
Journal of Computer and Communications, 2014, 2, 25-36
Published Online December 2014 in SciRes. http://www.scirp.org/journal/jcc
http://dx.doi.org/10.4236/jcc.2014.214003

How to cite this paper: Hu, Y.-H. and Scott, C. (2014) A Case Study of Adopting Security Guidelines in Undergraduate Soft-
ware Engineering Education. Journal of Computer and Communications, 2, 25-36.
http://dx.doi.org/10.4236/jcc.2014.214003

A Case Study of Adopting Security Guidelines
in Undergraduate Software Engineering
Education
Yen-Hung Hu1, Charles Scott2
1Department of Computer Science, Norfolk State University, Norfolk, Virginia, USA
2Department of Computer Science, Hampton University, Hampton, Virginia, USA
Email: yhu@nsu.edu, chazzscott15@gmail.com

Received 20 September 2014; revised 22 October 2014; accepted 18 November 2014

Copyright © 2014 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
Security plays a large role in software development; simply without its existence the software
would be vulnerable to many different types of attacks. Software security prevents leaks of data,
alternation of data, and unauthorized access to data. Building a secure software involves a number
of different processes but security awareness and implementation are the most important ones
among them. To produce high quality software security engineers need to meet today’s cyberse-
curity demands, security awareness and implementation must be integrated in undergraduate
computer science programming courses. In this paper, we demonstrate the importance of adopt-
ing security guidelines in undergraduate software engineering education. Thus, this paper focuses
on integrating secure guidelines into existing applications to eliminate common security vulnera-
bilities. An assessment table, derived from several existing Java security guidelines, is developed
to provide in depth critiques of the selected capstone project. Potential security vulnerabilities in
the capstone project are identified and presented in a form showing the degree of threats against
the three security characteristics: confidentiality, integrity, and availability addressed in the
McCumber Cube model. Meanwhile, vulnerability density of the capstone project is calculated to
demonstrate the performance of this research.

Keywords
Software Security, Security Guidelines, McCumber Cube Model, Vulnerability Density

1. Introduction
Security is a term that you simply cannot get rid of. As computers become more and more prevalent in our daily

http://www.scirp.org/journal/jcc
http://dx.doi.org/10.4236/jcc.2014.214003
http://dx.doi.org/10.4236/jcc.2014.214003
http://www.scirp.org/
mailto:yhu@nsu.edu
mailto:chazzscott15@gmail.com
http://creativecommons.org/licenses/by/4.0/

Y.-H. Hu, C. Scott

26

lives it becomes even more important to safeguard these technologies. This is just as important as in the topic of
software engineering. A vast majority of attacks make use of software vulnerabilities that are entirely preventa-
ble. It is stated by a pair of two leading experts, John Viega and Gary McGraw, “behind every computer security
program and malicious attack lies a common enemy—bad software” [1]. Within the topic of software engineer-
ing, security is defined as the effort to create software in a secure computing platform. Software security pre-
vents the following: leaks of confidential data, alternation of data without the knowledge of the system, and un-
authorized access to the system [2].

Software must be designed as well as implemented so that the secured users can perform actions that are
needed and have been allowed. Building secure software involves many requirements and polices which thus
produce a set of laws, rules, and practices that users have to abide by. These policies would address the follow-
ing: data security, information security, and content security [2]. Data security refers to protective digital privacy
measures that are applied to prevent unauthorized access to computer, databases and websites [3]. Some exam-
ples of data security technologies include software/hardware disk encryption, backups, data masking and data
erasure [3]. Information security is designed to protect the confidentiality, integrity and availability of computer
system data from those with malicious intentions [4]. Content security or sometimes referred to as digital rights
management is the use of software or other computer technology to manage the conditions under which copy-
righted material in digital form can be accessed [5].

Almost all computers are connected to a local network or the Internet so every piece of the software deployed
in a system is subject to potential adversaries. Several approaches in literatures have aimed atreducing potential
software breaches [6]-[8] and the ones that integrate security aspects into Software Development Life Cycle
(SDLC) are adopted most [6] [9]-[11]. However, they may not be good resources for educating computer
science students because complicated knowledge and procedures are involved in every phase of the SDLC.

This paper focuses on using existing products and selected security guidelines to explain and verify how to
implement a secure application. We have selected 13 critical questions from several Java security guidelines to
reflect most common security errors in students’ codes. We then use these critical questions to assess every
component in the selected capstone project. Each component will be scored using McCumber’s Cube model
which evaluates information security in terms of data confidentiality, integrity, and availability [12]. Possible
solutions for each vulnerability are also suggested.

The remainder of this paper is organized as follows: Section 2 reviews related work. Section 3 brings up our
motivation. Section 4 defines software security metrics adopted by this paper. Section 5 explains the approach of
adopting security guidelines to identify software vulnerabilities. Section 6 presents background of the selected
capstone project. Section 7 assesses every component in the capstone project and discusses our observations and
suggestions. Section 8 lists our observations and suggestions. Section 9 concludes this paper and points out fu-
ture work.

2. Related Work
Several literatures have studied and addressed strategies with regards to how to implement security within the
software development process. For example Computer Emergency Response Team (CERT) began new research
in 2009 in software security measures that build on CERT’S core competence in software and information secu-
rity. The overall purpose of this research was to address the following questions which include: “how do I estab-
lish and specify the required/desired level of security for a specific software application, set of application soft-
ware-reliant system, system of systems, supply chains, and other multi-systems environments” [13]. Also, “how
do I measure, at each phase of the development or acquisition life cycle that the required and/or desired level of
security has been achieved?” [13].

In addition, Jorge A. et al. have also researched this topic [14]. They both believe that most of the software
developed in the world use classic methods which include: the classic Waterfall Model, Spiral Model, Capability
Maturity Model Integration (CMMI), Team Software Process (TSP) and Personal Software Process (PSP) [6]
[14]. All of these classic methods with regards to software development are mainly dedicated to the quality and
consistency of the software development process and not security. They believe it is necessary to modify these
classic evolutionary deployment models by adding computer science security. Their paper propose to add secu-
rity through all the phases of the process. They have concluded that everything within the process of software
development must be reviewed thoroughly [14].

Y.-H. Hu, C. Scott

27

The McCumber Cube methodology offers a structured approach to assessing while also managing security
risk in IT systems [12] [15] [16]. This model relies on the implementer to identify information assets and then
think of risk management in a deconstructed view across 3 different characteristics which include as follows:
confidentiality, integrity and availability of critical information [12] [16]. The strength in this model is in the
multidimensional view required to implement robust Information Assurance (IA) programs. Well-executed sys-
tems will include this IA model during all phases of the SDLC.

3. Motivation
We have observed several cases showing the consequences of software vulnerabilities [17] [18]. For instance, a
report from Capers Jones reveals that there are a number of vulnerabilities in most commercial software
with10,000 function point size range and it will cost almost 50 cents out of every dollar to find and fix bugs
[17].

Another report, released by B2B International and Kaspersky Lab in 2013, reveals that the average financial
loss of IT security breaches suffered by large companies from a single serious incident was $649,000. For small
and medium size companies, the average financial loss was $50,000. Meanwhile, they also indicated that vulne-
rabilities in the software ranked highest among all internal threats faced by companies during 2011-2013 and
about 10% of these threats caused leaks of important business data [18].

These instances bring up our motivation of studying and engaging software security and quality knowledge
into software engineering education. We make the assumption that with strong security knowledge gained dur-
ing their undergraduate programming courses, our future software engineers will be able to eliminate most vul-
nerabilities within applications in the earlier stages of their SDLC process. As a result, many security breaches
happened in today’s software could be eliminated and financial loss associated with them could be saved and
re-invested.

4. Software Security Metrics
Several literatures have proposed the metrics of measuring software quality or security [19] [20]. In this paper,
we assume that a potential vulnerability exists if a defect in the code leads to the violation of data confidentiality,
integrity, and availability. Where, defect is defined as any issue that causes incomplete executions of the soft-
ware. Thus, this assumption could be rewritten as:

A defect z ∈ {vulnerability} if z leads to the violation of data confidentiality, integrity, and availability.
We also define the vulnerability density (DV) as the number of vulnerabilities in one line of code (LOC).

Therefore, we have

D
VV
S

=

where, V is the number of vulnerability and S is the size of the software in the unit of one LOC. Vulnerability
density could be used to measure the programming in terms of how secure the code is. If other conditions are the
same, a program with a higher vulnerability density is likely to be compromised more often.

5. Adopting Security Guidelines to Identify Software Vulnerabilities
To identify potential vulnerabilities in the application, this paper adopts security guidelines from several re-
sources which emphasize on Java security design and implementation. As shown in Table 1, we create a 3-
column table to address the criteria for identifying software vulnerabilities. A list of 13 critical questions derived
from several existing Java security guidelines [2] [7] [8] [21] [22] is presented in the first column. These 13
questions are used to assess every component in the application to see whether there exist vulnerabilities in such
a component. Explanations of every critical question are presented in the second column. Last, potential vulne-
rabilities of every component against the three security characteristics (i.e. confidentiality, integrity, and availa-
bility) addressed in the McCumber Cube model are listed in the third column. We examine most components in-
cluding variables, methods, and classes in the application thoroughly to see whether any of them violates these
security characteristics and to count the number of vulnerabilities as well as the vulnerability density of the ap-
plication.

Y.-H. Hu, C. Scott

28

Table 1. Critical questions, explanations, and potential software vulnerabilities.

Critical Question Explanation
Potential Vulnerabilities against Security
Characteristics in the McCumber Cube
Model: Confidentiality, Integrity, Availability

Q.1. Limit the accessibility of
classes, interfaces, methods, and
fields

Use an access modifier to limit their accessibility. The
four access levels are:
• Default: visible to the package. No modifiers are

needed.
• Private: visible to the class only
• Public: visible to the world
• Protected: visible to the package and all subclasses.

If wrongly declared, data confidentiality,
integrity, and availability may be violated.

Q.2. Use a try-with-resources
statement to safely handle closeable
resources.

The try-with-resources statement ensures that each
resource is closed at the end of the statement.

When resources are not closed properly, data
confidentiality, integrity, and availability may
be violated.

Q.3. Avoid using try-catch-finally
block.

Ordinary try-catch-finally block can raise some issues:
such as failing to close a resource because an exception
is thrown as a result of closing another resource, or
masking an important exception when a resource is
closed.

When resources are not closed properly, data
confidentiality, integrity, and availability may
be violated.

Q.4. Use the same type for the
second and third operands in
conditional expressions.

Use different types in a conditional expression may
cause unintended type conversions.

When types are not the same, data integrity
may be violated.

Q.5. Avoid using static field
variables.

Static variables are class variables, not instance variables.
Science any other class in the same scope can access the
static variables, it is very difficult to secure them.

Since static variables can be modified by
other classes in the same scope, data integrity
may be violated.

Q.6. If possible make public static
fields final Otherwise, attacker may change the value. If value changed, data integrity may be

violated.

Q.7. If possible, use immutable
objects. Contents of the mutable object can be changed. If contents changed, data integrity may be

violated.

Q.8. Avoid storing user-given
mutable objects directly.

Contents of the mutable objects can be changed. Clone
the objects before processing them internally.

If contents changed, data integrity may be
violated.

Q.9. Avoid using inner classes.

After compilation, any class in the package can access
the inner class. Meanwhile, private filed of the inner
class will be converted into non-private to permit access
by the inner class.

If other classes in the package can access the
inner class, data confidentiality and integrity
may be violated. If private filed of the inner
class changed, data integrity may be violated.

Q.10. Avoid using the clone()
method to copy untrusted method
parameters

Inappropriate use of the clone() method can allow an
attacker to exploit vulnerabilities by providing arguments
that appear normal but subsequently return unexpected
values. Such objects may consequently bypass validation
and security checks [22].

Data confidentiality and integrity may be
violated.

Q.11. Make secure classes
un-cloneable.

Otherwise, malicious developers can instantiate a class
without running its constructors [2].

This may violate data confidentiality and
integrity.

Q.12. Avoid embedding sensitive
information

Malicious developers can obtain such a sensitive
information This may violate data confidentiality.

Q. 13. Prevent constructors from
calling methods that can be
overridden

Constructors that call override methods give attackers
a reference to the object being constructed before the
object has even been fully initialized

This may violate data integrity

6. Capstone Project Background
Since focusing on software engineering education, we choose a computer science capstone project as the sample
to examine common security vulnerabilities appearing in students’ projects. The application is selected from last
year’s senior computer science capstone course. The goal of this project was to create an application for compu-
terized stock trading. The student team developed their own algorithms to implement their trading strategy with
how they buy or sell stocks. The algorithms are based on the trading strategies including high-frequency trading,

Y.-H. Hu, C. Scott

29

day-trading, and investment. High-frequency trading strategy is where stocks are only held for a fraction of
second or a few seconds. Day trading is a strategy where stocks may be purchased and sold several times in the
same day. Finally investment strategy; where the holding period may be a few days, weeks, or even a holding
period for a long-term capital gain.

The capstone project consists of 5 Java classes: M3_Main, Wallet, Stock, Transactions, and Trade_Decision.
M3_Main class is the main class that interacts with other classes in the product. Wallet class handles all transac-
tions that happen within the wallet whenever the application buys or sells stock based on their own algorithm.
Stock class handles all information regarding the stocks depending on the application buying or selling based on
the algorithm. Transactions class is used for transactions made between the automated buying and selling of
stocks while also allocating enough money within the wallet when the application buys a stock. Trade_Decision
class is used for the trade decision between how stocks are bought and sold within the application. The project
has totally about 2036 lines of code.

7. Vulnerability Assessment for the Capstone Project
Below these 3-columntables (Tables 2-11) provide in depth critiques of this capstone project which includes its
classes, variables, and methods. In these tables, column 1 displays the details of variables or methods in each
class; column 2 explains the meanings of variables or methods in the 1st column; and column 3 indicates the
critical questions that compromise variables or methods in the 1st column.

Table 2. Vulnerability assessment for variables in the M3_Main class.

Variable Description
Critical Questions

Associated With This
Variable

public static String accountPassword = “hello”; Setting static string variable to the word string “hello” Q.1, Q.5, Q.6, Q.12

public static String secQuestion1Answer = “”; Public static String variable setting itself to empty quotes Q.1, Q.5, Q.6

public static String secQuestion2Answer = “”; Public static String variable setting itself to empty quotes Q.1, Q.5, Q.6

public static boolean accountInitialized = false; Public static Boolean variable names “accountInitialized” which is
then set to false Q.1, Q.5, Q.6

public static boolean policyChecked = false; Public static Boolean variable names “policyChecked” which is
then set to false Q.1, Q.5, Q.6

public static Wallet myWallet = new
Wallet(1000000);

Sets static object Wallet for the wallet within the application. Set
value of 1 million. Q.1, Q.5

Timer timer = new timer(); Creating object called timer

Calendar now; Using calendar class for market times of operation

int hour; integer variable named “hour” used for time for market hours of
operation Q.1

int minute; Integer variable named “minute” used for time for market hours of
operation Q.1

int day; Integer variable named “day” used for time for market hours of
operation Q.1

Stock stock; A stock object

public static boolean marketIsOpen = false; Boolean variable that sets “MarketIsOpen” to false Q.1, Q.5, Q.6

public boolean stockIsOwned = false; Boolean variable that sets “stockisOwned” to false Q.1, Q.5

public int x = 0; Public integer variable “x” set to 0 Q.1

public static int rowCount = 0; Public static integer variable “rowCount” to 0 Q.1, Q.5, Q.6

Y.-H. Hu, C. Scott

30

Table 3. Vulnerability assessment for methods in the M3_Main class.

Method Description
Critical Questions

Associated with This
Method

public void start(Stage stage) throws
Exception

Method that requests the PolicyPrompt FMXL which is shown to the user
before the application is started. SetTitle object for the title application
which is presented at the beginning of the application.

Q.1, Q.2, Q.3

public static void makeSectorTable()
Public method to make sector table within database. Pulls this information
from a webpage named YahooFinanaceScript. This information is pulled
and updates in 15 minute intervals.

Q.1, Q.2, Q.3

public static void startPhp()
Public static method that starts the PHP which is a scripting language used
for website development. The connection is opened and then the stock
information is pulled line by line and then printed out.

Q.1, Q.2, Q.3

public static void restartDatabase() This method restarts the database which is pulled from the Yahoo Finance
Script which now has been named Finesse.php. Q.1, Q.2, Q.3

class startTask extends TimerTask
{
 @Override
 public void run() {
 …….
 }
 }

This startTask class extends the TimerTask of the program and it called
every certain amount of minutes to basically check if the market is open or
not and then runs on another thread. A run method determines if the market
is open or close based on the times of 9:30 am - 4:00 pm M-F.

Q.9

public static Stock connectToDatabase
(String query, int t)

This public static method purpose is to connect to the database within the
application.vMethod pulls necessary information: Symbol, Name,
Percent_Change, Price, Price2, Price3, Days_High, and the Days_Low.

Q.1, Q.2, Q.3

public void strategy()

This is the strategy method that runs the trading strategy of the application.
The stock is updated from the sandp500 and if the stock is in portfolio (the
stock that we own) and if the stock is in the watchlist (the stocks we are
watching, not owned) each strategy is performed.

Q.1, Q.2

public static void main(String[] args)
The main method within this application because this application is
deployed by JavaFX. The main serves only as fallback in case the
application cannot be launches through deployment artifacts.

Q.1

public void updateAccount() This method simply updates the account. The method updates watch list
tab, portfolio tab, and also update past tab method Q.1

Table 4. Vulnerability assessment for variables in the wallet class.

Variable Description Critical Questions Associated
with This Variable

double cash Double variable for cash within application Q.1

double startValue Double variable for the started value within the wallet of application Q.1

double annualReturn = 0 Double variable for annual return value which is initialized to 0 Q.1

double AccountValue = 0 Double variable for the account value which is initialized to 0 Q.1

double marketValue = 0 Double variable for market value which is initialized to 0 Q.1

double spMoney Double variable for amount of money allocated to spend per day Q.1

double avMoney Double variable for amount of money available to spend per stock Q.1

8. Observations and Suggestions
In this research, we observe that there are several common security vulnerabilities appearing in the capstone pro-
ject. We have analyzed them and addressed our suggestions below:
• Accessibility of class, method, and variable should be addressed properly to protect data confidentiality, in-

tegrity, and availability.
• Resources must be closed properly after released to protect data confidentiality, integrity and availability.
• Resources must be monitored with special syntax and identifier to protect data confidentiality, integrity and

availability.
• Inner classes should be avoided to protect data confidentiality, integrity and availability.

Y.-H. Hu, C. Scott

31

Table 5. Vulnerability assessment for methods in the wallet class.

Method Description
Critical Questions
Associated with

This Method

public Wallet(double start)

This method starts the value of the wallet while also setting the start value
to the double value “Cash”. The amount of money allocated to spend per
day (spMoney) and the amount of money avaible to spend per stack
(avMoney) is run through a series of calculations.

Q.1

public void setStartDayValue() Public method that sets the start day value of the wallet. Q.1

public double getStartDayValue() Public double method to get the start day value of the wallet. Q.1

public double getCurrentValue() Public double method to get current value of the wallet. The current value is
then returned. Q.1

public String getDailyReturn()
This String method returns the daily return within the wallet which is how
much money you have successfully made in the same day. The daily return
is current value subtracted by the start day value.

Q.1

public double getCash() Public double method to return the amount of cash within the wallet. Q.1

public void setCash(double c) Public void method which sets the amounts of cash. Q.1

public double getStartValue() Public double method that returns the start value within the wallet Q.1

public double getAnnualReturn()

Public double method that will return the annual value which is calculated
by account value divided by start value raised to the (365/1), thus the
number of days in a year divided by the number of days since account
started.

Q.1

public double getAccountValue() Public double method that returns the account value which is calculated by
adding the cash to the market value of the stock. Q.1

public void setMarketValue(double mv) Public void method that sets the market value. This market value is
expecting a double. Q.1

public double getMarketValue() Public double method that returns the market value. Q.1

public double getSP() Public double method to return spending money per day Q.1

public void setSP(double s) Public void method to set spending money per day. Q.1

public double getAV() Public double method that returns the amount of money to spend per
transaction when buying Q.1

public void setAV(double d) Public void method to set the amount of money to spend per buy
transaction, Q.1

• Static variables should be avoided to protect data integrity.
• Sensitive information should not be included in any part of codes and should be encrypted to protect data

confidentiality.
At the end, 123 potential vulnerabilities (51 variables and 72 methods) are identified and classified in the cap-

stone project with total of about 2036 lines of code. Therefore, the vulnerability density of this project can be es-
timated as:

123 6%
2036DV = ≈

This 6% vulnerability density is relatively high while comparing with most commercial applications [19].
However, we have to take into account that this represents students from last year’s computer science capstone
course, who lack in software security awareness and quality knowledge. After the software security and quality
knowledge have been introduced to a new group of students in this year’s senior computer science capstone
course. Students in the new group are capable of identifying and rewriting these 51 variables and 72 methods.
The revised project has eliminated most vulnerabilities listed on the Table 12 and has the vulnerability density
close to 0%. That is 0%DV ≈ .

Y.-H. Hu, C. Scott

32

Table 6. Vulnerability assessment for variables in the stock class.

Variable Description
Critical Questions
Associated with
This Variable

SimpleStringProperty rec; Simple String rec variable that gets the buy time stamp of the stock Q.1

SimpleStringProperty rec2; Simple String rec2 variable that gets the sold time stamp of the stock Q.1

SimpleStringProperty type; Simple String type variable that is used for the type of stock Q.1

SimpleStringProperty name; Simple String name variable that is used for the name of stock Q.1

SimpleStringProperty symbol; Simple String symbol variable that is used for the symbol of the stock Q.1

SimpleStringProperty sector; Simple String sector variable that is used for sector of the stock Q.1

SimpleDoubleProperty percentChange; Simple Double percentChange variable used to find percent change for each
stock Q.1

SimpleDoubleProperty curPrice; Simple Double curPrice variable used for the current price of each stock Q.1

SimpleDoubleProperty prevPrice1; Simple Double prevPrice1 variable used for getting the price of the stock each
time the application refreshes Q.1

SimpleDoubleProperty averagePrice; Simple Double averagePrice variableused for the average price of the stock
throughout the day Q.1

SimpleIntegerProperty count; Simple Double count variable used for counting of all the stock price updates Q.1

SimpleDoubleProperty sumPrice; Simple Double sumPrice used to get the average which is sumPrice/count =
averagePrice Q.1

SimpleDoubleProperty prevPrice2; Simple Double prevPrice2 variable used for getting another price of stock after
refreshing Q.1

SimpleDoubleProperty purchasePrice; Simple Double purchasePrice variable used for the purchase price of the stock Q.1

SimpleDoubleProperty accVal; Simple Double accVal variable used for the account value Q.1

SimpleIntegerProperty quantity; Simple Integer quantity variable used for the quantity of the stocks Q.1

SimpleIntegerProperty quantity2; Simple Integer quanity2 variable used for the quantity of the stocks Q.1

SimpleBooleanProperty owned; Simple Boolean owned variable used for the owned stocks that the application
has bought Q.1

SimpleDoubleProperty totalValue; Simple Double totalValue variable used for total value of the stock Q.1

SimpleDoubleProperty net, daysHigh,
daysLow

Simple Double net, daysHigh, and daysLow variables used for the net of the
stock, also used to get the day’s high and day’s low of the stocks Q.1

SimpleDoubleProperty purchase Value,
sellPrice, profit, total Cost

Simple Double purchaseValue, sellPrice, profit, and totalCost. Variables used
for the purchased price of the stock, the sell price of the stock, the profit of the
stock, and the total cost of each stock

Q.1

9. Conclusions
After the study conducted on this capstone project we can now see and understand the underlying vulnerabilities
that lie within this Java code. It is evident that the variables and methods within each of these classes are feasible
to exploit within the application. It is also evident that the developers of the capstone project, while implement-
ing, they were not aware of the threats they posed on themselves while developing. The very focus of this paper
is to conduct a vulnerability assessment of this Java code to reveal its vulnerabilities. As you can see by using
the guidelines above it is apparent that this application can pose many threats which include the following: inte-
grity, confidentiality and even the availability of the entire application.

For example the use of public variables being created can pose threats of the following just listed. This was
exemplified throughout the application time and time again. Another constant vulnerability that was found
throughout the Java code included using static field variables. Since static variables can be modified by other

Y.-H. Hu, C. Scott

33

Table 7. Vulnerability assessment for methods in the stock class.

Method Description
Critical Questions
Associated with

This Method
public Stock (String sym, String n, double
perCha, double cPrice, double pPrice1, double
pPrice2, double dH, double dL)

Constructor for normal stocks. This method takes in the symbol, the
percent change, current price, price1, price2, day’s low and also
day’s high.

Q.1

public Stock (String sym, String n, double
perCha, double cPrice, int q, double pPrice,
String time)

Constructor for Portfolio transactions. Takes in information about
stocks which includes: the symbol, percent change, current price,
quantity, price, and the time when it was bought.

Q.1

public Stock (String s, String t1, int q, double
buy, double tc, String t2, int noSell, double sell,
double prof, double n)

Constructor for History of all stocks when transactions are made.
Method takes in symbol, quantity, net, purchase price, totalCost,
quantity, sold price, and profit of stock.

Q.1

public SimpleBooleanProperty watchlist
Property() Method within Watch-list to return the stocks owned Q.1

public double getDaysHigh() Double method to return the day’s high of the stock Q.1

public double getDaysLow() Double method to return the day’s low of the stock Q.1

public String getRec() String method to return the time of which the stock was bought. Q.1

public void setRec(String d) Void method to set the sell time of which a stock was sold at. Q.1

public void setRec2(String d) Void method (setRec2) to set the sell time of which a stock was
sold at. Q.1

public String getRec2() String method (getRec2) to return the time of which the stock was
bought at. Q.1

public String getType() String method to return trade type of stock Q.1

public void setTotalValue() Void method that sets the total value of the stock. User quantity return
method multiplied by current price return method. Q.1

public double getTotalValue() Double return method to return the total value of stock Q.1

public int getQuantity() Int return method to return the quantity of each stock Q.1

public SimpleIntegerProperty quantityProperty() Return SimpleIntegerProperty method to return the quantity value Q.1

public void setQuantity(int q) Setter method to set the quantity of the stocks using the Simple
InetegerProperty Q.1

public String getSymbol() Return method to get the symbol of stock Q.1

public SimpleStringProperty symbolProperty() Method using SimpleStringProperty to return the symbol of stock Q.1

public String getName() String method to return the name of the stock Q.1

public SimpleStringProperty nameProperty() Method using SimpleStringProperty to return the name of the stock Q.1

public String getSector() String method to return the sector of the stock Q.1

public SimpleStringProperty sectorProperty() Method using SimpleStringProperty to return the symbol of the stock Q.1

public double getPercentChange() Double method to return the value of the percent change over time
with stock Q.1

public SimpleDoubleProperty percent
ChangeProperty()

Method using SimpleStringProperty to return the percent change of
the stock Q.1

public double getCurPrice() Double method to return the current price Q.1

public SimpleDoubleProperty curPriceProperty() Method using SimpleStringProperty to return the current price of the
stock Q.1

public double getPrevPrice1() Double method to return the previous price of a stock Q.1

public SimpleDoubleProperty prevPrice1() Method using SimpleStringProperty to return the previous price of the
stock Q.1

public double getPrevPrice2() Double method to return the 2nd previous price of a stock Q.1

public SimpleDoubleProperty prevPrice2() Method using SimpleStringProperty to return the 2nd previous price of
a stock Q.1

public void setPurchasePrice() Method to set the purchase price of the stock Q.1

Y.-H. Hu, C. Scott

34

Continued

public double getPurchasePrice() Double method to return the purchase price of the stock Q.1

public SimpleDoubleProperty purchase
PriceProperty()

Method using SimpleDoubleProperty to return the purchase price of
the stock Q.1

public double getSellPrice() Double method to return the sell price of the stock Q.1

public SimpleDoubleProperty purchase
SellProperty()

Method using SimpleDoubleProperty to return the sold price of the
stock Q.1

public SimpleDoubleProperty accountValue() Method using SimpleDoubleProperty to return the account value Q.1

public void setPurchaseValue() Method using the getQuantity and getPurchasePrice methods to set the
purchase value of the stock. Q.1

public void setNet(double n) Method to set the Net value of the stock Q.1

public double getNet() Double method to return the net of the stock Q.1

public double getTotalCost() Double method to return the total cost of a stock Q.1

public double getProfit() Double method to return the profit Q.1

Table 8. Vulnerability assessment for variables in the transactions class.

Variable Description
Critical Questions

Associated with This
Variable

static Stock tStock Static tStock variable used throughout the Transaction class Q.1

Double totalCost Double totalCost variable used for total cost of stocks Q.1

Double acctValue Double acctValue variable used for account value of transactions Q.1

Int rowCount = 0 Int rowCount variable set to 0 Q.1

boolean flag = false; boolean flag variable set to false Q.1

protected double cost = 0; protected double variable named cost set to 0 Q.1

static boolean bought = false; static boolean variable named bought set to false Q.1, Q.5

static boolean held = false; static boolean variable named held set to false Q.1, Q.5

int maxNumshares; integer variable named maxNumshares for the maximum number of share for
each stock Q.1

Table 9. Vulnerability assessment of methods in the transactions class.

Method Description
Critical Questions

Associated with This
Method

public Transaction(Stock s) Transaction constructor which sets s to the variable made tStock Q.1

protected void buy(double c)

This protected method is for purchasing stocks. When stock is bought it is
ran through a number of if statements that allocates and set the available
money to spend per buy transactions. The number of shares is set and if
there is not enough money available in the wallet the user is presented
with an “insufficient funds”.

Q.2

protected void sell(double c, int q, double
purch, String t)

This method is for selling stocks. It retrieves the stock name and calculates
total cost of the stock. The cash is then updated within the wallet based on
transaction.

protected void hold() When the decision is made hold a stock the name of the stock is returned
and the variable held is set to true this holding the stock.

protected void log(String t, String sym,
double p, int qty, double total)

This method records all data within transactions. It records the time, date,
and year and also the name of the stock. This includes: symbol of the
stock, current price, percent change, and the quantity of each stock which
is all added to the portfolio.

Q.2

private static void p(String s) Private method that is used for printing the variable s which is made
within the constructor above in the class

public void updateTable(String query) This method updates table which is connected to the database and is made
to return the necessary data. If statements check connection. Q.1, Q.2, Q.3

Y.-H. Hu, C. Scott

35

Table 10. Vulnerability assessment for variables in the Trade_Decision class.

Variables Description Critical Questions Associated with
This Variable

public static int d = 0; public static integer d variable set to 0 Q.1, Q.5, Q.6

Table 11. Vulnerability assessment for methods in the Trade_Decision class.

Methods Description
Critical Questions

Associated with This
Method

public static int w_Strategy(Stock stock)

This method is run through for stocks within the watch list. Here we use
three different prices that are refreshed constantly which are then ran
through a number of if statements to determine if the stock should be
bought, or left alone.

Q.1

public static int p_Strategy(Stock stock)

This method is run through when stocks are in the portfolio. Again they
have used three different prices that are ran through a number of if
statements; each refreshed 3 different times to determine if the stock
should be sold or held within the portfolio.

Q.1

Table 12. Suggestions for eliminating common software security vulnerabilities.

Critical Question Reasons Causing Vulnerabilities Suggested Solutions

Q.1 Classes are public
The product should make all classes package-private, since they are in the same
package (M3Application) and not served as an API or interface for external
classes.

Q.1 Methods are public
This implementation is not appropriate. Methods in the product should obtain at
least default access modifier privilege. Most of them should be in private access
modifier privilege, since they are used internally.

Q.1 Variables are public Variables should limit the accessibility. In this product, most variable should be
in private access modifier privilege.

Q.2 Resource is not proper closed This product should use try-with-resources statement to ensure each resource is
closed at the end of the statement.

Q.2 More than one resource operations in
the try-catch-finally block Since several exceptions may be thrown, some exceptions will be masked.

Q.5 Static variables Since other classes in the same scope may be able to access and modify a static
variable, this variable should better be claimed as final static.

Q.9 Inner class Since there are some security issues related to inner class. It is better to move
inner classes to outer classes.

Q.12 Sensitive information Use Java security APIs to handle sensitive information.

classes in the same scope, data integrity can be violated throughout the application. This vulnerability was ex-
emplified in almost every class throughout the application, which can have serious impact to the core of the
program. Constantly understanding and being aware of the threats that may occur throughout developing is very
important in all applications and languages no matter what you’re programming in.

Having awareness throughout implementation of an application by using the guidelines and taking the time to
cautiously implement will have great benefits, while also providing a more secure application. Again, the vul-
nerability assessment results confirm that the capstone project can be exploited to be able to carry out intellec-
tual and also component penetrations. And this result also confirms the importance of our approach for adopting
security guidelines into undergraduate software engineering education.

Acknowledgements
Dr. Yen-Hung Hu is an Associate Professor in the Department of Computer Science at Norfolk State University.
Prior to joining the NSU, he was the Director of the Information Assurance Center at Hampton University and
PI of the NSF CyberCorps: SFS HU GETS-IA program. Charles Scott is a graduate student in the Department of
Computer Science at Hampton University and a scholarship recipient of the NSF CyberCrops: SFS: HU
GETS-IA program.

Y.-H. Hu, C. Scott

36

References
[1] Raman, J. (2006) Regulating Secure Software Development. University of Lapland Printing Centre, Rovaniemi.
[2] Sinn, R. (2008) Software Security Technologies: A Programmatic Approach. Thomson Course Technology, Boston.
[3] Janssen, C. (2010) Data Security. Techopedia. http://www.techopedia.com/definition/26464/data-security
[4] Janssen, C. “Information Security (IS)”. Techopedia.

http://www.techopedia.com/definition/10282/information-security-is
[5] “Digital Rights Management”. The Free Dictionary. http://www.thefreedictionary.com/Content+security
[6] Grembi, J.C. (2008) Secure Software Development: A Security Programmer’s Guide. Thomson Course Technology,

Boston.
[7] Oracle, “Java SE Security Documentation”. http://www.oracle.com/technetwork/java/index-139231.html
[8] Long, F., Mohindra, D., Seacord, R.C., Sutherland, D.F. and Svoboda, D. (2011) The CERT Oracle Secure Coding

Standard for Java, Addison-Wesley Professional.
[9] What Are the Software Development Life Cycle Phases?

http://istqbexamcertification.com/what-are-the-software-development-life-cycle-sdlc-phases/
[10] Howard, M. and Lipner, S. (2004) The Trustworthy Computing Security Development Lifecycle. IEEE 2004 Annual

Computer Security Applications Conference, Tucson.
[11] Davis, N. (2006) Secure Software Development Life Cycle Process. Carnegie Mellon University, Pittsburgh.

https://buildsecurityin.us-cert.gov/articles/knowledge/sdlc-process/secure-software-development-life-cycle-processes.
[12] Maconachy, W.V., Schou, C.D., Ragsda, D. and Welch, D. (2001) A Model for Information Assurance: Integrated

Approach. Proceedings of the 2001 IEEE Workshop on Information Assurance and Security, United States Military
Academy, West Point, New York, 5-6 June 2001.

[13] Allen, J. (2010) Measuring Software Security. Carnegie Mellon University, Pittsburgh.
[14] Ruiz-Vanoye, J.A., Díaz-Parra, O., Arias, M.D.I.Á.B. and Saenz, A.C. (2013) A Model for Evolutionary Software De-

velopment with Security (MESS) Applied to an Electrical Research Institute. Mexican Journal of Scientific Research, 2,
2-22.

[15] Whitman, M.E. and Mattord, H.J. (2012) Principle of Information Security. 4th Edition, Thomson Course Technology,
Boston.

[16] “Review: McCumber Cube Methodology,” Protect Your Bits, 5 October 2009.
http://protectyourbits.wordpress.com/2009/10/05/review-mccumber-cube-methodology/

[17] Jone, C. (2012) Software Quality Metrics: Three Harmful Metrics and Two Helpful Metrics.
[18] Lab, K. (2013) Global Corporate IT Security Risks: 2013.
[19] Alhazmi, O.H., Malyiya, Y.K. and Ray, I. (2006) Measuring, Analyzing and Predicting Security Vulnerabilities in

Software Systems. Computer & Security, 26, 219-228.
[20] Mohagheghi, P., Conradi, R., Killi, O.M. and Schwarz, H. (2006) An Empirical Study of Software Reuse vs. De-

fect-Density and Stability. Proceedings of the 26th International Conference on Software Engineering, Edinburgh,
23-28 May 2006, 282-292.

[21] CWE, CWE-844: Weaknesses Addressed by the CERT Java Secure Coding Standard. Common Weakness Enumera-
tion. https://cwe.mitre.org/data/definitions/844.html

[22] Oracle, Secure Coding Guidelines for the Java Programming Language, Version 4.0.
http://www.oracle.com/technetwork/java/seccodeguide-139067.html

http://www.techopedia.com/definition/26464/data-security
http://www.techopedia.com/definition/10282/information-security-is
http://www.thefreedictionary.com/Content+security
http://www.oracle.com/technetwork/java/index-139231.html
http://istqbexamcertification.com/what-are-the-software-development-life-cycle-sdlc-phases/
https://buildsecurityin.us-cert.gov/articles/knowledge/sdlc-process/secure-software-development-life-cycle-processes
http://protectyourbits.wordpress.com/2009/10/05/review-mccumber-cube-methodology/
https://cwe.mitre.org/data/definitions/844.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html

http://www.scirp.org/
http://www.scirp.org/
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
mailto:submit@scirp.org

	A Case Study of Adopting Security Guidelines in Undergraduate Software Engineering Education
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Motivation
	4. Software Security Metrics
	5. Adopting Security Guidelines to Identify Software Vulnerabilities
	6. Capstone Project Background
	7. Vulnerability Assessment for the Capstone Project
	8. Observations and Suggestions
	9. Conclusions
	Acknowledgements
	References

