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Abstract

The strong Markov process had been obtained by Ray-Knight compacting; its orbit natures are
discussed; the significance probability of kolmogorov forward and backward equations are ex-
plained.
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1. Introduction

General Markov chain only has locally strong Markov property, which is the main obstruction to solve the pro-
blem of Markov chain constructing [1] [2]. The papers construct a strong Markov chain corresponding to its
transition function using Ray-Knight compact method [3] [4], which is named regular chain. The papers give an
orbit construction of birth and death process [5] [6]. The papers solve the construction problem of two-sided
birth and death process [3]-[11]. The papers prove that the appended points in the compacting and the points on
the Martin entrance boundary are monogamy, under the condition of finite entrance boundary [12]-[14]. This
paper makes a strong Markov process by Ray-Knight compacting, discusses its orbit nature and explains the
significance probability of Kolmogorov forward and backward equations.

2. The Orbit Natures of Regular Chain
Assume P(t)=(p; (t )) . 1s @honest transition function on E ={1,2,--, (q”) _ s its density func-

tion, R;(4) isits resolvent, E is the Ray-Knight compacting of E, ( ) and P >0 is the Ray re-

solvent and the semi-group correspondence, denote D = {x|x €E,P, (x,)=6,( )} as non-ramification point set,

ER:{X|XeE,U1(x,E):1}, E*=E,ND, then E is Borel algebras on E", X:(Q,F,Ft,xt,&t,Px) is the
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regular chain of correspondence to P(t).Denote T, =inf{s|s>0, X, = X,} and T, =inf{s|s>0, X, = X,}
respectively as escape time and return time, by Blumenthal O - 1 law, for arbitrary x < E*, P* {Tﬂ = 0} =0 orl,

p* {Tre = O} orl,if P* {Tﬂ :oo} =1, x is called absorption state, if P* gTﬂ >0¢=1, x iscalled sojourn state,
if P*{T,=0}=1, x iscalled regular state, if P*{T, =0} =P {TfI = } =1, x iscalled temporary state.
Theorem 1 Let ieE, then
(1) 1 isaregular state,
(2)on P', the distribution of escape time T, is the exponential distribution of g,
(3)on P', X;, and T is mutual independent.

%
_ q;

Proof (1) Assume i is not a regular state, then P' {Tre >0} =1. for arbitrary t>0, it is easy to check
{X, =i} (T, <t},andwhen t—0, {T, <t} —>{T, =0},thus

re —

(4)if 0<q; <o, forarbitrary jeE, j=i, Pi{XTf. = j}

1=lim p; (t) =limP'{X, =i} <limP'{T, <t} =0,

this is a contradictory proposition.
(2) The proof is same as Theorem 5 in [15]. _
() If g =0 or «, then P' {Tﬂ =ow{=1 or P' {TfI :0} =1, the conclusion is true, if 0<g; <o, for ar-
bitrary Borel subset Ac E* and t,s>0,
P, >t+s, Xy, € A =P {T >t T 06, >5, Xy, 06 €Al
_E {pxt [T >s %, < ALT, >t} =P T, >t} P {T, > 5, X;, <Al
Let s—0,wehave P'{T, >t, X, eA}=P'{T, >t|P'{X; Al

then,on P', P', X; and T ismutual independent.
(4) If 0<q, <o, for arbitrary j#i,4>0, According to the strong Markov properties of X and (3), we
can obtain that

Ry (4)=["e"p, (t)dt=E' [I:e“‘l{j} (Xt)dt] =E' Djﬂe“‘l{j} (Xt)dt}
—ee e, () oa, |- e em e, (x|
=€ e e P X, = Jat =€ [T e R (Xg, )t
-6 0 (0 )] [ JE [ (0 )
Give arbitrary x e E*, x # j , and continuous function f(-) on E with f(x)=0, f(j)=1,
0= f(x)=limAU* f (x) 2 lim 2U* (x,{}),
but lim AU (j.{j})= lim AR; (2) =1, in addition,

g; = lim /IzRij (’1) = !iLTJCZEi [eiﬂﬂ }imlEi [U ’ (XT" { J})J

A—w
-t [imu (31 ]=aP [, = 1]
thus, Pi{XTfI = J}z(;l

Remark 1 (3), (4) in the Theorem 1 are equivalence with the Theorem 6 in [15], but it require q; <o, do
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notincloude q; =
Remark 2 According to (2) in Theorem 1, i€ E is a temporary state, if and only if i is a sojourn state of

the regular chain X —(Q F, Ft,Xt,Ht,PX).

Definition 1 Let S;( {S|X = i} is the constant set of i, the interval in S, () is called i-interval
of X.

Theorem 2 If g, <, then for arbitrary xe E", we can get a stopping time squence a b, a,,b,, -+, with
a, <b.,when {a <o}, wehave a < bk ,when {b, < oo} , we have b, <a,,.And for arbitrary k,

[ak (w)), P* as..

For arbitrary s<t, denote & (s,t) as the number of [ak,bk) belong to [s, t], we have
E{&(st)}<q (t-s).
Proof Let
a, =inf{ulu>0, X, =i}, b =inf{uju>a, X, =i},
a, =inf{uluxh, X, =i}, b, =inf{uuza, X, =i}, k=12,

where a,, b,k =12,--- are the stoping time of {F} . for arbitrary k,if a <oo,since X is right continu-
ity, X ’ =i,and

a
P*[a, <w,b, >a,]=P*[a <»,T 00 >0]
=EX[P*[Ty 00 >0[Fa, |3, <=]
= EX[Pi [Ty >0].a, <oo]: P*[a, <]

then we have almost sure a, <b, on {a, <oo}.
Since X is strong Markov chain, and for arbitrary k,

P*[b, <%,3£>0,X =i,in[b., b +¢)]
*[b <o, X, =i,Tyo0b, >0]

P'[Ty >0]ib, <o, X,, =i]
—I,bk<oo:|

*[P*[Tq 0B, >0|Fb, |;b, <0, X,, =i
then we have almost sure X, =i on {b, <oo}.
For arbitrary 0<s<t, obviously & (s,t)=¢ (0,t—s)o6,, by Theorem 3.1 in [15]

E*{& (s,t)} <E*{&(0,t—s)08,} = kEZEPX {X, =K}E*{& (0,t=s)} < q,-(t—s).

According to Fatou lemma, for arbitrary t>0, E” {§ (0 t)} <q; -t, then almost sure there are only finite
[a..b,),k =12, inafinite interval, such that lim,_,, a, =0, this means S, ( [ak )

Theorem 3 If g, =0, then

(1) Almost sure, S, (a)) do not contain any interval,

(2) Almost sure, S, (w) is adense set in itself.

Proof (1) Obviously, S;(w) is a optional set, denote A (@)= sup{5|s <t,s¢S (a))} 1>0,0eQ. (where
we assume sup@=0), then {A} is a monotone increasing left continuous process, and adapt in {F},
denote B, =lim_ A, thus {B,} isa optional right continuous process. Let
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U :{(a),t)|Els>O,3(t—5,t+g)gSi(a))},a)eQ.,

It is easy to check that U = {(a)t)| B, (@) <t} ,thus U isaoptional setadaptin {F}.

Assume D, is debut time, If P” {D <oo} >0, by Section Theorem, exists a stopping time T in {F},
such that P*{T <o} >0, and (a),T (a))j €U on {T <o}, by (2) in the theorem 1,

PX[T <] =P*[T <o, X; =i,36>0,3 X =i on(T-£,T +¢)]
<P*[T <o, X; =i, Tyo6 >0]=E*[P'[Ty >0;T <0 |=0

this is a contradictory proposition, thus P* {DlJ < oo} =0 and almostsure S, () do not contain any interval.
(2) The proof is similar to (1).

3. The Significance Probability of Kolmogorov Equations
Theorem 4 For arbitrary ieE, jeE and t>0

pi'j (t) =-q; pij (t)+kz;éiqik pkj (t) ' (1)

if and only if P'{X; eE}=1.
Proof For arbitrary 1>0,

e [q Py (1) + Xk Py (t)} =GR, (1) + 2Ry ()

k#i k#i
[T pj (t)dt = [ e dpj (t) = =5, + A[ b, (t)dt ==5; + AR, (2)
then (1) and the following equation is equivalence.
(A+0)Ry(2)- Zq,k Ri(4)=6;, 2>0,jeE )
According to Theorem 1, we have
_E U:e’l‘l{j} (xt)dt]
=E UOTﬂe'Mé’ijdt}+ E' DT el }(xt)dt}
fl
[ o T } [ ATy [J‘ e"‘l u (Xl)dt].gTﬂ }
|[ ’/ITfI:| 5 +Ei[ MTﬂU (xTﬂl{j}):|

el o aselsm o,
S+ 2, U Ry
5 quk ( ):@
i"‘q, ﬁ,+q, k#j 0; J l+qi

and the necessary and sufficient condition of equality is P’ X, €Ef=1.
For arbitrary ieE,q, <o, let [ak b ) is the first k i-interval of S, (@),

S, (w)= {t|t >0, for arbitrary £ > 0,(t —&,t) have infinite jumps}

Corollary 1 The following conditions are equivalence [16] [17].
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(1) The backward equation of Kolmogorov is true,
(2) For arbitrary ieE,P' {XTfI € E} =1,
(3) Density matrix Q is conservative,

(4) Almost sure, forall icE and [aﬁ”,b&i)), we have X , €E.
bk
Theorem 5 For arbitrary i, je E

pi () ==y (1)a; + 2P (1), V=0 ©)

k= j

if and only if for all j -interval a,“),b,“)) almostsure a! ¢S .
Proof (1) Asumme t <t,,keE,k# j,neN,
u ={3 Lt <alV <t, <b, alV ¢s], Xal(j)— = k}, Sm :tl+%(t2 -t,),

n-1
Urﬂ:{ =k, X, _Jon[s Lh t}},mzo,l,z,m,n—l, u"=_Ju,.
sm n m=0

Obviously UJ,U;,---,U"™" are not intersection. It is easy to check if there are infinite n to make weU",
then weU ,andif weU,thenexisting N,when n>N,wehave weU",thusthat limU"=U ,and
n—o

P'{U}=limP'{U }—IlmZP {U”}_IlmZp,k( )pkj(tzgtlje [12 ) Ip|k )gge " ds.

n—o0 n—oo

(2) For arbitrary t, <t,, by (1),
p; (t,)=P' [3 lLa) <t, < b,(”]
=P [EI lLa <t <t, <b,(j)]+ P! [Eil,t.l <a) <t, <b,(jq

v

R

(tl)e_qi(tz_tl) +p [3 Lt < al(J') <t, < bl(i),al(j) ¢ S;} 4)

. (ti)e’qi(tz"l) +Y P {EI Lt <a <t, <b? a) ¢5-, X W = k}

k#j 8

:p( echtz t1+2.[ p.k qkjeq. 9ds

k= j
and the necessary and sufficient condition of equality is P’ {VI,a,(j) & S;} =
Thus we get the equation

1.
Pij (tz)—pij(ti)e“‘i(‘rtl) ijp.k )ae " ds

L- L-4

let t, goto t inEquation (5), we can obtain Equation (3).
Corollary 2 The Kolmogorov forward equations are true if and only if for all ieE and i-interval
aﬁ),b( , almost sure ak) S, .
Remark 3 Equation(3) is equivalent to

Ry (2)-(2+4a;)- TR (4)4 =, ¥ 2>0. (6)

, ®)

Remark 4 If P(t) contains some transient state, then Equation (1) is true if and only if

P [vr K ek, (s}, o5, Tal, X, :k]:l

@)
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Remark 5 Under the condition of P’ {VI, X € E} =1, Equation (1) is not probably true. for the example
al -

in Remark 1, the Ray-Knight compaction of E under the resolvent R; (2) is E, thus, the corresponding

regular chain meets the equation P [v I, X ) € E] =1, but according to Corollary 2, Doob process does not

a|i
satisfy Kolmogorov forward equation, then R; (1) also does not satisfy forward equation.
If P(t)= ( P; (t)) otz 0 is an non-honest transition function with total stability, then we can construct a
i,je

honest transition function 5(t):(§ij (t)) ,t=0 on E, =EU{A}, such that

pu (01 Pa(0)=0,p, =1 3 py (0 1<, o
where the density matrix of P(t) is Q=(g; (t))i,jeEA’ such that
0,=0 0y =0, g, =0, Vi, jeE 8)
the resolvent of P(t) is R;(4),then
Ru(2)=7, Ry(2)=0, Ry(1) =R, (2). vi.j < ©

Assume X = (Q, F,F.X,,6,P*) isaregular chain corresponding to P(t).For ,(t)=0, by Theorem 1,
A is a absorption state, thisis p* {X, =A,Vt >0} =1.
Set &=inf{s|X,=A},X* ={X |t<&}, obviously X* is a killing Markov process, for arbitrary i, j € E,

2>0,and R;(4) =R_ij(/1)=‘|'e"‘Pi {X, = j}dt=[e™P'{X, = jt<&}dt, we known the transition function
0 0

of X is P(t). L
For arbitrary i, j€E, since p, =0,p;(t)=p;(t), then for arbitrary t>0 the following equations are
Equivalence.
P (t) =P (t)qj +k Z:k Pik (t)ij’
eEp k=]
o (t) =P (t)qj + Z Pik (t)%‘-

keE k#j

It is easy to get:

Proposition 1 Assume P(t)=(p;(t)) __ is an non-honest transition function with total stability, X< is
corresponding Markov process wit kiIIin'gJ,E%hen P(t) satisfy Kolmogorov backward equation if and only if
almost sure forall ieE and i-interval, X , €E,.

Proposition 2 Assume P(t) :(pij (). %" is an non-honest transition function with total stability, X° is

. A . i,jeE . . . .
corresponding Markov process with kllllnﬂ], then P(t) satisfy Kolmogorov forward equation if and only if

almost sure forall i€ E and i-interval, a! ¢S .
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