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Abstract

Several new g-integral inequalities are presented. Some of them are new, One concerning double integrals,
and others are generalizations of results of Miao and Qi [1]. A new key lemma is proved as well.
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1. Introduction

For 0<qg<1 the g-analog of the derivative, denoted by

D, is defined by (see [2])

f(x)—f(gx
qu(x):w, x#0. (1)
X — QX
Whenever f'(0) exists, D,f(0)=f'(0), and as
g — 1", the g-derivative reduces to the usual derivative.
The g-analog of integration from 0 to a is given by

(see [3])

Ms

I f(x)d,x=a(l-q)

provided the sum converges absolutely. On a general
interval [a, b] the g-integral is defined by (see [4])

jf dx_jf

The g-Jackson integral and the g-derivative are related
by the fundamental theorem of quantum calculus, which
can be stated as follows (see [4, p. 73]) :

If F is an anti g-derivative of the function f, namely
D,F = f , continuous at X =a, then

f(ad“)a*, @

=
Il

0

dxjf (3)

b
[f(x)dgx=F(b)-F(a). 4)
For any function f, we have
D, [ f(t)dt = f(x) ()

For b>0 and a=hbq"
[a,b]oI = {bqk :Osksn} and (a,b]q

,nheN, we denote

= [aq‘l,b]q. (6)
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It is not difficult to check the following
D, (f(x)9(x)) =T (x)Dyg(x)+9(ax) By F (x) (D

£())_ 90D, (x)-  (x)D,9(x)
D‘*(g(x))‘ 3(x)9(20)

In [5] the following result was proved
Theorem 1.1. Let f be a function defined on [a,b]q
satisfying

f(a)>0 and qu(x)z(t—z)(x—a)“3
and t>3.

®)

for x e (a,b]q

Then

Tft dx>(ijx J )

and in [1], the following results were proved
Theorem 12. If f(x) is a non-negative and in-
creasing function on [a,b]oI and satisfies

(a=1) 2 (ax)D, f (x) = B(B-1) F77 (x)(x—a)" "

(10)
for ¢>1 and g>1 then

b B
jf“ dx>(jf j (11)

Theorem 1.3. If f(x) is_a non-negative and in-
creasing function on [bg™™,b| and satisfies

(a-1)D,f (x)= B(A-1) T/ (q"x)(x—-a)"" (12)

on [a,b]cI and for o, >1 then
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b

!fa (x)dgx = U f (qu)dqxjﬁ. (13)

Theorem 1.4. If f(x) is a non-negative function on
[O,b]q and satisfies

b b
[/ (t)d t=[t"d,t (14)
for x e[o,b]q and B>0 then the inequality

b b
[t @)dt= [t t7(t)dt (15
holds for all positive numbers « and f.

Lemma 1.5[5]. Let p>1 and g(x) be a nonnega-

tive, monotonic function on [a,b]q Then
pg”" (ax) Dyg (x) < D, (9° (x)) < pg®" (x) D g (x).
(16)

Remark 1. It may be mentioned that the function g
should be non-decreasing, which is not stated. As well if
g is non-increasing, (16) reverses. If g non-decreasing
and p is such that 0< p<1, then it is not difficult to
show that (14) reverses.

2. Results

We start with the following key lemmas

Lemma 2.1. Let ¢, f >0, and both non-decreasing
functions, ¢ is differentiable, f defined on [a,b]q.
Then

p'of (ax)D, f (x)< D gof (x)<g'of ()

If f is non-increasing, (15) reverses.
Proof. We have

D, f (x), (17)

got (x)=gof (ax)=4(f (x))-g(f (ax))
:fj‘X)(é( dt<¢ fX) it
(ax) f(qX
=¢'(f (3))(f(x)-f(ax))
therefore

gof (x)—gof (gx)

D gof (x)=

(1-a)x
< (1) St (0,1 (1)

The rest is also similar.

Probably the following lemma is useful in some cases.

Lemma 2.2. Let ¢, f >0, and both non-decreasing
functions, f defined on [a,b]q Define
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¢of(x)—¢of(qx).

2 )= ) T (a0

(18)

Then
Dq(¢,f)qu(x)S(gzﬁ’of)(x)qu(x) (19)
Proof. We have,

_gof (x)—gof (ax) f(x)-f(qx) .
(0= f(w) (1-q)x =D, (4. F)D, f (x)

By (17),
D, (¢, f)D, T (x)=D,gof (x) < (¢'of)(x)D, f (x).

All the rest are similar.
Theorem 2.3. Let 4,0, f,g>0,0,9 are both non-
decreasing and defined on[a,b],, ¢og(a)=0.If

(401)(0)2 (0'00)()D,0(x).  (0)

then

(gof)(t)d,t>(pog)(x). 1)

D —y x

If g is non-increasing and
(dof)(x)2(p'0g)(ax)Dyg(x),  (22)

satisfies, then (21) reverses.
Proof. Set

F(x)=](dof)(t)dt

We have, by lemma 2.1,
D,F (x)=D, [jwof)(t)dqt]—oq (p05)(x
2 (4o 1)(x) - (¢/00)(x)D,a (x)20

Therefore, F is non-decreasing, which implies
F(x)>F(a)=

The result follows.

Corollary 2.4. Let f(x) be a nonnegative and in-
creasing function on [a, b] such that f(a)=0. Let
a>y>0,a>1, 22 If

(a=7) 7" (ax) D, f (x)
> B(B-D T (x)(x=a)?

is satisfied, then

~(og)(x)-

m'—.x

(23)
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Furthermore, if
(a=y) 1“7 (ax) D, f (x)
> BB~ (gx)(x-a)"”

is satisfied, then

» —_—y

b B
£ dx>U (qx)dqx) (26)

a

Proof. For XG[a,b]q let

$(x) =", o(x)-

I

D —y x
—
<

then, we have, via lemma 1.5,

(dof)(x)-(¢'09)(x) D49 (x)

—ﬁ@ f7(t)dqtjﬂl £ (x)
=fy(><){f”(x)—ﬂ£

Now,

D <
—
<
—~
—
SN—
o
o
—
N—
i
N—
Il
—_
<
—_
x
SN—
=
—
>
SN—

D, (x)= D, 17 (x)- ﬁD[ )
- (a—7) 17 (@)D, f (X
_ﬂ(ﬁ_l)@w(t)dqt] £ (%)

2 (a=7) £ () D f (x)

~B(B-1) D (x)(x—a)""
=>0.

m*—.x
&
—~
—
o
o
—
N——
b

Therefore, h(x) is non-decreasing, but h(a)=0,
then h ( X) > 0. The result follows by theorem 2.3.

The proof of the second part is similar, and therefore,
it is omitted.

Remark 2. Theorem 1.2 follows from corollary 2.4,
the first part, by putting y =1.

Theorem 2.5. Let f,g are non-negative functions

n [a, b] either f or g is non-decreasing and they sat-
|sf|es

Tf dt>jg )dt.xe[ab] . @7
then the inequality

T for (t)d,t ZT fo(t)g” (t)d,t (28)
holds for all positive numbers « and f.
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(25)

Proof. Suppose that f is non-decreasing. Using the fact

f(b)-f(a ij x)d, X

we have

if“*”(X)qu=T (ij t)d,t+f(a )jdqx

fﬁ(x)dqxdqt+ f(a)

f7(x)d,x

q

v

D= T T

g’ (x)d xd t+ f (a)

9” (x UDf )dgt+f(a )j

9” (x)d,x

D — T D —T D m—T D —T

j—
1N
—
>
~
«
=
—~
>
~—
o
o
x

Now, suppose ¢ is non-decreasing, then, we have

I
—
—_
=
—_
>
~—
VR
D ey <
O
o
«
N
—
—
~—
o
o
—
+
«Q
—_

QD
~—
N—
o

o
>

Il v Il

DT DT DT D —T P

Using the arithmetic geometric inequality yields

P e ()1 % geh (x) = 14 (x) g% (x).

a+pf a+pf

Integrating the above inequality and making use of (29)

gives

If”‘*ﬂ x)dx +

Iga+ﬁ d
a+ﬁ a+ﬂ

22[ f7(x)g* (x)dxz!g‘“ﬁ (x)dx.

The result follows.
Remark 3. Theorem 1.4 follows from theorem 2.5 by

putting a=0, g(x)=

Corollary 2.6. Let f>0.If
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f f (t)dqtj, xela,n/2] (30)

J'sm dt>sm[J.f J 3D

Proof. The proof follows from theorem 2.3 by putting
#(x)=9(x)

as follows

(gof)(x)=(¢'0g)(x)Deg(x)
:sin( f (X))—cos@ f (t)dqtj f(x)>0.

The following result concerning similar inequality but
for double integrals.

Theorem 2.7. Let f >0 non-decreasing in both x
andy, f(a,y)=0,a>p8y, 22, y>0. If

7 (ax, y) Dy, (%, Y)

>Mx—aﬂ’2 —a)’.,x, yela
-(a_ﬁy)( )" "(y-a)".x, ye[ab],

then

—s1nxg If

(32)

then

x b Xy s

[t (uv)dudy> (”fyuvdudvj (33)

ay aa

Proof. Set

x b Xy s

y):” £ (u,v)dgu dqv—(“ f7(u,v)dqudqu .
ay aa

We have via lemma 2.1 and by keeping Yy fixed,
x b
Dq,X” £ (u,v)dud,v

ay

o

Dq’XF(x, y)=

Dq’xF(x,y):
, y;
J‘fV u,v)d,ud v]

£ (x,v)d,v

< — T X
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,ly

—ﬂﬁjﬂ u,v dudvj [ 17 (xv)dv
> (xy)(b-y)

~A 0 (xy)(x-a)" (y-a)" £ (xy)(y-a)
=17 (y)[(b-y) 1 ()= Alx-2) (v-2)')

=7 (%, y)k(x).

Now,
Dy k(x)2 (a=By)(b—y) £ (ax.y) D, f (x.)

-B(A-1)(x-a)"" (y-a)’
>0.

Therefore, k is non-decreasing, as k(a)=0 then
k(x)>0 which implies D,,F(x,y)>0. that is
F (X, y) is non-decreasing in X. But F(a,y)=0, then
F(xy)=0.
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