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Abstract

In this paper, we relax the assumption of a self-financing strategy in the dynamic investment models. In so
doing we provide smooth solutions and constrained viscosity solutions.
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1. Introduction

The literature on dynamic portfolio optimization is vast.
However, previous literature on dynamic investment
relied on the assumption of a self-financing strategy; that
is, the investor cannot add or withdraw funds during the
trading horizon. Examples include [1], [2], [3] and [4]
among many others. However, this assumption is
somewhat restrictive and sometimes unrealistic.

Moreover, even with the assumption of a self-financ-
ing strategy, the previous literature usually provided
explicit solutions under the assumption of a logarithmic
or power utility function. Therefore, the assumption of a
self- financing strategy did not offer a significant
simplification of the solutions. Therefore, the
self-financing assumption needs to be relaxed.

Consequently, the goal of this paper is to relax the
assumption of self-financing strategies. In this paper, we
show that the assumption of a self-financing strategy can
be relaxed without a significant complication of the
optimal solutions. In so doing, we present a
stochastic-fac- tor incomplete-markets investment model
and provide both smooth solutions and constrained
viscosity solutions.

2. The Model

We consider an investment model, which includes a
risky asset, a risk-free asset and a random external
economic factor (see, for example, [5]). We use a
three-dimensional standard Brownian motion {; ,W,,,
Wk,Fs}Mg on the probability space(Q,F,,P), where

{F.}y..cy 1s the augmentation of filtration. The risk-free
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T
. X fr(Y‘S )ds
asset price process is S, = e’ , Where r(YS )

& C;(R) is the rate of return and Y, is the stochastic
economic factor.
The dynamics of the risky asset price are given by

dS, =S, {u(Y,)ds+a, (¥, )dW, |, M

where u(Y,) and o,(Y,) are the rate of return and the
volatility, respectively. The economic factor process is
given by

dY, =b(Y,)ds+0,(Y,)dW,. .Y, = y, )

2525t

where o, (Y,) isits volatility and 5(Y,)d C'(R) .

The amount of money added to or withdrawn from the
investment at time s 1is denoted by @_, and its
dynamics are given by

d(DS :a(YS)dS+O-3 (Yv)dVV3V9 (3)
where o, (Y,) isits volatility and a(Y,)b(Y,)d C'(R).

s

Thus the wealth process is given by
T T
X7 =x+[a(Y,)ds+[o, (Y,)dW,,
t
[F() X7+ (u(X)=r (X)), )} ds @)
ﬂ., O-l (Y )dVVls’
is the port-

where x is the initial wealth, {z,F,} __

T
folio process with E [ o] (Y, )z ds <oo.
t

The investor’s objective is to maximize the expected
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utility of the terminal wealth
V(r,x,y)=supE[u(X;)|E], (5)

where V() is the value function, u(.) is a
differentiable, bounded and concave utility function.

Under regularity conditions, the value function is
differentiable and thus satisfies the Hamiltonian-Jacobi-
Bellman PDE

Vo+[r(y)x+a(y) v +b(3)7,
+%U§ (y)Vyy + 030, (y)a3 (y)V:cy +la32 (y)V”

2
esuplr, (u(y)=r(»))V,

1
J{Eﬂfdf (¥)+ 10, ()0 (y)ﬂf}V.a

+ P20, (y)o'z (y)ﬂszy}
= O’

V(T,x,y)zu(x), (6)

where p; is the correlation coefficient between the
Brownian motions. Hence, the optimal solution is

- :_(ﬂ(J’)_r(y))Vx + P10y (y)02 (J’)V,W

’ ot (y)V, (7
_/013‘717l (y)03 (y)

Similar to the previous literature, an explicit solution can
be obtained for specific forms of utility such as a
logarithmic utility function.

3. Viscosity Solutions

We can apply the constrained viscosity solutions to (6),
given the HJB is degenerate elliptic and monotone
increasing in V' (see, for example, [6]).
Consider this HIB
H(x,V(x),Vx (x) V (x)) =0,x4 Q,

27 xx

) ®)
V(x) = g(x),xa 0Q,

where Q is a bounded open set.

Definition 1 A continuous function V(x) is a
viscosity subsolution of (6) if

H(x,V(x),P,X)<0,YPd D'V (x),

- ©)
VXSV (x),Vx Q

A continuous function ¥ (x) is a viscosity

supersolution of (8) if
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H(x,V(x),P,X)20,vPd DV(x),

(10)
VX IV (x),vx  Q,
where
DV (x)= {P limsup V(y)_V|(x)_|<P’y_x> < 0}, (1)
yox y—Xx

DV (x)= {P liminf V(y)_V|(x)_|<P’y_x> > 0}, (12)
yox y—x

are the super-differential and sub-differential,

respectively; and
J7V (x)={(P, X):
1
VO (Py=) = (X (r-x) )
limsup
o |y =]

<0},

(13)

J7V (x)={(P,X):
fining )=V ()= Py —x) -4 (X (v =),y - )
yox |y x|

>0},

(14)
are the superject and subject, respectively. A function
V(x) is a viscosity solution if it is both a viscosity
subsolution and a viscosity supersolution.

Proposition 1 V(x) is the unique constrained
viscosity solution of (6).

Proof Let V4 C(6Q) and let s(V) and i(V) be
the upper and lower semicontinuous envelopes of V',
respectively, where

s(V)=sup{u(x):u, <u<u,},
i(V)=inf {u(x):u, Su<u,},
where u; and u, are sub-solution and super-solution,
respectively. B B
Thus s(V)d USC(Q) and i(V)d LSC(Q) are a

viscosity subsolution and supersolution, respectively. At
the boundary we have

V(x)=5(V)=i(V).
by the comparison principle

s(V)<i(v) inQ.
By definition s(V)2i(V) and
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thus
V(x)=s(V)=i(V) inQ
is the unique viscosity solution.
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