
Applied Mathematics, 2014, 5, 3297-3310 
Published Online December 2014 in SciRes. http://www.scirp.org/journal/am 
http://dx.doi.org/10.4236/am.2014.521307   

How to cite this paper: Fita, A. (2014) Three-Objective Programming with Continuous Variable Genetic Algorithm. Applied 
Mathematics, 5, 3297-3310. http://dx.doi.org/10.4236/am.2014.521307  

 
 

Three-Objective Programming with  
Continuous Variable Genetic Algorithm 
Adugna Fita 
Department of Mathematics, Adama Science and Technology University, Adama, Ethiopia 
Email: fitaadu@yahoo.com  
 
Received 28 September 2014; revised 20 October 2014; accepted 6 November 2014 

 
Copyright © 2014 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
The subject area of multiobjective optimization deals with the investigation of optimization prob-
lems that possess more than one objective function. Usually, there does not exist a single solution 
that optimizes all functions simultaneously; quite the contrary, we have solution set that is called 
nondominated set and elements of this set are usually infinite. It is from this set decision made by 
taking elements of nondominated set as alternatives, which is given by analysts. Since it is impor-
tant for the decision maker to obtain as much information as possible about this set, our research 
objective is to determine a well-defined and meaningful approximation of the solution set for li-
near and nonlinear three objective optimization problems. In this paper a continuous variable 
genetic algorithm is used to find approximate near optimal solution set. Objective functions are 
considered as fitness function without modification. Initial solution was generated within box 
constraint and solutions will be kept in feasible region during mutation and recombination. 
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1. Introduction and Backgrounds 
Three-objectives programming problem is special cases of multicriteria optimization problem with three objec-
tives. Multiobjective optimization examines problems featuring several different objective functions which have 
to be considered simultaneously. Usually these objectives are also competing with each other which aggravates 
the situation. For instance, a fundamental challenge in portfolio management is to maximize the rate of return 
while reducing the risk involved in the investment(s) at the same time. In general there does not exist a single 
solution that optimizes all functions of the problem at once. Thus, a selection of alternatives, so-called nondo-
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minated set and elements of this set are usually infinite. It is from this set decision made by taking elements of 
nondominated set as alternatives, which is given by analysts. But practically extraction of nondominated solu-
tions and setting fitness function are difficult. 

Typically, the set of efficient solutions is very large and the different solutions are incomparable with each 
other with respect to the employed ordering concept. The reason for the incomparability is that we utilize partial 
orders in vector spaces rather than total orders. 

In order to solve our decision making problem by some systems analytical methods, we usually require that 
degrees of objectives be represented in numerical terms, which may be of multiple kinds even for one objective. 
In order to exclude subjective value judgment at this stage, we restrict these numerical terms to physical meas-
ures (for example money, weight, length, and time). 

As a performance index, for the objective Yi an objective function 1:if X →   is introduced. Where R1 de-
notes one dimensional Euclidean space. The value ( )if x  indicates how much impact is given on objective Yi 
by performing an alternative x. In this paper we assume that a smaller value for each objective function is pre-
ferred to large one [1]. 

Now we can formulate our decision making problems as a Multiobjective optimization problem: 
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In some cases, some of the objective functions are required to be maintained under given levels prior to mi-
nimizing other objective functions. Denoting these objective functions by ( ) ,jg x  we require that 

( ) 0, 1,2, ,jg x j m≤ =                                  (1.4) 

Such a function ( )jg x  is generally called a constraint function. According to the situation, we consider ei-
ther the problem (1.1) itself or (1.1) accompanied by the constraint conditions (1.4). 

Of course, an equality constraint ( ) 0kh x =  can be embedded within two inequalities ( ) 0kh x ≤  and 
( ) 0kh x− ≤ , and hence, it does not appear explicitly in this paper. 

We call the set of alternatives X the feasible set of the problem. The space containing the feasible set is said to 
be a decision space, whereas the space that contains the image of the feasible set ( )Y f X=  is referred to as 
criterion space [2]. 

Unlike the traditional mathematical programming with a single objective function, an optimal solution in the 
sense of one that minimizes all the objective function simultaneously does not necessarily exist in multiobjective 
optimization problem, and hence, we are in trouble of conflicts among objectives in decision making; the final 
decision should be made by taking the total balance of objectives into account [3]. 

Scalarization approach is one of the solution methods in multiobjective programming that is studied by dif-
ferent scholars. In solving scalarized problems which are obtained by weighting sum of objective functions to 
single objective, each substitute problem is characterized by a unique weighting parameter vector, the entries of 
which are the specific weights for the individual objective functions [1] [4]. A fundamental challenge lies in the 
selection of the “right” weighting parameters that lead to different optimal solutions that subsequently constitute 
meaningful approximations of the efficient sets. 

Vector evaluated genetic algorithm (VEGA) Schaffer (1985) presents one of the first treatments of multi-ob- 
jective genetic algorithms, although he only considers unconstrained problems [5]. The general idea behind 
Schaffer’s approach, called the vector evaluated genetic algorithm (VEGA), involves producing smaller subsets 
of the original population, or sub-populations, within a given generation, [6] [7]. One sub-population is created 
by evaluating one objective function at a time rather than aggregating all of the functions. 

The process is based on the idea that the minimum of a single objective function is a Pareto optimal point 
(assuming the minimum is unique). However, considering only one objective function at a time is comparable to 
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setting all but one of the weights to zero, Goldberg (1989), and Fonseca and Fleming (1993) provide detailed 
explanations and critiques of Schaffer’s ideas. A class of alternatives to VEGA involves giving each member of 
a population a rank based on whether or not it is dominated (Goldberg 1989; Fonseca and Fleming 1993); Fit-
ness then is based on a design’s rank within a population. 

Ishibuchi and Murata (1996), and Murata et al. (1996) use a procedure called an elitist strategy, which func-
tions independent of rank. As with the Pareto-set filter, two sets of solutions are stored: a current population and 
a tentative set of non-dominated solutions, which is an approximate Pareto set [8]. With each generation, all 
points in the current population that are not dominated by any points in the tentative set are added to the set and 
dominated points in the set are discarded. After crossover and mutation operations are applied, a user’s specified 
number of points from the tentative set is reintroduced into the current population. These points are called elite 
points. In addition, the k solutions with the best values for each objective function can be regarded as elite points 
and preserved for the next generation (Murata et al. 1996). 

Two points, called candidate points, are randomly selected from the current population and compute for sur-
vival in the next generation [9]. A separate set of points called a tournament set or comparison set is also ran-
domly compiled. The candidate points are then compared with each member of the tournament set. 

If there is only one candidate that is non-dominated relative to the tournament set, that candidate is selected to 
be in the next generation. However, if there is no preference between candidates, or when there is a tie, fitness 
sharing is used to select a candidate. The user specifies the size of the tournament set as a percentage of the total 
population. 

Consequently, the size of the tournament set imposes the degree of difficulty in surviving, which is called the 
domination pressure. An insufficient number of Pareto optimal points will be found if the tournament size is too 
small, and premature convergence may result if the tournament size is too large [7] [10]. 

Fitness sharing is a common niche technique the basic idea of which is to penalize the fitness of points in 
crowded areas, thus reducing the probability of their survival to the next generation [11]; Deb 1989; Srinivas 
and [12]. The fitness of a given point is divided by a constant that is proportional to the number of other points 
within a specified distance in the criterion space. In this way, the fitness of all the points in a niche is shared in 
some sense, thus the term “fitness sharing” [7]. 

Different techniques are discussed that serve as potential issues in a genetic multi-objective optimization al-
gorithm. In accordance with much of the literature on multi-objective genetic algorithms, constraints are not ad-
dressed directly. It is assumed that a penalty approach is used to treat constraints and external penalty function is 
used in this paper as seen in Figure 1. But those approaches are difficult to model the fitness function that best 
evaluates the solution (chromosomes) for further selections and keeping those solutions in feasible region during 
mutation and recombination [13]. 

In this paper objective function and variables are taken without modification and continuous variable genetic 
algorithm is used. Variables are considered in box constraint and initial solution will be generated within box 
constraint and will keep in feasible region during mutation and recombination. 

2. Preference Orders and Domination Structures 
Preference Orders represents the preference attitude of the decision maker in the objective space. Ranking of 
objectives with multiple attributes or solving the multi-dimensional problem 

It is usually represented by a binary relation. For a given pair, y1 and y2: 
• y1 is preferred to y2, denoted by y1 > y2. 
• y1 is less preferred to y2, denote by y1 < y2. 
• y1 is equally preferred to y2, denoted y1 ~ y2. 

The preference relation between y1 and y2 is no related, denote by y1||y2. 
Since ordering in objective space is incomplete (i.e. a partial ordering) which are not directly comparable with 

each other the problem has more than one solution there does not necessarily exist a solution that is best with 
respect to all objectives because of conflict among objectives [1] [3] [14]. 

There usually exist a set of solutions; nondominated or efficient or Pareto optimal solutions. An alternative is 
Pareto optimal or non-dominated, if it is: best in at least one criterion (better than any other alternative); or equal 
to the best in at least one criterion without being worse in all other criteria. For minimization problem decision 
vector X1 is preferred to X2: 

If ( ) ( )1 2i if X f X≤  and ( ) ( )1 2i if X f X<  for at least one i, for 1, 2, , .i m=   [15] 
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Pareto optimal solutions form (possibly nonconvex and non-connected) Pareto optimal set as seen in Figure 1, 
Figure 2. But for linear problems where the objective and constraint are linear the Pareto optimal solutions set is 
convex as seen in Figure 3. In the case of Figure 2, Figure 4 the non dominated red region is not necessarily 
convex as the problem are non linear. 

In [1] Pareto optimal solution(s) exist if the objective functions are lower semi continuous and the feasible re-
gion is nonempty and compact. In some literatures, non dominated set of solution are found on closure (boun-
dary) of the feasible surface which is clearly seen in Figures 4-6. 
 

 
Figure 1. Simulation results. 

 

 
Figure 2. Simulation results. 

 

 
Figure 3. Simulation results. 
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Figure 4. Simulation results. 

 

 
Figure 5. Simulation results. 

 

 
Figure 6. Simulation results. 

 
Almost in all Figures the red surface is nondominated solutions while the blue region is feasible solution but 

dominated by objective values on red surfaces. 
Even though, the existence of efficient solution is mathematically proved under some conditions such as the 

convexity, connectedness, and compactness of feasible region and lower semi continuity of objectives functions. 
But practical estimation of efficient set is very difficult [13]. 

Therefore, in the next chapter one of a global search heuristics which find the true or approximate of near op-
timal solutions to problems is discussed. This method is less susceptible to the connectivity and convexity of 
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feasible set (search space) Figure 1, Figure 6. In addition to this continuity and differentiability of objective 
functions does not require. 

3. Continuous Variable Genetic Algorithm 
3.1. Introduction 
Genetic algorithms is a class of probabilistic optimization algorithms inspired by the biological evolution 
process uses concepts of “Natural Selection” and “Genetic Inheritance” (Darwin 1859) originally developed by 
John Holland [16] [17]. Particularly well suited for hard problems where little is known about the underlying 
search space. 

The specific mechanics of the algorithms involve the language of microbiology and, in developing new po-
tential solutions, through genetic operations. A population represents a group of potential solution points. A 
generation represents an algorithmic iteration. A chromosome is comparable to a design point, and a gene is 
comparable to a component of the design vector. Genetic algorithms are theoretically and empirically proven to 
provide robust search in complex phases with the above features. 

Many search techniques required auxiliary information in order to work properly. For e.g. Gradient tech-
niques need derivative in order to chain the current peak and other procedures like greedy technique requires 
access to most tabular parameters whereas genetic algorithms do not require all these auxiliary information. GA 
is blind to perform an effective search for better and better structures they only require objective function values 
associated with the individual strings. 

A genetic algorithm (or GA) is categorized as global search heuristics used in computing to find true or ap-
proximate solutions to optimization problems. 

3.2. Initialization of GA with Real Valued Variables 
Initially many individual solutions are randomly generated to form an initial population. The population size 
depends on the nature of the problem, but typically contains several hundreds or thousands of possible solutions. 

Commonly, the population is generated randomly, covering the entire range of possible solutions (the search 
space). 

To begin the GA, we define an initial population of Npop chromosomes. A matrix represents the population 
with each row in the matrix being a 1 × Nvar array (chromosome) of continuous values. Given an initial popula-
tion of Npop chromosomes, the full matrix of Npop × Nvar random values is generated by: 

( ),pop varpop rand N N=  

If variables are normalized to have values between 0 and 1, If not the range of values is between Xlb and Xub, 
then the unnormalized values are given by: 

( )ub lb norm lbX X X X X= − +  

where Xlb: lowest number in the variable range; 
Xub: highest number in the variable range; 
Xnorm: normalized value of variable [17]. 

But one can generate an initial feasible solution from search space simply as, 
for 1: popi N=  

( ) ( ) ( ),: 1, ;ub lb lbpop i X X rand nvar X= − ⋅ +  % generate real valued population matrix 
end; this generates Npop × Nvar population matrix. 

3.3. Evaluation (Fitness Function) 
Fitness values are derived from the objective function values through a scaling or ranking function. Note that for 
multiobjective functions, the fitness of a particular individual is a function of a vector of objective function val-
ues. Multiobjective problems are characterized by having no single unique solution, but a family of equally fit 
solutions with different values of decision variables. 

Therefore, care should be taken to adopt some mechanism to ensure that the population is able to evolve the 
set of Pareto optimal solutions. 
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Fitness function measures the goodness of the individual, expressed as the probability that the organism will 
live another cycle (generation). It is also the basis for the natural selection simulation better solutions have a 
better chance to be the next generation. In many GA algorithm fitness function is modeled according to the 
problem, but in this paper we use objective functions as fitness function. 

( )Cost chromosomef=  that means 

( )1 2 3 4Cost1 nvarf X X X X X=   

( )1 2 3 4Cost2 nvarf X X X X X=   

( )1 2 3 4Cost3 nvarf X X X X X=    
Sorting cost according to cost1 
[f1, ind1] = sort (fout(:,1)); sorts objective function values 
f2 = fout (ind1, 2); 
[f2, ind2] = sort (fout(:,2)); 
f3 = fout(ind2, 3); 
Chro = Chro (ind2,:); Sort the chro using induces 
assign chrom on Pareto front cost = rank = 1 
rank = rank + 1 and so on. 
Replicate this chromosomes to get full number of population. 

3.4. Parent Selection 
During each successive generation, a proportion of the existing population is selected to breed a new generation. 

Individual solutions are selected through a fitness-based process, where fitter solutions (as measured by a fit-
ness function) are typically more likely to be selected. Certain selection methods rate the fitness of each solution 
and preferentially select the best solutions. Other methods rate only a random sample of the population, as this 
process may be very time-consuming. 

Most functions are stochastic and designed so that a small proportion of less fit solutions are selected. This 
helps keep the diversity of the population large, preventing premature convergence on poor solutions. Popular 
and well-studied selection methods include roulette wheel selection and tournament selection and rank based 
selections [18]. 

3.4.1. Roulette Wheel Selection 
In roulette wheel selection, individuals are given a probability of being selected that is directly proportionate to 
their fitness. Two individuals are then chosen randomly based on these probabilities and produce offspring. 

Roulette Wheel’s Selection Pseudo Code: 
for all members of population 
sum = fitness of individuals; 
end for 

for all members of population 
probability = sum of probabilities + (fitness/sum) 

sum of probabilities = probability 
end for 
loop until new population is full ;do this twice 
number = Random between 0 and 1 

for all members of population 
if number > probability but less than next probability then you have been selected 

end for; end 
create offspring 

end loop 

3.4.2. Tournament-Based Selection 
For K less than or equal to the number of population, extract K individuals from the population randomly make 
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them play a “tournament”, where the probability for an individual to win is generally proportional to its fitness. 

( )( )ceil pop size keep 2 ;number of matingM = −  

( )( )Picks ceil keep rand , ;K M= ⋅  

Repeat M time. The parameter for tournament selection is the tournament size Tour. 
Tour takes values ranging from 2 to Npop (number of individuals in population). Selection intensity increases 

with Tournament size. 

3.5. Reproduction 
The next step is to generate a second generation population of solutions from those selected through genetic op-
erators: crossover (also called recombination), and mutation. 

For each new solution to be produced, a pair of “parent” solutions is selected for breeding from the pool se-
lected previously. 

By producing a “child” solution using the above methods of crossover and mutation, a new solution is created 
which typically shares many of the characteristics of its “parents”. New parents are selected for each child, and 
the process continues until a new population of solutions of appropriate size is generated. These processes ulti-
mately result in the next generation population of chromosomes that is different from the initial generation. 

Generally the average fitness will have increased by this procedure for the population, since only the best or-
ganisms from the first generation are selected for breeding, along with a small proportion of less fit solutions, 
for reasons already mentioned above. 

3.5.1. Crossover 
The most common type is single point crossover. In single point crossover, you choose a locus at which you 
swap the remaining alleles from one parent to the other. This is complex and is best understood visually. 

As you can see, the children take one section of the chromosome from each parent. 
The point at which the chromosome is broken depends on the randomly selected crossover point. 
This particular method is called single point crossover because only one crossover point exists. Sometimes 

only child 1 or child 2 is created, but oftentimes both offspring are created and put into the new population. 
Crossover does not always occur, however. Sometimes, based on a set probability, no crossover occurs and 

the parents are copied directly to the new population. 
1) Crossover (Real Valued Recombination) 
Recombination produces new individuals in combining the information contained in the parents 
The simplest methods choose one or more points in the chromosome to mark as the crossover points. 
Some of Real valued recombination (crossover). 

• Discrete recombination 
• Intermediate recombination 
• Line recombination 

Real valued recombination: a method only applicable to real variables (and not binary variables). 
The variable values of the offspring’s are chosen somewhere around and between the variable values of the 

parents as: 
offspring = parent1 + λ(parent2 − parent1) is convex combination of parents. 

where [ ],1 .d dλε − +  
In intermediate recombination 0,d =   
for extended intermediate recombination 0d > . 
A good choice is d = 0.25. (in some literature) 
Randomly selecting crossover point: 
α = roundup (rand × Nvar) 
We’ll let 

[ ]1 1 2 3parent m m m m mNvarX X X X Xα=    

[ ]2 1 2 3parent d d d d dNvarX X X X Xα=    
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where: the m and d subscripts discriminate between the mom and the dad parent. Then the selected variables are 
combined to form new variables that will appear in the children: 

[ ]new1 m m dX X X Xα α αλ= − −  

[ ]new 2 d m dX X X Xα α αλ= + −  

where λ is also a random value between 0 and 1 
randλ =  

The final step is: 

[ ]1 1 2 3 new1Offspring m m m mNvarX X X X X=    

[ ]2 1 2 3 new 2Offspring d d d dNvarX X X X X=    

3.5.2. Mutation 
After selection and crossover, you now have a new population full of individuals. Some are directly copied, and 
others are produced by crossover [19]. In order to ensure that the individuals are not all exactly or the same, you 
allow for a small chance of mutation. You loop through all the alleles of all the individuals, and if that allele is 
selected for mutation, you can either change it by a small amount or replace it with a new value. The probability 
of mutation is usually small. Mutation is, however, vital to ensuring genetic diversity within the population. We 
force the routine to explore other areas of the cost surface by randomly introducing changes, or mutations, in 
some of the variables. We chose a mutation rate, [19]. 

( )Nmut ceil popsize mutrateNvar= ⋅ ⋅ ; 

Randomly choose rows and columns of the variables to be mutated. 

( ) ( )( )ceil rand 1, popsize elite elite;mrow Nmut= ⋅ − +  

( )( )ceil rand 1, ;mcol Nmut Nvar= ⋅  

A mutated variable is replaced by a new random number. 
For Example 

[ ]4 5 7 7mrow =  

[ ]2 2 1 5mcol =  

The first random pair is (4, 2). 
Thus the value in row 4 and column 2 of the population matrix is replaced. 
By [ ]( ) ( ) [ ]( )mean rand 1, meanub lb lbX X Nmut X− ⋅ +  

3.6. Elitism 
With crossover and mutation taking place, there is a high risk that the optimum solution could be lost as there is 
no guarantee that these operators will preserve the fittest string. To counteract this, elitist preservation is used. 
Elitism is the name of the method that first copies the best chromosome (or few best chromosomes) to the new 
population. In an elitist model, the best individual from a population is saved before any of these operations take 
place. Elitism can rapidly increase the performance of GA, because it prevents a loss of the best found solution 
[20]. 

In this paper chromosome on Pareto front is used as elite children and not participate in mutation operations. 

3.7. Parameters of Genetic Algorithm 
Crossover probability: how often crossover will be performed. If there is no crossover, offspring are exact 
copies of parents. If there is crossover, offspring are made from parts of both parent’s chromosome. If crossover 
probability is 100%, then all offspring are made by crossover. If it is 0%, whole new generation is made from 
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exact copies of chromosomes from old population. Crossover is made in hope that new chromosomes will con-
tain good parts of old chromosomes and therefore the new chromosomes will be better [19]. 

Mutation probability: the probability of mutation is normally low because a high mutation rate would de-
stroy fit strings and degenerate the genetic algorithm into a random search. Mutation probability value in some 
literature is around 0.1% to 0.01% are common. If mutation is performed, one or more parts of a chromosome 
are changed. If mutation probability is 100%, whole chromosome is changed, if it is 0%, nothing is changed. 
Mutation generally prevents the GA from falling into local extremes. 

Population size: how many chromosomes are in population (in one generation). If there are too few chromo-
somes, GA has few possibilities to perform crossover and only a small part of search space is explored. On the 
other hand, if there are too many chromosomes, GA slows down. Research shows that after some limit (which 
depends mainly on encoding and the problem) it is not useful to use very large populations because it does not 
solve the problem faster than moderate sized populations. 

3.8. Termination Conditions 
Commonly, the algorithm terminates when either a maximum number of generations has been produced, or a sa-
tisfactory fitness level has been reached for the population. If the algorithm has terminated due to a maximum 
number of generations, a satisfactory solution may or may not have been reached. Thus generational process is 
repeated until a termination condition has been reached. 

Common terminating conditions can be: 
• A solution is found that satisfies minimum criteria 
• Fixed number of generations reached 
• Manual inspection 
• Any Combinations of the above 

4. Test Functions 
Three-objective test functions for the Simulation of the algorithm. the red surface is non dominated solutions 
while the blue region is feasible solutions which is domenated by points on red surface. 

1) (Problem from Kalyanmoy Deb 2001) 

( )5
1 11Min 1f x= + −  

2 2Min f x=  

3 3Min f x=  

s.t. ( )( )1
2
3

251 1 0.5 0;x x+ + − − ≥  

2 2
3 2 0.5 0;x x+ − ≥  

[ ] [ ]2,1,1 ; 0,0,0 ;ub lb= =  
2) (Adugna, 2014) [19]. 

1 1Min ;f x=  

( )2
2

1

in
2

M
x

f
x
+

=  

2
3 1 2in ;M f x X= +  

s.t. [ ] [ ]4,3 ; 0.1,1 ;ub lb= =  
3) Unconstrained linear minimization (Adugna, 2014) [19] 

1 1 2Min 3 ;f x x= −  

2 1 2Min 3f x x= +  

3 3 2Min 2 ;f x x= −  
s.t. [ ] [ ]2, 2, 2 ; 1,1,0 ;ub lb= =  
4) Comet problem (Problem from Deb 2001) 
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( ) ( ) ( )( )3 2
1 3 1 2 1 2Min 1 10 4f x x x x x⋅= + ⋅ − − ； 

( ) ( ) ( )( )3 2
2 3 2 2 1 2Min 1 10 4f x x x x x⋅ ⋅= + − + ； 

( ) ( )2
3 3 1Min 3 1 ;f x x= ⋅ + ⋅  

s.t [ ] [ ]3.5,2,1 ; 1, 2,0 ;ub lb= = −  
5)  

( )22
1 1 2Min 1f x x= + −  

( )22
2 1 2Min 1 1f x x= + + +  

( )2 2
3 1 2Min 1 2f x x= − + +  

s.t. [ ] [ ]4,3 ; 0,1ub lb= =  
6) (Problem from R. Viennet, C Fonteix, and I. Marc.1996) [21]. 

( ) ( )2 2 2 2
1 2 1 21Min 0.5 sinf x x x x= + + +  

( ) ( )2 2
1 2 1 2

2

3 2 4 1
Min 15;

8 27
x x x x

f
− + − +

= + +  

( ) ( )2 2
1 22 2

3 1 2Min 1 1 1.1e ;
x x

f x x
−

= + + −  

s.t. [ ] [ ]2,2.5 ; 1.8, 1 ;ub lb= = − −  

5. Discussions and Conclusions 
Many search techniques required auxiliary information in order to work properly. For example Gradient tech-
niques need derivative in order to minimize/maximize a given objective where as genetic algorithms do not re-
quire all these auxiliary information. GA uses probabilistic transition rules to guide their search towards regions 
of search space with likely improvement. It is also better than other optimization algorithm when domain know-
ledge is scarce or expert knowledge is difficult to encode to narrow the search space and bad proposals do not 
affect the end solution (independent of initial feasible solution). 

In general, multi-objective optimization requires more computational effort than single-objective optimiza-
tion. 

Genetic algorithms require several heuristic parameters and this process is not necessarily straightforward; it 
may require significant experience in selection. However, genetic multi-objective algorithms are relatively easy 
to use then other evolutionary algorithm. 

In this paper algorithm is tested with linear, non-linear three objective functions and with constrained objec-
tives functions after external penalty is carefully selected and the Simulation results from test functions show 
that the performance is quite satisfactory. The result on the approximation of the test function described in this 
paper is still preliminary. Further work should be carried out to check the conjectures on multiobjective optimi-
zation problems with a higher design space. 
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Appendix A 
%some of the concept of the m-file is taken from the MATWORKS web site www.matworks.com (genetic tool 
box) and modified by researcher for three objective programming [22]. 
%__________________________________________________________ 
function f = ParetoGA3  
% I parameters% variable Setup 
clear all; warning off; 
ub=[2,2.5]; lb=[-1.8,-1 ]; % variable limits 
A=[lb;ub];% matri0x of the varriable bounds  
nvar=length(A); % number of optimization variables Generations =20; % max number of iterations 
selection=0.5; % fraction of population kept 
Npop=2500;% populationsize 
keep=selection*Npop; M=ceil((Npop-keep)/2); % number of matings 
Pm=0.3;     % mutation rate 
%__________________________________________________________ 
%II Create the initial population 
t=0; % generation counter initialized 
phen=intpop(lb, ub,Npop,nvar);  % random population of  continuous values in matrix A  
%__________________________________________________________ 
%% III Evaluation of random population with objective function:     
 fout=feval('parto3',phen); % Iterate through generations 
while t<Generations  
t=t+1;% increments generation counter 
[f1,ind1]=sort(fout(:,1));%sorts objective function values 
f2=fout(ind1,2); [f2,ind2]=sort(fout(:,2)); 
f3=fout(ind2,3); phen=phen(ind2,:); r=0; rank=1; 
elt=0; 
while r<Npop  
for j=1:Npop 
  if f3(j)<=min(f3(1:j)) 
r=r+1; elt(r)=j; value(r,1)=rank;end%if 
if rank<=1 
f11=f1(elt);f21=f2(elt);f31=f3(elt); elite=length(elt); 
end%if 
if r==Npop  break; end%if end%for 
j=j+1; rank = rank+1; 
end%while 
phen=phen(elt,:);  % sorts chromosomes 
value = value+1; 
[value,ind]=sort(value);phen=phen(ind,:); 
%__________________________________________________________ 
%parent selection  
Ntourn=Npop/4; 
players=ceil(keep*rand(Ntourn,M)); 
[c,pt]=min(value(players)); 
for ib=1:M 
mam(ib)=players(pt(ib),ib); end 
players=ceil(keep*rand(Ntourn,M)); [c,pt]=min(value(players)); 
for ib=1:M 
dad(ib)=players(pt(ib),ib);end 
%__________________________________________________________ 
%v. real valued Recombination  
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ii=1:2:keep; % index of mate #1 
pt=floor(rand(1,M)*nvar); % crossover point 
p=rand(1,M); % intermidate crossover     
mix=phen(mam+Npop*pt)-phen(dad+Npop*pt);% mix from ma and pa 
phen(keep+ii+Npop*pt)=phen(mam+Npop*pt)-p.*mix;% 1st offspring 
phen(keep+ii+1+Npop*pt)=phen(dad+Npop*pt)+p.*mix;% 2nd offspring 
if pt<nvar% crossover when last variable is selected 
phen(keep+ii,:)=[phen(mam,1:pt) phen(dad,pt+1:nvar)]; 
phen(keep+ii+1,:)=[phen(dad,1:pt) phen(mam,pt+1:nvar)]; end % if 
%__________________________________________________________ 
%vi.  Real valued Mutation  
Nmut=ceil((Npop-elite)*nvar*Pm);% total number of mutations 
mrow=ceil(rand(1,Nmut)*(Npop-elite))+elite; 
mcol=ceil(rand(1,Nmut)*nvar); 
mutindx=mrow+(mcol-1)*Npop; 
phen(mutindx)= (ub(mcol)-lb(mcol)).*rand(1,Nmut)+lb(mcol);%to keep the randam number within ub and lb 
%__________________________________________________________ 
% vii.The new offspring and mutated chromosomes are evaluated for cost 
row=sort(rem(mutindx,Npop)); 
iq=1; rowmut(iq)=row(1); 
for ic=2:Nmut 
    if row(ic)>rowmut(iq) 
iq=iq+1; rowmut(iq)=row(ic); 
    if row(ic)>keep;break;end %if end %if end %for 
if rowmut(1)==0;rowmut=rowmut(2:length(rowmut));end %if 
fout(rowmut,:)=feval('parto3',phen(rowmut,:)); 
fout(keep+ii:Npop,:)=feval('parto3',phen(keep+ii:Npop,:)); 
fout(keep+ii+1:Npop,:)=feval('parto3',phen(keep+ii+1:Npop,:)); 
%__________________________________________________________ 
% Stopping criteria 
if t>Generations 
break; end %if 
%__________________________________________________________ 
% Displays the output 
phen(1:10,:) 
[phen(elt,:)  fout] 
figure(3);plot3(f2,f1,f3,'.',f21, f11,f31,'r*', 'LineWidth',2);xlabel('f2');ylabel('f1');zlabel('f3');grid on; 
hold on; 
comet3(f21, f11,f31);hold off; 
% plot pareto fronterif3 index of objective function is two 
title(['pareto fronter with Generation=',num2str(t)]);hold on; 
%figure(2);plot(phen(ind,1),phen(ind,2),'b.');xlabel('x1');ylabel('x2');grid on; 
title(['decision space with Generation=',num2str(t)]),pause(0.01); 
end %t 
format short g 
disp(['Pareto front and objective value']) 
disp(['     x1         x2         f(x1)        f(x2)']) 
disp(num2str(phen(elt,:))) 
% generating matrices of initial population  
function phen=intpop(lb,ub,Npop,nvar) % 
for ii=1:Npop 
phen(ii,:)=(ub-lb).*rand(1, nvar) + lb; end 
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