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Abstract 
The method of Ti/TiO2-NiO photoelectrode prepared by using sol-gel method continued by calci-
nation process was introduced. The prepared TiO2-NiO film was observed with XRD and TEM. The 
anatase-rutile TiO2 was mainly on the prepared TiO2-NiO composite surface electrode. In addition 
to NiO, the composite also formed NiTiO3 that increased with increasing calcination temperature. 
Photoelectrocatalytic degradation of Rhodamine B (RB) using this electrode was investigated, and 
anodic potential and pH were optimized. RB degradation was investigated under different condi-
tions, and it showed that photoelectrocatalytic degradation could achieve efficient and complete 
mineralization of organic pollutant. Through comparison of the photoelectrocatalytic oxidation 
using the Ti/TiO2-NiO electrode operated by single photoanode with the Ti/TiO2-NiO electrode 
operated by several photoanode, it was found that the photoelectrocatalytic efficiency of that by 
series photoanodes was higher. Additionally, photoelectrocatalytic system was performed at the 
several different photoelectrodes, which verified the higher photocatalytic activity compared with 
the single photoelectrode. 
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1. Introduction 
Titanium dioxide (TiO2) was widely used in photocatalytic degradation of the organic pollutants that could not 
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be degraded easily such as dyes because of its favorable physical, chemical and photocatalytic properties and 
high stability [1]-[8]. This photocatalytic method was based on the reactive properties of photogenerated elec-
tron-hole pairs. They were generated in the semiconductor (TiO2) particles under irradiation at suitable wave-
lengths (λ ≤ 400 nm). These electrons and holes could also recombine. Since the hole was a powerful oxidizing 
agent, it could decompose contaminants adsorbed on the TiO2 surface. Meanwhile, it could also oxidize water to 
produce hydroxyl radicals that could decompose organic pollutants in water [9]-[12]. There were many reports 
on photoelectrocatalytic degradation of organic pollutants by using TiO2 electrodes which were prepared by 
coating the surfaces of electrically conducting sub-strates (ITO, Ti) with TiO2 film. In this method, positive po-
tential was applied on the working electrode (Ti/TiO2 electrode), which could inhibit the recombination of elec-
trons and holes and enhance the efficiency of photocatalytic degradation of organic compounds [5] [6] [13]-[18]. 

In order to improve the photoelectrocatalytic capability of TiO2 film, preparation of TiO2 film was extensively 
studied. TiO2 films were often prepared by using either sol-gel method [19]-[25], pray pyrolysis [26] or sputter-
ing [27]. Metal oxides, such as CuO, Cu2O, Fe2O3, WO3, MoO3, ZnO, NiO, SnO2, and so on, have been consi-
dered for band-gap engineering of TiO2 as these oxides have compatible processing strategies with TiO2 
[28]-[37]. Among these oxides, low band-gap CuO or NiO is used as sensitizers to use visible radiation, whereas 
other large band-gap oxides (e.g., ZnO, SnO2) are coupled with TiO2 for extrinsic trapping of photogenerated 
charge carriers to enhance photoactivity. Among these, coupling TiO2 with NiO still attracts less attention. The 
band gaps of SnO2 and TiO2 are 3.80 and 3.2 eV [38], respectively, and the CB edge of NiO is 0.5 V above that 
of TiO2 [39]. When the two semiconductor particles are coupled, the CB of NiO acts as a sink for photogene-
rated electrons. Since the photogenerated holes move in the opposite direction, they accumulate in the VB of the 
TiO2 particle, which increases the efficiency of charge separation.  

In this paper, Ti/TiO2-NiO electrode was prepared by using sol-gel method. The crystalline structure and sur-
face morphology of TiO2 film were evaluated by using X-ray diffraction (XRD) and TEM. The effect of crystal-
line size and structure was discussed. The photoelectrocatalytic ability of this electrode for degradation of Rho-
damine B (RB) (Figure 1) and the effect of anodic potential and pH on this photoelectrocatalytic reaction were 
investigated. The photoelectrocatalytic oxidation using the Ti/TiO2-NiO electrode calcinated by furnace was 
compared. Additionally, photoelectrocatalytic oxidation measurements were performed at the variously counter 
electrodes of Ti (commercial), Ti/TiO2, which indicated the higher photocatalytic activity of the Ti/TiO2 elec-
trode further. 

The mechanism of the RB photodegradation may include the following possible steps [40]: 

2RB O 2 rhodamine products−•+ → →                                  (1) 

2RB TiO (e ) 2 rhodamine products−+ → →                                (2) 

RB OH RB OH• +• −+ → +                                       (3) 

2RB O 2 rhodamine products+• −•+ → →                                 (4) 

The cationic dye radical of RB is degraded into carbon dioxide, water, and mineral acids through a rhodamine 
intermediate. The rhodamine intermediate could be detected by UV-VIS spectroscopy from approximately 240 
nm to 360 nm. In principle, the degradation process of RB decreases the absorption peak at 543 nm, but in-
creases absorption peaks at approximately 240 - 360 nm. Qu et al. (1998) [28] reported that OOH• and OH• are 
necessary for the N-de-ethylation of RB, which, in turn, is necessary for complete degradation of the dye. 

 

 
Figure 1. Structure of Rhodamine B.                                       
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2. Experiment 
2.1. Reagent 
Titanium (99.7%, in area 10 cm × 3 cm) was purchased from the Far East Ti Equipment Co., Shanghai, China. 
RB, titanium tetraisopropoxide (TTIP), ethanol, acetic acid, nickel chloride and other chemical reagents were 
purchased from E. Merck (Indonesia). All reagents were of analytical reagent grade quality. All solutions were 
prepared with doubly distilled water. 

2.2. Device 
X-ray data were collected by using a D8ADVANCE X-ray diffractometer (Bruker axs Co., Germany) based on 
CuKα radiation. The 2θ (two-theta) angle of the diffractometer was stepped from 10˚ to 80˚ by 0.03˚ increments. 
Transmission Electron microscope (TEM) was obtained by a JOEL JEM 1400 (Japan) with an in-column energy 
filter. Electrochemical experiments were performed with a Potentiostat (Jiangsu Electroanalytical Co., China). 
The two electrode system consisted of a Ti/TiO2-NiO electrode as the working electrode, electrode and a 
Ti/TiO2 as the counter electrode. The radiation source was a halogen lamp (300 W, Osram). 

2.3. TiO2 Film Preparation 
The TiO2 film has been synthesized by procedures that have been published previously [40]. A 10 mL solution 
of TTIP was hydrolysed in the 100 mL acetic acid glacial solution and mixed under vigorous stirring in an ice 
water-bath (10˚C - 15˚C) until a clear yellow solution of TiO2 nanocrystals was formed. The solution was heated 
at 90˚C for 2 h when it became a gel, which was then placed in an oven at 150˚C for 24 h to undergo an aging 
process. Next, the TiO2 xerogel was ground and pulverized into a fine powder and calcined in a muffle furnace 
at 400˚C for 2 h at a heating rate of 10˚C∙min−1. Then, ethanol was added to the TiO2 powder before dip-coating 
to the Ti mesh. The TiO2-coated Ti mesh was then dried at 100˚C for 5 min. The coating and drying treatments 
was repeated three times. 

2.4. TiO2-NiO Films Preparation 
1.145 grams of synthesized xerogel TiO2 (previous procedure) was added in 0.81 grams of NiNO3∙6H2O that has 
dissolved in 25 ml of distilled water. The mixed solution was stirred with magnetic stirrer to fuse. Then, the 
uniform mixture was dried at 110˚C for 3 h. To improve the crystalline TiO2-NiO after the green suspension was 
formed, it was calcinated at various temperature of 150˚C, 300˚C, 400˚C, 500˚C, 600˚C, and 700˚C for 4 hours at 
10˚C/min. The crystalline TiO2-NiO composite was superimposed onto a SnO2F conductive glass and was dried 
at 110˚C for 3 h. The coating and drying treatments was repeated three times. 

2.5. Photoelectrodegradation Experiment 
In order to investigate the photoelectrocatalytic (PEC) activity of the prepared sensitized TiO2 thin film, a series 
of degradation experiments of Rhodamine B in aqueous solutions were performed. The initial concentration of 
Rhodamine B was 5 mg∙L−1, with 0.05 mol∙L−1 of NaCl used as the supporting electrolyte. The total volume of 
the solution was 10 mL. Experiments were carried out in an optical quality quartz cell equipped with a two- 
electrode system. A copper wire as well as Ti plate was used as the counter electrode. The front of the working 
electrode was irradiated with a 300 W visible light lamp (Halogen lamp, Osram) and the progress of the photoe-
lectrocatalytic degradation was recorded at defined intervals by UV-VIS spectroscopy. The PEC degradation of 
RB was performed at voltages of 1.0 V to +10.0 V and at various pH values. 

3. Results and Discussions 
3.1. The Characteristics of TiO2 Film 
The TiO2 films prepared by sol-gel from titanium tetraisopropoxide precursor were characterized by XRD, as 
shown in Figure 2. The present work, the sol-gel method was carried out under acidic conditions with acetic 
acid as solvent. The use of acetic acid as the solvent, as well as activating the formation of Ti(OCOCH3)(OiPr)2 
complexes, permits control of both the degree of condensation and the oligomerisation and induces preferential  
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Figure 2. XRD pattern of prepared anatase TiO2.          

 
crystallisation of TiO2 in the anatase phase. In the first case, a spherical and relatively monodisperse aggregates 
of nanocrystallites could be obtained. The growth kinetics of the aggregates is determined by the stability of the 
colloid. The TiO2 particles formed are relatively stable and a white suspension is gradually formed due to the 
precipitation of large aggregates. 

However, under the acetic acid conditions using the Ti(OiPr)4 precursor, the complexes formation was occur 
as described in the equation below [40]. 

H
3 4 3 2CH COO Ti(O Pr) Ti(OCOCH )(O Pr)i i+− + →  

In further hydrolysis and condensation steps, the Ti(OCOCH3)(OiPr)2 product will produce nanotitania. In this 
research, nano-TiO2 was prepared from stock solutions of 110 mL solution containing titanium tetraisopropox-
ide and acetic acid solution in a volume ratio of 1:10 in a water bath (10˚C - 15˚C). The anatase of TiO2 was ob-
tained after an annealing process at 400˚C (annealing rate of 10˚C min). Figure 2 shows that the XRD pattern of 
the TiO2 thus prepared exhibits strong diffraction peaks at 2θ = 25.35˚ (d101 = 3.51 Å), 2θ = 37.90˚ (d004 = 2.37 
Å), 2θ = 48.11˚ (d200 = 1.89 Å), 2θ = 54.16˚ (d105 = 1.69 Å), and 2θ = 54.96˚ (d211 = 1.67 Å), indicating that TiO2 
is formed by the anatase phase. All peaks are in good agreement with the standard spectrum (JCPDS No.: 
JCPDS # 782-484). This result suggested that the nano-TiO2 powder was irregularly polycrystalline. The XDR 
pattern shows that only the anatase phase is formed. 

In addition, TEM was used to further examine the crystallite/particle size, crystallinity, and morphology of the 
samples. Clear spherical and non-homogeneous structures can be seen in Figure 3(a), with the average size of 
the primary particle approximately 10 nm, which is in good agreement with the value determined by XRD. The 
particle of TiO2 in the anatase phase has a mostly spherical morphology (Figure 2(a)). The area selected for 
electron diffraction pattern analysis (SAED), confirming that the TiO2 nanoparticles are highly crystalline in the 
anatase phase, in good agreement with the standard JCPDS # 782-484 and XRD result. 

3.2. The Characteristics of TiO2-NiO Film 
The composite of TiO2-NiO was obtained after an annealing process at 700˚C (annealing rate of 10˚C min). 
Figure 4 shows that the XRD pattern of the TiO2-NiO thus prepared exhibits strong diffraction peaks at 2θ = 
27.45˚ (d110 = 3.2452 Å ), 2θ = 36.10˚ (d101 = 2.4849 Å ), 2θ = 39.20˚ (d200 = 2.2952 Å), 2θ = 41.25˚ (d111 = 
2.1858 Å), 2θ = 44.05˚ (d210 = 2.0531 Å ), 2θ = 54.36˚ (d211 = 1.6858), and 2θ = 56.66˚ (d220 = 1.6227 Å) which 
are the characterization of rutile TiO2 according to the standard JCPDS No. 870-710. There are also several 
peaks indicates the anatase phase at 2θ = 25.40˚ (d101 = 3.5023 Å), 2θ = 37.90˚ (d004 = 2.3709 Å), and 2θ = 
48.15˚ (d200 = 1.8874 Å) according to the standard JCPDS No. 782-486. Peaks characteristic of NiTiO3 are 
peaks at the 2θ = 24˚ (d012 = 3.6584 Å), 2θ = 33˚ (d110 = 2.6911 Å), 2θ = 49˚ (d024 = 1.8356 Å), and 2θ = 57˚ 
(d018 = 1.5969 Å). All peaks are in good agreement with the standard spectrums JCPDS No. 753-757. 

TEM was used to further examine the crystallite/particle size, and morphology of the TiO2-NiO composites 
samples. Clear spherical and non-homogeneous structures can be seen in Figure 5(a), with the average size of  
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Figure 3. Images of anatase phase. (a) TEM image of nano-TiO2 
powder; (b) SAED pattern of nano-TiO2 powde.                               

 

 
Figure 4. XRD pattern of TiO2-NiO thin film.                                  

 

 
Figure 5. TEM Image of TiO2-NiO nanoparticle were used for 
photoanode preparation (a) 500 nm bar; (b) 50 nm bar.                             

 
the primary particle approximately 20 - 30 nm, which is in good agreement with the value determined by XRD. 
The particle of TiO2 in the anatase phase has a mostly spherical morphology (Figure 5(a)). The area selected for 
electron diffraction pattern analysis (SAED) (Figure 5(b)), confirming that the TiO2-NiO nanoparticles are also 
highly crystalline in the anatase phase, rutile phase and TiNiO3. 

While the part of photoanoda TiO2-NiO composite shows that TiO2-NiO materials were deposited on the Ti 
contained on porous amorphous silica (Figure 6). The conductivity character of those composite is shown in 
Figure 7. The profile shows that the composite photoanoda Ti/TiO2-NiO quite well as electron generation. 
Based on the bar graph in Figure 8, that shows the percentage of formation of NiO in a variety of temperatures, 
as well as the byproducts NiTiO3. NiTiO3 arises due to the formation of NiO and TiO2. Percentage of NiO in the 
composite achieving optimum condition at 500˚C reached 22.78%. Another product is a composite of NiTiO3 
that appears on composite roasted at 600˚C and roasted at 700˚C composite. Increased temperature and addition 
of NiO dopants were affecting the TiO2 crystalization. Increased temperature and the addition of NiO dopants  

 
 

     

(a) (b) 
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Figure 6. XRD Pattern of Ti/TiO2-NiO electrode material.                    

 

 
Figure 7. Voltage applied-current profile of the Ti/TiO2-NiO 
electrode. Counter electrode: Ti/TiO2 electrode.                    

 

 
Figure 8. Relative abundance of anatase phase, rutile phase, 
NiO, and NiTiO3 on TiO2-NiO composite result of annealing at 
300˚C (1), 400˚C (2), 500˚C (3), 600˚C (4), and 700˚C (5).             

 
were affecting TiO2 crystal structure transformation. The addition of these dopants was found to suppress the 
transformation of anatase into rutile (compared with no addition of dopand, Table 1). The occurrence of these 
structural transformations will change the photoactivity of TiO2 and further explained in TiO2-NiO composite 
activity for photodegradation of Rhodamine B. 

3.3. Influence of pH 
This experiment was carried out at different pH values of 2.0, 4.0, 6.0, 8.0 and 10.0, respectively, in order to in-
vestigate the process of RB photoelectrocatalytic degradation. The experimental results were shown in Figure 9. 
It demonstrated that the efficiency of the photoelectrode on the photoelectrocatalytic degradation of RB was  
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Figure 9. Absorbance of RB solution after photoelectrocatalytic 
degradation for 180 min at various pH values under visible light 
irradiation ([NaCl] = 0.05 M, [RB] = 5 × 10−4 mass%, applied bias 
potential 1.0 V).                                                 

 
Table 1. Anatase to rutile ratio (A/R) of the synthesized TiO2 and composite TiO2-NiO.                              

A/R ratio 
Annealing temperature 

150˚C 300˚C 400˚C 500˚C 600˚C 700˚C 
TiO2 1:0 1:0 1:0 1:0.06 1:0.72 1:9.93 

TiO2-NiO composite 1:0 1:0.20 1:0.20 1:0.21 1:0.41 1:1.70 

 
improved with the increase in pH value and the rate constant of the photoelectrocatalytic degradation of RB was 
also increased at the same time. The results showed that the photoelectrocatalytic activity of the photoelectrode 
was increased due to the increase in pH value. The study of the effect of pH value on the efficiency of photoe-
lectrocatalytic degradation of organic dye was valuable but complicated. Firstly, pH value had significant effect 
on the absorption behavior of the organic dye on the catalyst surface. The point of zero charge of the TiO2 that 
was the catalyst was at pH 6.4. Thus, the TiO2 surface was positively charged in the media with pH less than 6.4, 
whereas it was negatively charged under the conditions with the pH greater than 6.4. The value of pH could also 
influence the charge carried by the molecule [40], the molecule of RB was cationic form at lower than 4. When 
the pH value was less on the catalyst surface became difficult because of an electrostatic repulsive force. When 
the pH value was greater than 4, the molecule of RB was in the zwitterionic form and a certain part of the mole-
cule was attracted by the catalyst surface due to the electrostatic attraction [16]. As a result, the efficiency of the 
photoelectrocatalytic degradation of RB was relatively low with the pH less than 4 while the efficiency was in-
creased with the pH greater than 4. Secondly, the change of pH had an important effect on modifying the posi-
tion of the TiO2 conduction band (60 mV per pH unit) [35]. Thus, the oxidizing ability of photogenerated holes 
was raised, i.e. the hydroxyl radical production was facilitated in the oxidation of water (or hydroxide ions) by 
photogenerated holes. The more alkaline, the more readily water (or hydroxide ions) underwent oxidation to 
generate hydroxyl radicals on the catalyst surface. Therefore, the photoelectrocatalytic degradation of RB was 
more efficient due to the increase in pH value. The pH value of 10 was selected in subsequent experiments. 

3.4. Degradation of RB under Different Applied Potential Bias Conditions by the  
Proposed Photoelectrode 

When the potential was 3.0 V, the rate of photoelectron transport process was lower and controlled the overall 
PEC oxidation. Thus, the photocurrent increased within the potential of 3.0 - 5.0 V. Once the applied bias ex-
ceeded 5.0 V, the interfacial oxidation, which was slower than the photoelectron transport, became the rate-de- 
termining step of the overall process. Under this condition the photocurrent saturated gradually. The anodic po-
tential was an important parameter in the process of photoelectrocatalytic degradation of RB. The effect of ap-
plied potential was determined by using a series of potentials. To study the key factors affecting the photode-
gradation of RB, a series of tests were executed under different experimental conditions in which the deduction 
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of Vis absorbance was estimated.  
After 5 min degradation (batch system), about 96.3% of RB was removed. Photoelectrocatalytic (PEC) 

experiment 1 was carried out under halogen lamp irradiation using the Ti/TiO2-NiO photoelectrode with a po-
tential voltage of +10.0 V. It was obvious that the degradation rate was very fast. But their applied potential vol-
tages make the electrode surface damage rapidly. Furthermore, the continuous systems were done with applied 
potential bias of 4, 5, and 6 volts. The results are shown in Table 2. However, RB could not undergo complete 
degradation to produce CO2 and H2O, as a result, the intermediates were produced during the process [40]. 
Therefore, PEC method showed high complete mineralization activity in the RB degradation reaction. Figure 10 
shows no prominent peak in the UV region around 370 nm as an indication of an intermediate peak of rhoda-
mine. 

3.5. Compared the Photoelectrocatalytic Oxidation Using Several Photoelectrodes 
Compared the photoelectrocatalytic oxidation using the Ti/TiO2 electrode by batch system as well as by single 
photoanode (Table 2), the photoelectrocatalytic oxidation process using integrated photoanode can enhance the 
RB degradation, respectively, as shown in Table 3. The experimental results also demonstrated that the reaction 
rate of RB degradation using several electrode by continuous system was higher than that by single photoanode. 

 

 
Figure 10. Electronic spectra of Rhodamine B before and after photo- 
electrocatalytic degradation process at a variation applied voltage.            

 
Table 2. Degradation of RB (%) under different experimental conditions using Ti/TiO2-NiO photoanode with a 
300 watts halogen lamp irradiation.                                                                      

Experiment Potential voltage of photoanode (volt) Batch system (%) 
Continuous system (%) 

3 mL/sec 6 mL/sec 

1 10 96.3*   

2 4  10.0 14.9 

3 5  12.7 15.3 

4 6  15.9 16.3 

 
Table 3. Degradation of RB (%) under different experimental conditions using several photoanode of Ti/TiO2- 
NiO, Ti/TiO2-PbO, Ti/Ta-Ir and Ti/Ru-Ir photoanodes, respectively, under a 300 watts halogen lamp irradiation.        

Applied bias potential of photoanode (volt) 
Flow rate 

3 mL/sec 6 mL/sec 

4 98.0 95.5 

5 99.3 97.0 

6 99.6 98.0 
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4. Conclusion  
In this paper, the method of preparation Ti/TiO2 photoelectrode was firstly presented. The anatase TiO2 was 
mainly on the prepared electrode surface. Photoanode of the TiO2-NiO composite synthesized by sol-gel method 
showed that the photoelectrocatalytic degradation ran very well. Photoelectrocatalytic degradation of RB using 
this electrode was investigated, and the operating conditions were optimized. pH and applied bias voltage af-
fected the rate of photoelectrocatalytic degradation of Rhodamine B. By the comparison of the photoelectroca-
talytic oxidation using the Ti/TiO2 NiO electrode operated by single photoanode and the TiO2 NiO electrode op-
erated by several photoanode, it was found that the photoelectrocatalytic efficiency of that by series photoanodes 
was higher. Additionally, photoelectrocatalytic system was performed at the several different photoelectrodes, 
which verified the higher photocatalytic activity of the single system-treated electrode further. 
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