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Abstract 
 
In this paper, we relax the assumption of a self-financing strategy in the dynamic investment models. In so 
doing we provide smooth solutions and constrained viscosity solutions. 
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1. Introduction 
 
The literature on dynamic portfolio optimization is vast. 
However, previous literature on dynamic investment 
relied on the assumption of a self-financing strategy; that 
is, the investor cannot add or withdraw funds during the 
trading horizon. Examples include [1], [2], [3] and [4] 
among many others. However, this assumption is 
somewhat restrictive and sometimes unrealistic. 

Moreover, even with the assumption of a self-financ- 
ing strategy, the previous literature usually provided 
explicit solutions under the assumption of a logarithmic 
or power utility function. Therefore, the assumption of a 
self- financing strategy did not offer a significant 
simplification of the solutions. Therefore, the 
self-financing assumption needs to be relaxed. 

Consequently, the goal of this paper is to relax the 
assumption of self-financing strategies. In this paper, we 
show that the assumption of a self-financing strategy can 
be relaxed without a significant complication of the 
optimal solutions. In so doing, we present a 
stochastic-fac- tor incomplete-markets investment model 
and provide both smooth solutions and constrained 
viscosity solutions. 
 
2. The Model 
 
We consider an investment model, which includes a 
risky asset, a risk-free asset and a random external 
economic factor (see, for example, [5]). We use a 
three-dimensional standard Brownian motion 1s 2s, ,W W  
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  where  sr Y   

 2
bC Rä  is the rate of return and sY  is the stochastic 

economic factor. 
The dynamics of the risky asset price are given by 

    1 1d d d ,s s s s sS S μ Y s σ Y W        (1) 

where  sμ Y  and  1 sσ Y  are the rate of return and the 
volatility, respectively. The economic factor process is 
given by 

   2 2d d d , ,s s s s tY b Y s σ Y W Y y        (2) 

where  2 sσ Y  is its volatility and    1
sb Y C Rä  . 

The amount of money added to or withdrawn from the 
investment at time s  is denoted by Φ ,s  and its 
dynamics are given by 

   3 3dΦ d d ,s s s sa Y s σ Y W          (3) 

where  3 sσ Y  is its volatility and      1 .s sa Y b Y C Rä  
Thus the wealth process is given by 
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where x  is the initial wealth,  ,s s t s T
π F

 
 is the port- 

folio process with  2 2
1 d

T

s s
t

E σ Y π s   . 

The investor’s objective is to maximize the expected 
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utility of the terminal wealth 

   , , sup ,
t

T tV t x y E u X F



           (5) 

where ( ).V  is the value function,  .u  is a 
differentiable, bounded and concave utility function. 

Under regularity conditions, the value function is 
differentiable and thus satisfies the Hamiltonian-Jacobi- 
Bellman PDE 
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   , , ,V T x y u x               (6) 

where ijρ  is the correlation coefficient between the 
Brownian motions. Hence, the optimal solution is 
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Similar to the previous literature, an explicit solution can 
be obtained for specific forms of utility such as a 
logarithmic utility function. 
 
3. Viscosity Solutions 
 
We can apply the constrained viscosity solutions to (6), 
given the HJB is degenerate elliptic and monotone 
increasing in V  (see, for example, [6]). 

Consider this HJB 
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where Ω  is a bounded open set. 
Definition 1 A continuous function  V x  is a 

viscosity subsolution of (6) if 
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A continuous function  V x  is a viscosity 
supersolution of (8) if 
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where 
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are the super-differential and sub-differential, 
respectively; and 
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are the superject and subject, respectively. A function 
 V x  is a viscosity solution if it is both a viscosity 

subsolution and a viscosity supersolution. 
Proposition 1  V x  is the unique constrained 

viscosity solution of (6). 
Proof Let  ΩV C ä  and let  s V  and  i V  be 

the upper and lower semicontinuous envelopes of V , 
respectively, where 

    1 2sup : ,s V u x u u u    

    1 2inf : ,i V u x u u u    

where u1 and u2 are sub-solution and super-solution, 
respectively. 

Thus    Ωs V USCä  and    Ωi V LSCä  are a 
viscosity subsolution and supersolution, respectively. At 
the boundary we have 

      ,V x s V i V   

by the comparison principle 

     in Ω.s V i V  

By definition    s V i V  and  
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thus 

       in ΩV x s V i V   

is the unique viscosity solution. 
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