approxi-  
mation ( )( )2O h , leads to the following algebraic system of equations [4]-[6]: 

2
1 1 , 2, , 1,i i i id h f i N− +Φ + ⋅Φ +Φ = = −

                           (37) 

where 22d c h= − + ⋅ . 
Thus, one gets in matrix form  

1

2

3

4

5

1

: :

1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1

0
0 0 0 0 1
0 0 0 0 0 0 1

N

N
A

d
d

d
d

d

d
−

= =

Φ… …   
   Φ… …   
   Φ… …
  
Φ…   ×   Φ

  
  
   Φ     Φ   


 



  

      

  

Φ

2
1
2

2
2

3
2

4
2

5

2
1

2

:

,

a

N

N b

h f
h f
h f
h f
h f

h f
h f

−

=

 −Φ
 
 
 
 
 =  
 
 
 
 
 −Φ 

F
 





                     (38) 

where the vector F  is defined by:  
2 2 2

1 1 , , and , 2,3, , 1.a N N b i iF h f F h f F h f i N= −Φ = −Φ = = −
                  (39) 

Thus, it holds ( )B= ×FΦ . The solution iΦ  at point ix  is given by a simple matrix-vector multiplication:  

1
, 1, 2, , .

N

i ij j
j

b F i N
=

Φ = ⋅ =∑                                    (40) 

This can be expressed in the following form  

1 1
, 1, 2, , .

i N

i ij j ij j
j j i

b F b F i N
= = +

Φ = ⋅ + ⋅ =∑ ∑                              (41) 
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which gives finally:  

( ) ( ) ( )1 1
1 1

1
1 1 , 1,2, , .

i i Nj j
i j jN i j i N j

j j iN

A A F A A F i N
A − − − −

= = +

−  
Φ = ⋅ − ⋅ ⋅ + ⋅ − ⋅ ⋅ = 

 
∑ ∑            (42) 

This Equation (42) gives the solution iΦ  at mesh point ix . 
One can also define  

( ) ( ) ( ) ( )
min , and sup ,

2 2ij ij

i j i j i j i j
i j i jµ ν

+ − − + + −
= = = =                   (43) 

Then, each element ijb  of the matrix (B) is given by:  

( ) 1
1 , , 1, 2, , .ij ijNi j

ij
N

A A
b i j N

A
µ µ− −+

⋅
= − ⋅ =                           (44) 

Thus, each solution iΦ  at point ix  can be written:  

( ) ( ) 1
1

1
1 , 1, 2, , .

ij ij

i N j
i jN

jN

A A F i N
A µ µ− −

=

−
Φ = − ⋅ ⋅ ⋅ =∑                        (45) 

The Equations (42) and (45) are two forms of solution of the Helmholtz equation. Each of these two forms 
can be implemented simply and elegantly in a source code. 

5. Numerical Results the Different Cases 
The different studied cases are considered to illustrate the efficient of the proposed approach that is based on the 
exact inversion of the important matrix (A). Logically, this method is stable robust and very accurate. Because 
the method of inversion does not use the RHS of the differential equation. 

For applications the value 0a =  and 1b =  have been chosen. 
The relative error ( )i Nε  at each point ix  is defined by the following relation:  

( ) i FDM iexact
i

iexact

Nε
Φ −Φ

= ⋅
Φ

                                    (46) 

The average relative error ( )Nε , is computed, according the formula:  

( ) ( )
1

1 N

i
i

N N
N

ε ε
=

= ⋅∑                                        (47) 

5.1. Results for ∆ = 0 : d = 2  
Sub-Case 0∆ =  and 2d = −  
The sub-case where 2d = −  is considered. This corresponds to 0c =  and the differential equation becomes 

the Poisson’s one; which we discussed in [1] [4]. Here, we chose 101N = . 
The results are presented in the Table 1. 
It holds, for the considered case: ( ) 7101 6.82244246216219 10ε −≈ × . 
Sub-Case 0∆ =  and 2d = +  

For this sub-case, we have 2d = + . The constante c  is different from zero and is: 2

4c
h

= . The differential  

equation can be an Helmholtz or an Heat Diffusion’s equation or any other differential equation, discribed by 
Equation (37). 

The results are presented in the Table 2, with 101N = . 
This results are very accurate and the average relative error is: ( ) 10101 1.94372864704115 10ε −≈ × . One 

remarks that it more accurate than the previous case, which dealt with an elliptic equation: the Poisson’s one. 

5.2. Results for ∆ > 0 : d > 2  
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The Equation (14) gives the formula of the determinant NA . Taking 2

5.5c
h

= − , one gets: 7.5d = − . Then, the 

results, given by the Table 3, are obtained for 101N = : 
The average relative error is: ( ) 10101 1.39541750081785 10ε −≈ × . 

Table 1. Results for sub-case 0∆ =  and 2d = − .                                                              

i ix  i FDMΦ  i exactΦ  ( )100iε  

1 9.80392156862745E−003 9.99951977659728E−001 9.99951941945873E−001 3.5715571960466871E−0008 

2 1.96078431372549E−002 9.99807843060523E−001 9.99807772402643E−001 7.0671464886261545E−0008 

3 2.94117647058824E−002 9.99567610059511E−001 9.99567505227327E−001 1.0487754292273011E−0007 

4 3.92156862745098E−002 9.99231301750424E−001 9.99231163513471E−001 1.3834331649605263E−0007 

5 4.90196078431373E−002 9.98798950461373E−001 9.98798779588930E−001 1.7107794518137173E−0007 

6 5.88235294117647E−002 9.98270597751755E−001 9.98270395012765E−001 2.0309025618252644E−0007 

7 6.86274509803922E−002 9.97646294408245E−001 9.97646060571245E−001 2.3438873687485638E−0007 

8 7.84313725490196E−002 9.96926100439920E−001 9.96925836272967E−001 2.6498154975866246E−0007 

9 8.82352941176471E−002 9.96110085072493E−001 9.96109791343088E−001 2.9487653660943124E−0007 

10 9.80392156862745E−002 9.95198326741654E−001 9.95198004216670E−001 3.2408122003922504E−0007 

          

91 8.92156862745098E−001 6.27734829966991E−001 6.27734526740978E−001 4.8304816791053913E−0007 

92 9.01960784313726E−001 6.20073117150520E−001 6.20072839194135E−001 4.4826408663524868E−0007 

93 9.11764705882353E−001 6.12351804868535E−001 6.12351552659154E−001 4.1187024086945308E−0007 

94 9.21568627450981E−001 6.04571635266995E−001 6.04571409276047E−001 3.7380356496978029E−0007 

95 9.31372549019608E−001 5.96733356148992E−001 5.96733156841918E−001 3.3399698322900866E−0007 

96 9.41176470588235E−001 5.88837720902881E−001 5.88837548739087E−001 2.9237910246643447E−0007 

97 9.50980392156863E−001 5.80885488429863E−001 5.80885343862677E−001 2.4887387421202474E−0007 

98 9.60784313725490E−001 5.72877423071045E−001 5.72877306547672E−001 2.0340022444020088E−0007 

99 9.70588235294118E−001 5.64814294533973E−001 5.64814206495454E−001 1.5587164439042598E−0007 

100 9.80392156862745E−001 5.56696877818654E−001 5.56696818699821E−001 1.0619574357402029E−0007 

101 9.90196078431373E−001 5.48525953143059E−001 5.48525923372496E−001 5.4273757420115430E−0008 

 
Table 2. Results for sub-case 0∆ =  and 2d = + .                                                                

i ix  i FDMΦ  i exactΦ  ( )100iε  

1 9.80392156862745E−003 9.99951941561807E−001 9.99951941945873E−001 3.8408390443798238E−0010 

2 1.96078431372549E−002 9.99807772400943E−001 9.99807772402643E−001 1.7004113836032908E−0012 

3 2.94117647058824E−002 9.99567504845073E−001 9.99567505227327E−001 3.8241940061767087E−0010 

4 3.92156862745098E−002 9.99231163510147E−001 9.99231163513471E−001 3.3264542127948233E−0012 

5 4.90196078431373E−002 9.98798779208562E−001 9.98798779588930E−001 3.8082519230113881E−0010 

6 5.88235294117647E−002 9.98270395007888E−001 9.98270395012765E−001 4.8848815064767307E−0012 

7 6.86274509803922E−002 9.97646060192825E−001 9.97646060571245E−001 3.7931306405461940E−0010 
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8 7.84313725490196E−002 9.96925836266610E−001 9.96925836272967E−001 6.3769629116802927E−0012 

9 8.82352941176471E−002 9.96109790966714E−001 9.96109791343088E−001 3.7784371187721485E−0010 

10 9.80392156862745E−002 9.95198004208912E−001 9.95198004216670E−001 7.7954501703227182E−0012 

          

Continued 

91 8.921568627x45098E−001 6.27734526506625E−001 6.27734526740978E−001 3.7333082444106066E−0010 

92 9.01960784313726E−001 6.20072839187450E−001 6.20072839194135E−001 1.0780252554930545E−0011 

93 9.11764705882353E−001 6.12351552429502E−001 6.12351552659154E−001 3.7503215109945825E−0010 

94 9.21568627450981E−001 6.04571409270609E−001 6.04571409276047E−001 8.9945906987657264E−0012 

95 9.31372549019608E−001 5.96733156616999E−001 5.96733156841918E−001 3.7691698330258390E−0010 

96 9.41176470588235E−001 5.88837548734947E−001 5.88837548739087E−001 7.0317811410056739E−0012 

97 9.50980392156863E−001 5.80885343642548E−001 5.80885343862677E−001 3.7895434691907514E−0010 

98 9.60784313725490E−001 5.72877306544869E−001 5.72877306547672E−001 4.8922290538148999E−0012 

99 9.70588235294118E−001 5.64814206280150E−001 5.64814206495454E−001 3.8119515845475614E−0010 

100 9.80392156862745E−001 5.56696818698399E−001 5.56696818699821E−001 2.5539064668188899E−0012 

101 9.90196078431373E−001 5.48525923162060E−001 5.48525923372496E−001 3.8363871413555668E−0010 

 
Table 3. Results for 0∆ > : 2d > .                                                                       

i ix  i FDMΦ  i exactΦ  ( )100iε  

1 9.80392156862745E−003 9.99951942066832E−001 9.99951941945873E−001 1.2096561110551905E−0010 

2 1.96078431372549E−002 9.99807772540009E−001 9.99807772402643E−001 1.3739230702850172E−0010 

3 2.94117647058824E−002 9.99567505366890E−001 9.99567505227327E−001 1.3962308098692344E−0010 

4 3.92156862745098E−002 9.99231163653289E−001 9.99231163513471E−001 1.3992584817200405E−0010 

5 4.90196078431373E−002 9.98798779728729E−001 9.98798779588930E−001 1.3996708150907900E−0010 

6 5.88235294117647E−002 9.98270395152495E−001 9.98270395012765E−001 1.3997254664803141E−0010 

7 6.86274509803922E−002 9.97646060710889E−001 9.97646060571245E−001 1.3997356337176123E−0010 

8 7.84313725490196E−002 9.96925836412511E−001 9.96925836272967E−001 1.3997367885991410E−0010 

9 8.82352941176471E−002 9.96109791482517E−001 9.96109791343088E−001 1.3997366165469848E−0010 

10 9.80392156862745E−002 9.95198004355971E−001 9.95198004216670E−001 1.3997338883491656E−0010 

          

91 8.92156862745098E−001 6.27734526828844E−001 6.27734526740978E−001 1.3997325944006513E−0010 

92 9.01960784313726E−001 6.20072839280928E−001 6.20072839194135E−001 1.3997354647337602E−0010 

93 9.11764705882353E−001 6.12351552744867E−001 6.12351552659154E−001 1.3997350359794923E−0010 

94 9.21568627450981E−001 6.04571409360671E−001 6.04571409276047E−001 1.3997349725125982E−0010 

95 9.31372549019608E−001 5.96733156925445E−001 5.96733156841918E−001 1.3997353950232016E−0010 

96 9.41176470588235E−001 5.88837548821508E−001 5.88837548739087E−001 1.3997269903698502E−0010 

97 9.50980392156863E−001 5.80885343943982E−001 5.80885343862677E−001 1.3996750760490411E−0010 
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98 9.60784313725490E−001 5.72877306627834E−001 5.72877306547672E−001 1.3992871988873559E−0010 

99 9.70588235294118E−001 5.64814206574324E−001 5.64814206495454E−001 1.3963828751268067E−0010 

100 9.80392156862745E−001 5.56696818776349E−001 5.56696818699821E−001 1.3746881187908235E−0010 

101 9.90196078431373E−001 5.48525923439006E−001 5.48525923372496E−001 1.2125126957261208E−0010 

5.3. Results for ∆ < 0 : d < 2  
Results for 4∆ = − : 0d =   
As discussed previously, an even N  is adequate for this case. We have chosen N = 100. Of course, and we 

have 2

2c
h

=  in order to get 0d = . The results are shown in the Table 4. 

The average relative error is: ( ) 10101 4.47040287308171 10ε −≈ × . 
Results for 0∆ <  and 0 2d< <   

We have chosen 100N = , 2

3.5c
h

= . Thus, we get 1.5d = . The obtained results are shown in the Table 5 

below. 
The average relative error is: ( ) 10100 2.53028125866742 10ε −≈ × . 
Results for ∆ < 0  and d− < <2 0  

Here, we chose 100N = , 2

1.7c
h

= . Thus, we get 0.3d = − . The obtained results are shown in the Table 6.  

The average relative error is: ( ) 10100 5.13074415009659 10ε −≈ × . 
 

Table 4. Results for 0∆ < : 2d < .                                                                         

i ix  i FDMΦ  i exactΦ  ( )100iε  

1 9.90099009900990E−003 9.99950985413958E−001 9.99950985597937E−001 1.8398773919563958E−0010 

2 1.98019801980198E−002 9.99803946395796E−001 9.99803947196571E−001 8.0093202683270216E−0010 

3 2.97029702970297E−002 9.99558898593239E−001 9.99558899209900E−001 6.1693274098274626E−0010 

4 3.96039603960396E−002 9.99215865659999E−001 9.99215865659686E−001 3.1399524121039765E−0013 

5 4.95049504950495E−002 9.98774879989561E−001 9.98774880173097E−001 1.8376131588050342E−0010 

6 5.94059405940594E−002 9.98235985179266E−001 9.98235985979413E−001 8.0156113582501274E−0010 

7 6.93069306930693E−002 9.97599235289941E−001 9.97599235905788E−001 6.1732943544062830E−0010 

8 7.92079207920792E−002 9.96864692373325E−001 9.96864692372070E−001 1.2593887674552596E−0012 

9 8.91089108910891E−002 9.96032427202216E−001 9.96032427384682E−001 1.8319331916118718E−0010 

10 9.90099009900990E−002 9.95102521730675E−001 9.95102522529567E−001 8.0282432173132566E−0010 

          

91 9.00990099009901E−001 6.20834092053905E−001 6.20834092518855E−001 7.4891231987014065E−0010 

92 9.10891089108911E−001 6.13041987883727E−001 6.13041987728773E−001 2.5276163392022263E−0010 

93 9.20792079207921E−001 6.05189787139772E−001 6.05189787165755E−001 4.2933261665883136E−0011 

94 9.30693069306931E−001 5.97278259932026E−001 5.97278260571631E−001 1.0708653465812175E−0009 

95 9.40594059405941E−001 5.89308183051566E−001 5.89308183503892E−001 7.6755473655097554E−0010 
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96 9.50495049504951E−001 5.81280337427352E−001 5.81280337259664E−001 2.8848114749042855E−0010 

97 9.60396039603961E−001 5.73195508785939E−001 5.73195508799111E−001 2.2978813851560844E−0011 

98 9.70297029702970E−001 5.65054490041582E−001 5.65054490668300E−001 1.1091280560131502E−0009 

99 9.80198019801980E−001 5.56858080482170E−001 5.56858080921502E−001 7.8894870049122436E−0010 

100 9.90099009900990E−001 5.48607083223752E−001 5.48607083042964E−001 3.2953972841320839E−0010 

Table 5. Results for 0∆ <  and 0 2d< < .                                                                  

i ix  i FDMΦ  i exactΦ  ( )100iε  

1 9.90099009900990E−003 9.99950985242091E−001 9.99950985597937E−001 3.5586379483562324E−0010 

2 1.98019801980198E−002 9.99803946929605E−001 9.99803947196571E−001 2.6701791037889036E−0010 

3 2.97029702970297E−002 9.99558899165576E−001 9.99558899209900E−001 4.4343326755485030E−0011 

4 3.96039603960396E−002 9.99215865192700E−001 9.99215865659686E−001 4.6735236143404706E−0010 

5 4.95049504950495E−002 9.98774880117737E−001 9.98774880173097E−001 5.5427955765178991E−0011 

6 5.94059405940594E−002 9.98235985729627E−001 9.98235985979413E−001 2.5022793037498129E−0010 

7 6.93069306930693E−002 9.97599235536414E−001 9.97599235905788E−001 3.7026300099084775E−0010 

8 7.92079207920792E−002 9.96864692377012E−001 9.96864692372070E−001 4.9582585715518357E−0012 

9 8.91089108910891E−002 9.96032426948358E−001 9.96032427384682E−001 4.3806168542894748E−0010 

10 9.90099009900990E−002 9.95102522381527E−001 9.95102522529567E−001 1.4876861562672179E−0010 

          

91 9.00990099009901E−001 6.20834092614578E−001 6.20834092518855E−001 1.5418448543249738E−0010 

92 9.10891089108911E−001 6.13041987423092E−001 6.13041987728773E−001 4.9863021489967694E−0010 

93 9.20792079207921E−001 6.05189787037652E−001 6.05189787165755E−001 2.1167386556819549E−0010 

94 9.30693069306931E−001 5.97278260584832E−001 5.97278260571631E−001 2.2101919194863757E−0011 

95 9.40594059405941E−001 5.89308183133875E−001 5.89308183503892E−001 6.2788391270672475E−0010 

96 9.50495049504951E−001 5.81280337329553E−001 5.81280337259664E−001 1.2023360003549033E−0010 

97 9.60396039603961E−001 5.73195508598808E−001 5.73195508799111E−001 3.4944930881705515E−0010 

98 9.70297029702970E−001 5.65054490439854E−001 5.65054490668300E−001 4.0429028285843806E−0010 

99 9.80198019801980E−001 5.56858081011978E−001 5.56858080921502E−001 1.6247619492595485E−0010 

100 9.90099009900990E−001 5.48607082689770E−001 5.48607083042964E−001 6.4380143912763474E−0010 

 
Table 6. Results for 0∆ <  and 2 0d− < < .                                                                 

i ix  i FDMΦ  i exactΦ  ( )100iε  

1 9.90099009900990E−003 9.99950985165498E−001 9.99950985597937E−001 4.3246050337875252E−0010 

2 1.98019801980198E−002 9.99803946266060E−001 9.99803947196571E−001 9.3069280038330958E−0010 

3 2.97029702970297E−002 9.99558898562528E−001 9.99558899209900E−001 6.4765728290964678E−0010 

4 3.96039603960396E−002 9.99215865595516E−001 9.99215865659686E−001 6.4220360034564815E−0011 

5 4.95049504950495E−002 9.98774880001021E−001 9.98774880173097E−001 1.7228731474943806E−0010 

6 5.94059405940594E−002 9.98235985192114E−001 9.98235985979413E−001 7.8869070932665146E−0010 
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7 6.93069306930693E−002 9.97599235042276E−001 9.97599235905788E−001 8.6559022861397575E−0010 

8 7.92079207920792E−002 9.96864692101434E−001 9.96864692372070E−001 2.7148637423229801E−0010 

9 8.91089108910891E−002 9.96032427368695E−001 9.96032427384682E−001 1.6051006109191849E−0011 

10 9.90099009900990E−002 9.95102521997773E−001 9.95102522529567E−001 5.3441098593454748E−0010 

          

Continued 

91 9.00990099009901E−001 6.20834091812921E−001 6.20834092518855E−001 1.1370747251206308E−0009 

92 9.10891089108911E−001 6.13041987603484E−001 6.13041987728773E−001 2.0437335124343511E−0010 

93 9.20792079207921E−001 6.05189787343172E−001 6.05189787165755E−001 2.9315977703782487E−0010 

94 9.30693069306931E−001 5.97278260265498E−001 5.97278260571631E−001 5.1254615306532111E−0010 

95 9.40594059405941E−001 5.89308182756331E−001 5.89308183503892E−001 1.2685400169528473E−0009 

96 9.50495049504951E−001 5.81280336869604E−001 5.81280337259664E−001 6.7103458031079775E−0010 

97 9.60396039603961E−001 5.73195508964148E−001 5.73195508799111E−001 2.8792441940908892E−0010 

98 9.70297029702970E−001 5.65054490648843E−001 5.65054490668300E−001 3.4434225263931278E−0011 

99 9.80198019801980E−001 5.56858080298119E−001 5.56858080921502E−001 1.1194653831954508E−0009 

100 9.90099009900990E−001 5.48607082429465E−001 5.48607083042964E−001 1.1182847201513194E−0009 

6. Inverse of the Tridiagonal Antisymmetric (Skew-Symmetric) Matrix 
We give here, additionally, the inverse of the tridiagonal antisymmetric matrix:   

:

0 0 0 1 0 0 0
0 0 1 1 0 0

0 0 1
,

0 1 0
0 0 0 0 1 1
0 0 0 0 0 0 1

SS

SS

A

b a d
a b a d

a b d
M a

a
a b a d

a b d
=

− … − …   
   − … − …   
   

= = ⋅   
− −   

   … − … −
      … …   

     

       



                   (48) 

Arguing as we did with the matrix (A), we get the characteristic equation to obtain the determinant of ( )SSA :  

2 1 0.r d r− ⋅ − =                                            (49) 

The discriminant 2 4SS d∆ = +  and is strictly positive. Thus, the determinant of ( )SSA  has the same form 

as the Equation (14), with the corresponding discriminant of the characteristic equation for ( )SSA :  

( )2 4SS d∆ = + : 
0 1SSA = , 1

SSA d= , and for 2N ≥ , it holds:  

1 1
2 2

2

1 4 4
2 24

N N

SS
N

d d d dA
d

+ +    + + − + = −    
   +      

 

One can remark that ( )SSA  is regular for any value of d  different from zero. if d  is zero and N is odd, 

then the inverse of ( )SSA  does not exist.  
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Then, the inverse of ( )SSA  that we denote ( )SSB  is given by the following relation:  

1

1

,

, 1 ,

,

SS SS
i N j

SS
NSS

ij SS SS
j N i

SS
N

A A
i j

A
b i j N

A A
i j

A

− −

− −

 ⋅
 ≤
= ≤ ≤

⋅
− >


 

The corresponding applications for the inverse matrix ( )SSB  are differential equations whose discretization 

leads to algebraic equations of the form 1 1 , 1, 2, ,i i i id f i N+ −Φ + Φ −Φ = =


. 

7. Conclusion 
This study has given the semi-analytical solution of each equation differential whose discretization leads to 
algebraic equations of the form 1 1 , 1, 2, ,i i i id f i N+ −Φ + Φ ±Φ = =


. The existence of the inverse of the 

discretization matrices is widely discussed. The presented approach is stable and gives very accurate results. The 
considered boundary problems are Dirichlet type. 
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