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Abstract 
 
In this survey paper, we firstly review some existence aspects of Lichnerowicz equation and Ginz-
burg-Landau equations. We then discuss the uniform bounds for both equations in Rn. In the last part of this 
report, we consider the Liouville type theorems for Lichnerowicz equation and Ginzburg-Landau equations 
in Rn via two approaches from the use of maximum principle and the monotonicity formula. 
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1. Introduction 
 
This article is based on the lecture given at March 3rd, 
2011 in the international conference “Recent Advances 
in Nonlinear Partial Differential Equations: Part I” held 
at the Chinese University of Hong Kong. 

The initial-value problem of general relativity consists 
in the resolution of a coupled system of three linear equ-
ations and a quasilinear equation which determines the 
conformity factor, on an initial Riemannian manifold 
 ,M g . In the case where there are sources, the qua-
si-linear equation can be written as 

7 3 58 = 0gu Ru Vu Qu u          (1.1) 

where > 0u  is the unknown on the Riemannian mani-
fold  ,M g , R  is the scalar curvature, V , Q ,   
are functions derived from the Ricci curvature of 
 ,M g . (1.1) is called the Lichnerowicz equation on 
 ,M g . Let  2 = 2 2n n


  and S  be the best So-

bolev constant. 
One interesting result derived from mountain pass 

lemma is below. 
Theorem 1.1 Assume that  ,nM g  is compact, 

3n  . Consider the following Lichnerowicz equation 

2 1 2 1=u u Bu Au
       

with > 0A  and > 0max MB . Assume that there is a 
positive function > 0  and a constant   > 0C n  such 

that 

 
 

1

2 2 2
1

, > 0
max

nH M M
M

C n
A B

S B
  

  
   

Then there is a positive solution to Lichnerowicz equa-
tion.  

Hebey-Pacard-Pollack [11] have applied the mountain 
pass lemma to the perturbation functionals to get positive 
approximation solutions and have proved the conver-
gence of a subsequence to a positive solution. 

The Ginzburg-Landau (GL) model is proposed in 50’s 
in the context of super-conductivity theory and its energy 
density is 

   22 21 1
= 1 .

2 4
e u u u    

Here : n ku R R . The stationary E-L equation for GL 
model is 

 2
= 1 .u u u   

Yanyan Li and Z. C. Han (1995) have also studied 
p-laplacian GL models. Other models with term  

 22
1

m

u , 1m  , is also of interesting. 

The Lichnerowicz equation and the Ginzburg-Landau 
equations are important models in mathematical physics. 
The existence of solutions to both can be obtained via 
variational methods, the monotone method (also called 
sub-super solution method or barrier method), and per-
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turbation methods. 
There are huge literatures about G-L models [2,5, 

10,14,15,20], but there is not much works about the 
Lichnerowicz equation [4,12,18]. For the existence re-
sults of the Lichnerowicz equation, one may see the 
works [7], [8], and [11]. For the existence results of the 
Ginzburg-Landau equation, one may find more refer-
ences from the work [22]. 

Our main topic for both equations is about the Liou-
ville type results, which are closely related to compact-
ness theorems of the solution spaces. The heat flow me-
thod to both equations will be an interesting topic for 
studying. 
 
2. Classical Liouville Type Theorems and  

Keller-Osserman Theory 
 
The famous Liouville theory says that any non-negative 
harmonic function is constant. One can prove this by 
Harnack inequality or differential gradient Harnack es-
timate. 

People may extend this to non-negative p-harmonic 
function or to non-negative solution to the elliptic equa-
tion 

,

= = 0, in .n
ij ij

i j

Lu a u R  

We now recall the famous Keller-Osserman theory 
obtained around 1957. Given a domain  . Consider the 
differential inequality 

  , in nu f u R     

where  f t  is a positive, continuous, and monotone 
increasing function for 0t t  satisfying the Osgood 
condition 

   1 2

0 0
d d < .

t
f s s t


   

Then any twice continuously differentiable function 
u  can not satisfy > 0u  on the whole space and 

 u f u   outside of some ball. 
As an application of above theory, J. B. Keller and R. 

Osserman consider the non-existence result for the 
Gaussian curvature equation on the plane 

  2= , in .uu K x e R  

Professor. Ni, Lin, W. Ding, W. Chen and C. Li, etc., 
have obtained a lot interesting existence results to this 
problem. More results and references may be found in 
my work [17]. 

It is also interesting to study the non-existence of non-
trivial non-negative solutions or energy solutions to 

  1
= , in .

p nu K x u u R
  

where 2n   and > 1p . 
Another application of the Keller and Osserman theory 

(H. Brezis, 1984) we have that for  20 nv C R   sat-
isfying 

, > 1, inp nv v p R   

we have = 0v . 
In fact, H. Brezis getting upper bound of solutions by 

using the following boundary blow-up super-solution on 
the ball  RB p , 

 
 22

=R

CR
u x

R x p




 

 

with  = 1 2p   and a suitable constant C  inde-
pendent of > 0R . Then for any fixed point np R , 
sending R  , we get = 0v . 

If the Laplacian is replaced by p-Laplacian, Du and 
Guo (2002) can extend the Keller and Osserman theorem 
to this case. For more, one may see the works of A. Fa-
rina, A. Ratto, M. Rigoli.  

Parallel result to Keller and Osserman can be done for 
non-negative ancient solutions to the parabolic inequal-
ity: 

   , > 1, in ,0 .p n
t v v p R      

See also the interesting work of J. Serrin [24] for more 
Liouville type theorems about elliptic and parabolic equ-
ations. 

We have the following Liouville type Theorem.  
Theorem 2.1 (L. Ma, 2010 [16]) Let > 0u  in (1.1) 

with = nM R , = 0Q , = 1V , = 1  . Then = 1u . 
For positive solutions to the general equation 

2= ,q qu u u    

on nR  with > 1q , we have the same result. 
However, H. Brezis [3] proves that for  0,1q , the 

same result is not true, but we always have 1u  . 
Similar result is also true for M  being a complete 

Riemannian manifold  ,M g  with its Ricci curvature 
bounded from blow. 

Here is the argument of Theorem 2.1. Let  f s  
2= q qu u   for > 0q . For any fixed nx R  and 

> 0 , consider the new function 

    2
= .u y u y y x    

Note that    u y u y    as y  . Then the 
minimum of it can be achieved at some point z . Then, 

     = ,u z u x u x   

which implies that    u z u x . 
Using the monotonicity of f , i .e. 0f   , we have 

     f u z f u x  
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At this point z , we have   2 2 0D u z   , 

      0 = 2 = 2 .u z u z n f u z n        

Then we have 

        0 2 2f u z n f u x n f u x       

as 0  . 
Recall that 

  = q pf u u u  

or some > 0q  and > 0p . Then we have 1u  . 
Assume now that > 1q . = 1 0v u   . Then 

 = 1 .qv f v v    

Using the Keller-Osserman theory we then conclude that 

= 0, . . = 1.v i e u  

This completes the argument of Theorem 2.1. 
We now give some remark. 
Set   3=f u u u  for 0u  , which is the special 

case of Ginzurg-Landau equation. We then conclude 
from the argument above that = 1u . 

In general, we know the below. 
Theorem 2.2 (Du, Ma [9], 2001) Assume that 

 2 ,nu C R R  such that 
3=u u u   

on nR . Then we have 1u  . 
In the papers of Du and Ma (2001-2003), more general 

logistic equations have been studied. It is there that we 
are interested in a problem related to Di Giorgi conjec-
ture, which has been completely solved by Del Pino, J. 
Wei, etc., Savin, C. Gui, Ambrosio and Cabre, etc. 

Interestingly, Du and Guo can obtaine the below. 
Theorem 2.3 (Du, Guo, 2002) Assume that 

 2 ,nu C R R  such that 
3= ,1 < ,pu u u p   

on nR . Then we have 1u  . 
There is a similar De Giorgi conjecture related to the 

equation above (see the work of L. Caffarelli, etc., A 
Gradient Bound for Entire Solutions of Quasi-Linear 
Equations and Its Consequences, Communications on 
Pure and Applied Mathematics, Volume 47, Issue 11, 
November 1994, Pages: 1457-1473 ). 

It would be interesting to study the following evolu-
tion equation 

3 = 0, in (0, )t pu u u u T      

with suitable initial and boundary conditions. 
The results above can be extended to nonlinear heat 

equations. 
Set   = q pf u u u  for some > 0q  and > 0p . 

Consider ancient solutions to the following parabolic 
equation 

     = , > 0, in ,0 .n
t u f u u R      (2.1) 

For any fixed    , ,0nx R     and > 0 , con-
sider the new function 

     
   

2 2, = ,

, ,n

u y t u y y x t

y t R

   



   

  
 

Note that  ,u y t    as y t   . Then the 
minimum of it can be achieved at some point  ,z t . 

Then at this point   0t u    , which implies that 

      2 20 , 2 = , 2 ,t u z t n f u z t n            

which is less than 

     2, 2 ,f u x n f u x       

as 0  . Hence 1u   (and one may also show that 
= 1u ). 
Theorem 2.4 Let > 0u  be an ancient solution to 

(2.1). Then 1u  . 
 
3. Results for Ginzburg-Landau Equations 
 
Our uniform bound result (due to H. Brezis) is 

Theorem 3.1 Any smooth solution to GL model is 
bounded in the sense that   1u x  .  

H. Brezis uses the Kato inequality to prove Theorem 
3.1. We shall report here his argument. My argument is 
different but it is also based on the maximum principle. 

Before I give the proof, let’s recall the famous Kato 
inequality. Assume that 1

locu L  and 1
locu L  . Firstly 

we may assume that u  is smooth. Note that for > 0 , 
we have 

2 2

2 23
= .

( )

u
u u u

u u


 

   
 

 

The latter is bigger than 
2

.
u

u
u 




 

Hence we have for any 2
00 C   we have 

2

2
.

u
u u

u

 


   


   

Sending 0  , we then get 

 sign ,u u u      

i.e., 

 sign .u u u    

We have the parabolic version of the Kato inequality. 
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Consider  = ,u u x t  with in addition 1
t locu L . Using 

2

2
= ,t

t

uu
u

u



 


 

we have 

   2

2
.t t

u
u u u

u




      


 

Then, letting 0  , we have 

    | | sign .t tu u u u      

With the understanding above, we have that for any 
non-negative ancient solution to 

 , > 1, in ,0p n
tv v v p R      

is trivial. 
The argument of this fact is almost the same as Bre-

zis’s argument (1984). 
Therefore, we have the following extension of H. Bre-

zis’ theorem. 
Theorem 3.2 Any ancient solution : ,nu R    
0 kR  to 

 2
= 1tu u u u    

must have 1u  . 
Going back to the parabolic version of Lichnerowicz 

equation on manifold with non-negative Ricci curvature, 
we have the following result. 

Proposition 3.1 Any positive ancient solution to 

= q p
tu u u u    

with > 1q  and > 0p  must be = 1u .  
We now give the proof of Theorem 3.1. 
Brezis’s argument: Let  2

= 1W u


 . Then we 
have 

 2 2
sign 1 .W u u     

Note that 

 2 2 2 2
= 2 2 2 1 .u u u u u u       

Then we have 

     2 2 2 22 1 sign 1 2 1 2 .W u u u W W W        

Using the Keller-Osserman theory we then have 
2

= 0, . . 1.W i e u   

In my proof of this bound, I have used the original 
barrier functions used by Keller-Osserman. 

It is interesting to know if one can extend the result 
above to p-Laplacian G-L model. 

In the following, we present the monotnonicity for-
mula method to the Liouville type theorems [1,10,19]. 

It is our intention here to generalize the Liouville type 
results to a large class of solutions of a more general 
non-linear equations/systems 

   2= 0, in , , ,n n ku W u R u C R R     (3.1) 

where W   is the gradient of the smooth function 
 W u  on kR  and   0W u  . 
We shall use an idea from Professor Hesheng Hu 

(1980) who introduced it for harmonic maps. Please see 
the book of Y. L. Xin [25] for results of harmonic maps. 

It is also interesting to know if one can extend this 
kind of result to p-laplacian case. 

Theorem 3.3 Assume that   0W u   is a non-trivial 
smooth function. Let : n ku R R , 2n  , be a smooth 
solution to the Ginzburg-Landau system (3.1). Assume 
that there are a positive constant 0 > 0R  and a positive 
function  r  on  0 ,R   such that 

    
0

2
2 < .lim

B BR R R
r u W u


     

and 

 
0

d = .
R

r
r

r

 
  

Then u  is a constant.  
For any smooth mapping from the Riemannian mani-

fold  ,M g  to kR , we define the Stress-Energy tensor 
(see the paper of Baird-Eells) by 

21
= d d ,

2uS u g u u    

which is 

1
=

2ij j j ik i kS u u g u u    

in local frames  je  on M . By direct computation we 
know that 

 div = , .u gS u du   

A consequence of this formula is that if u  is harmonic, 
then  div 0uS  . 

Let X  be a smooth vector field on M . Define the 
tensor X  by 

   , = , .i j e ji
X e e g X e   

Then we have 

    
 

21
div = div ,

2

, ,

j j

u

u X du X u e

du X u S X



   
 

Take any compact domain D M  with smooth 
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boundary D . Choose the local frame  je  such that 
=ne   be the unit outward normal to the boundary. 

Then we have 

 

 

21
, d ,

2

= div , .

D

u uD

u X u X u

S X S X




 

 




    (3.2) 

Below we let = nM R . 
To explain the main idea of the proof, we start with 

the simple case when   = 0W u  and   = 1r . That is, 
= 0u  and u  has finite energy. We take in (3.2) 

 = 0RD B , = rX r . 
Note that =ij ijX  . Then we have 

22
, = = = ,

2u ij ij u

n
S X S X trS u


   

, =X R  and   2
d , = ru X u R u  on  0RB . 

Hence 

 
2

0

2
, =

2uBR

n
S X u


        (3.3) 

and by (3.2), we have 

2 2 21 2
= .

2 2rB BR R

n
R u u u




     

Then we have the following Liouville theorem for 
harmonic functions. 

Theorem 3.4 Let : nu R R  be a harmonic function 
with slowly energy divergence, i.e., there are a positive 
constant 0 > 0R  and a positive function  r  on 
 0 ,R   such that 

  2

0

< .lim
B BR R R

r u


    

and 

 
0

d = .
R

r
r

r

 
  

Then u  is a constant.  
Here is the idea of proof: 
Assume that u  is not a constant. Then there are some 

positive constants > 0C  and 0 > 0R  such that 

 
0

2

0

2
2 > 0.

2BR

n
u C


   

By this we know that 
2

BR
R u C


              (3.4) 

for any 0R R . Hence we have 

0 00

2 2 d
,

R R

B B R B RR R R

r
u u C

r 
         

as R  , which gives a contradiction. 
In fact, the proof of Theorem 3.4 goes below. Assume 

u  is not a constant. By (3.4) we know that 

   

 

2 2

00

0
d ,

R

B B R BR R r

R

R

r u r u

r
C r

r

 
    


 

  


 

as R  , which gives a contradiction. This completes 
the proof of Theorem 3.4. 

We now turn to the proof of Theorem 3.3. Assume 
that  W u  is non-trivial. In this case 

   div = , = ,uS u du W u du    

and 

     div = , = .u X XS X W u u W u    

Again we take  = 0RD B . Then by (3.2) we have 

 

  

21
, ,

2

= , .

D

X uD

u X du X u

W u S X




 

  




      (3.5) 

Simplifying this identity we can derive the following 

 21
.

2BR
R u W u C



       

Then using the argument above we obtain Theorem 3.3. 
We remark that the results above can be extended to 

complete Riemannian manifolds with bounded Ricci cur- 
vature. 

We remark that for a large class of elliptic equations/ 
systems (also for parabolic equation/system), the Liou-
ville type theorems are equivalent to a local uniform 
bound of solutions. For this direction, one may see the 
recent works of P. Polacik, P. Souplet, P. Quittner, H. 
Zou, etc. However, it is open for Lichnerowicz equation 
on compact Riemannian manifolds (see also in [13]). 

We also make a remark below. In the study of elliptic 
systems, one may use the Pohozaev type identity (which 
is a sister of monotonicity formula) and the interpolation 
inequalities to derive a contraction mapping property 
about pL  norm of the solution. From the contraction 
mapping property one then get the solution trivial (and 
the Liouville type theorem). One may see the works of 
Chen-Li [6], Souplet, etc. [21,23], for this kind of results 
for the Lane-Emden conjecture. 

We would like to thank Professor H. Brezis, who (see 
also [3]) has informed me that in the statements of 
Theorems 1 and 2 in [16], the power > 1p  should be 

> 2p . Actually, we have used > 2p  in the proof of 
Theorem 1.1 in [16]. 
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