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Abstract

We establish the conditions for the compute of the Global Truncation Error (GTE), stability re-
striction on the time step and we prove the consistency using forward Euler in time and a fourth
order discretization in space for Heat Equation with smooth initial conditions and Dirichlet
boundary conditions.
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1. Introduction

In this paper we have considered the heat equation u, =Cu, on [0,1]x[0,T] with smooth initial conditions

and Dirichlet boundary conditions (C € R*). Using forward Euler in time and fourth order discretization in

space, we compute the Global Truncation Error (GTE), the stability restriction on the time step At, also we
prove consistency and finally we prove the convergence for this scheme.

Much attention has been paid to the development, analysis and implementation of accurate methods for the
numerical solution of this problem in the literature. Many problems are modeled by smooth initial conditions
and Dirichlet boundary conditions. A number of procedures have been suggested (see, for instance [1]-[3]). We
can say that three classes of solution techniques have emerged for solution of PDE: the finite difference tech-
niques, the finite element methods and the spectral techniques. The last one has the advantage of high accuracy
attained by the resulting discretization for a given number of nodes [4]-[7]. Let Ax denote the grid-size in the
spatial direction and At the gridsize in the time direction. By using forward Euler in time, and the fourth order
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discretization from the previous problem in space, the heat equation reads:

ut - c -u’", +16u", —30u" +16u, —u’,
At 12A%°

We’ll assume that the discretizations used near the boundaries have the same order [8] and [9].

)

2. Global Truncation Error (GTE)

There are three equivalent ways of computing the Global Truncation Error for this case.
Way 1. We can always go back to the definition of the GTE. Let U" be the true solution at stage n,and V"
be the solution returned by the scheme at stage n. Therefore

E"=v"-U" @)
We consider de LTE
u(x,t+At)—u(xt)
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At
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So that at stage n, we have
Ut :C—AtzB(At,Ax)U "+ Atz" + B (8)
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B" s avector taking care of the boundary conditions and B(At, Ax) is a matrix. Since

g CA ~B(At, AX)V" + " (10)
12(Ax)
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we get at stage N
CAt

EN=v"-U" = B(At, Ax)(vN T —UNT) - At 11
12(Ax)2 ( )( ) ()
CAt CAt N-2 N-2 N-2 N-1
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We now wish to estimate this quantity: first using the triangle inequality, we get
N N-n
CAt N[ cat
GTE=|E"|< BN (At, AX)E°|[+ ALY | ——— |  B“"(At,Ax)z" " (15)
" " [12(AX)ZJ ( ) nzi{lz(Ax)ZJ ( )
Now, taking stability into account, we can see that HB((AX)2 ,AX)H:O(l). Letting T = NAt we get
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Now, assuming that initial error is not too large, we have

o (A ,AX)H =o((ax) +(ax)')=0((ax¢)  (9)

GTE<|""(atax)| =

(by stability)

Finally, we can conclude that the GTE o O((Ax)z)

Way 2. The GTE can be estimated by computing the LTE 7" (At,Ax) and imposing stability to it
GTE<z'(AtAX) = =((Ax)",ax)=0O((ax)" +(ax)) =O( (ax)’) (20)
(by stability)

Way 3. We can also compute the one-step-error for the scheme. This quantity is basically equal to At-z"
since it is computed as follows
u™t—ul _cut ", +16u", —30u" +16u”, —u’, 1)
At 12(Ax)

(=)
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-u’, +16u’, —30u +16u, —u’,

S u™ =u +C (At (22)
(1) 12(Ax)*
then substitute the true solution and compute the difference of the two sides
—U(X—2AXx)+1 —AX)— 1 AX)— 2A
o —u(xt)+C (A1) u(x—2Ax)+16u(x—Ax) 30u(x2)+ 6U (X+AX)—U (X +2AX) u(xt+AY)
12(Ax) (24)
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We can then estimate the GTE by summing up the one-step error at each stage
N
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=1 At
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3. Stability Restriction

We start by computing the stability restriction one has to impose on At. We apply Von Neumann stability
analysis to the scheme: Letting k denote the wave number, we get

G-1 _¢ _e72ikAX +16e—ikAx _30+16€ikAx _EZikAx

27
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Now, let y =cos(kAx) and
w(y)=y*-8y+7=(y-7)(y-1) (34)

So that w>0 when vy =cos(kAx)e[-11]. This guarantees that G(k)<1. Now, in order to make sure
that |G (k)| <1, we must have

CAt
3(Ax)
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(cos® (kAx)—8cos (kAx) +7) (35)
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CAt
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4. Consistency and Convergence

We know that a discretization scheme [10] for a PDE is consistent provided that r(Ax,At)—>0 as
AX,At — 0, where ¢ isthe LTE. We compute it by substituting the true solution in the scheme and by using
Taylor expansions

u(x,t+At)—u(xt)

T(AX,A'[): At
_C—u(x—2Ax,t)+16u(x—Ax,t)—SOu(x,t)+16u(x+Ax,t)—u(x+2Ax,t) 1)
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—u + 2y +---—C(u +O((Ax)4))
t 2 tt XX
= U, ~Cuy, +O(At+(ax)') = O(At+(ax)*) (42)

=0

Thus, z obviously goesto0as Ax and At go to 0. Therefore, we can say that the scheme is consistent.
Lastly, since we proved that the scheme is consistent and stable, by Lax equivalence theorem, we prove that

the scheme is convergent. (By the above, since the GTE is O((Ax)z), it goes to 0 as Ax — 0). We can see

that Lax Equivalence Theorem for PDEs holds provided the scheme is linear (which is the case here). It may not
hold for non-linear schemes.

Another way to get the one-step error for the scheme is to combine the LTE for the temporal and spatial dis-
cretization, as follows.

LTE for forward Euler is O((At)z) and the LTE for the spatial discretization is

7(AX) = —u(Xx—2Ax)+16u (X — Ax)—30u () +16u (X +AX) —u (X + 2Ax) —1(Ax)2 Uy (43)

:12(Ax)2 {—U(X—2AX)+16U(X—AX)—3OU2(X)+16u (v)—u(x+2Ax) L, 44)
12(Ax)

=12(Ax)*0((a%)") =0 (ax)’) (45)

This is equivalent to the previous method for getting the one-step error.
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