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Abstract

We prove the non-existence of Hopf real hypersurfaces in complex two-plane Grassmannians whose Jacobi
operators corresponding to the directions in the distribution D* are of Codazzi type if they satisfy a further
condition. We obtain that that they must be either of type (A) or of type (B) (see [1]), but no one of these sat-
isfies our condition. As a consequence, we obtain the non-existence of Hopf real hypersurfaces in such am-
bient spaces whose Jacobi operators corresponding to D™ -directions are parallel with the same further con-

dition.
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1. Introduction

The geometry of real hypersurfaces in complex space
forms or in quaternionic space forms is one of interesting
parts in the field of differential geometry. Now let us
consider consider real hypersurfaces in complex two-
plane Grassmannian GZ(C"‘”), which consists of all
complex 2-dimensional linear subspaces in C™. It is
known to be the unique compact irreducible Riemannian
symmetric space equipped with both a Kéhler structure
J and a quaternionic Kéhler structure ./ (see Berndt
and Suh [2]). Let M be a real hypersurface in
G, ((C””z) and N a local normal unit vector field. We
can define the structure vector field of M by
&=-JIN . Moreover, if {J;,J,,J;} is a local basis of
J, we define & =-J,N, i=1,2,3. Thus we can con-
sider two natural geometric conditions: that both

[£]=Span{&} and D* =Span{(.s,.& ) are invari-
ant under the shape operator A corresponding to N .
Berndt and Suh, [1] proved the following:

Theorem A Let M be a connected real hypersur-
face in G, ((Cm”), m>3. Then both [¢] and D*
are invariant under the shape operator of M if and
only if
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(A) M is an open part of a tube around a totally
geodesic G, (C™') in G,(C™?),or

(B) m is even, say m=2n, and M is an open
part of a tube around a totally geodesic HP" in
G2 (Cm+2) )

The structure vector field & of a real hypersurface
M in G, (Cm+2) is said to be a Reeb vector field. If
the Reeb vector field & of a real hypersurface M in
Gz((Cm”) is invariant by the shape operator, M is
said to be a Hopf hypersurface. In such a case the inte-
gral curves of the Reeb vector field & are geodesics
(see Berndt and Suh [2]). Moreover, the flow generated
by the integral curves of the structure vector field & for
Hopf hypersurfaces in G, ((C’"+2 ) is said to be geodesic
Reeb flow. Moreover, if the corresponding principal cur-
vature o corresponding to &£ is non-vanishing we say
M is with non-vanishing geodesic Reeb flow.

Jacobi fields along geodesics of a given Riemannian
manifold (I\7I , g) satisfy a very well-known differential
equation. This classical differential equation naturally
inspires the so-called Jacobi operators. That is, if R is
the curvature operator of M , the Jacobi operator (with
respectto X )at pe M, R, eEnd (Tpl\7l ), is defined
as (R (Y))(p)=(R(Y,X)X)(p), for all YeT,M,
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being a self-adjoint endomorphism of the tangent bundle
TM of M . Clearly each tangent vector field X to
M provides a Jacobi operator with respectto X .

Let R denote the Riemannian curvature tensor of the
complex two-plane Grassmannian G, (C"”z). Now if
M is a real hypersurface in G, ((C”” ) with normal
vector field N we can consider the normal Jacobi op-
erator R, on G, ((Cm+2). Moreover, it is clear that
Ry(N)=0, so we can consider R, as a self adjoint
endomorphism of the tangent bundle TM of M . We
will call it the normal Jacobi operator on M . The Ja-
cobi operator associated to the Reeb vector field R, is
called the structure Jacobi operator on M , where R
denotes the curvature tensor of M .

Recently, Jeong, Pérez and Suh, (see [@ave proved
the non-existence of real hypersurfaces M in
G, ((Cm+2 ) with parallel structure Jacobi operator when
a further condition is satisfied. Also, Jeong, Kim and Suh,
(see [3]) have proved the non-existence of real hypersur-
faces M in G, (sz) with parallel normal Jacobi
operator. Further results can also be seen in [4].

In this paper we will consider the Jacobi operators as-
sociated to a basis of the distribution D', R. .
i=1,2,3. A type (1,1) tensor T on M is called of
Codazzi type if (V,T)Y =(V,T)X for any X,Y
tangent to M , where V denotes the covariant deriva-
tive on M . In this paper we will study real hypersur-
faces M in G, ((C””Z) whose Jacobi operators R, ,
i=1,2,3 are of Codazzi type. Namely, we will prove
the following.

Theorem 1.1 There do not exist any connected Hopf
real hypersurfaces M in GZ((C"”Z), m > 3, such that
gvagi )Y = vYRgi)x, i=1,2,3, for any X.,Y eTM
it the distribution 'D or the D" -component of the
Reeb vector field is invariant by the shape operator.

As a consequence of Theorem 1.1, we immediately
obtain the following.

Theorem 1.2 There do not exist any connected Hopf
real hypersurfaces M in G, C™?), m=3, whose
Jacobi operators Rgi , 1=1,2,3, are parallel if the dis-
tribution D or the D*-component of the Reeb vector
field is invariant by the shape operator.

2. Preliminaries

For the study of Riemannian geometry of G, (Cm”)
see [1]. All the notations we will use since now are the
ones in [1] and [2]. We will suppose that the metric (
of G, (Cm”) is normalized for the maximal sectional
curvature of the manifold to be eight. Then the Rieman-

nian curvature tensor R of G, (Cm”) is locally given
by
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R(X.Y)Z=g(Y,Z)X ~g(X,Z)Y +g(JY,Z)IX
~g(IX,Z)3¥ —2g(IX,Y)Jz

3
+>{9(3,Y,2)3,X-g(3,X,2)J,Y
v=1

_29 (va’Y)‘]vZ}

@.1)

3
+>.{9(3,3Y,2)3,3X -g(3,IX,Z2)J,3Y},

v=1

where J,,J,,J; isany canonical local basis of J .
Let M be a real hypersurface of G, (Cm”) , that is,

a submanifold of G, (Cm”) with real codimension one.
The induced Riemannian metric on M will also be
denoted by g, and V denotes the Riemannian con-
nection of (M , g). Let N be a local unit normal field
of M and A the shape operator of M with respect
to N . The Kéhler structure J of G, (C””z) induces
on M an almost contact metric structure (¢4,&,7,9).
Furthermore, let J,,J,,J; be a canonical local basis of
J . Then each J, induces an almost contact metric
structure (4,,£,,7,,9) on M . Using the above ex-
pression for the curvature tensor R, the Gauss and Co-
dazzi equations are respectively given by

R(X,Y)Z=g(Y,Z)X —g(X,Z)Y
+9(4Y,2)$X —g($X,Z)gY —2g($X,Y)¢Z

{9(4Y.2)8,X-9(¢,X.2)8,Y -29(4,X.Y)¢,Z}

+

M

<
Il

M

+

{9(8,0Y.2)4.0X —9(4.6X.Z)4,4Y}

<
Il

I
M w

(n(Y)n,(2)8,6X —n(X)n,(2)¢,4Y}

<
l

M-

1{n(><)g(¢V¢Y,Z)—n(Y)g(¢V¢x,2)}§v
(AY,Z)AX —g(AX,Z)AY

<
Il

+

«

and
(Vx A)Y—(V,A)X =77(X )¢Y -n(Y )¢X -29 (¢X Y)E

{(m (X)8Y =1, (Y)4,X -29(¢,X.Y)&,}

M

+

4

+

M-

{n, (#X),8Y =1, (Y ) 4,6X |

4

M

+

(n(X)m, (8Y)-n(Y)n, (#X)}£, .

14

where R denotes the curvature tensor of M in
Gz (Cm+2)'
In [2] the following Proposition is obtained.
Proposition 2.1 If M is a connected orientable real
hypersurface in G, (C"™) with geodesic Reeb flow,
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then
ag((A+pA) XY )-2g(ApX,Y )+2g(¢X.Y)

=2§(77V(X)77V(¢Y)—m (Y)7. (#%)-9(4.X.Y )7, ()

~2n(X)n, (#Y)n,&+20(Y)n, (#X)n, (£))

forany X,Y eTM where o =g (A& E).

Recently Lee and Suh (see [5]) have proved the fol-
lowing.

Proposition 2.2 Let M be a connected orientable
Hopf real hypersurface in G, (C™?), m>3. Then the
Reeb vector & belongs to the distribution D if and
only if M is locally congruent to an open part of a tube
around a totally geodesic HP" in G,(C™*), where
m=2n.

(VXR) ~9(Y. V&) & - (Y) Vi

=3{n(Y)n; (AX

+1,(4,Y

3. Proof of Theorem 1.1

From the expression of the curvature tensor of
Gz((Cm”) we get

R. (X)=X=1,(X)& -39($X.&) 5
—3ig(¢vx,é)¢vc;+§g(¢v¢é,é>(¢v¢><—n(><)§v)

+zg( L 0X,E)(n(&)E, - 4,65)
(eﬁ)¢.¢X+n(><)¢.¢¢i+g(A:i,:i)A><—g(Ax,é)Aé
(3.1)

for any tangent vector field X . From (3.1) we have

)=7(E)9(AXY )+ (Y. V&) PE +1, (8Y ) (nEAX — 1 AXE+ 4V, &)}
—si{ (<6 (X7 (602 )+ 8z (X)) 2, (V) (AX
( v+2‘§+qv+z( )¢v+l§i+77v(§i)Ax_ni(Ax)§v+¢vVX§i)}

)-1, (£)9(AX.Y)+9(4,Y.VE))4,6

+g{(‘9(AX,¢V§i)ﬁ(§i)+ﬂi(Ax)ﬂ(¢vé)+g(vxfi"ﬁ"jvé)_q”l(x)m (926

+0,,, (X )77i (¢¢V+1‘§i )_77v
w7, (4,45)(-a

(&) 9 (AX.¢& )+m (AX)
v+1 (X)¢V+2¢Y +qv+2 (X)¢V+1¢Y +77v (¢Y)AX

7, (¢ég| ) +0 (¢v¢§| V& ))¢V¢Y

~g(AX,#Y )&, +n(Y)4,AX —g(AX,Y)4,¢))

Y {(-n(&) g (AX.48)+ 7 (AX)n

9 () (i) (&
11, (#4,£)(9(Y.9AX)E, +n(Y) V&, )}

n, (¢‘§| )+ g (Vxégi9¢¢v§i )_qv+1 (X )77i (¢¢v+2§i)
g(AXa¢‘§i)+77i (AX )77v (¢§|)+ g(vx‘fia¢v¢§i))77(Y)§v

i{( Gt (X)G(Y5 00,28 ) + 00 (X) 9(Y,06,..8 )+ 71, (8Y ) (AX)

~9(AX. Y )n, (&)+

n(Y)7 (4. AX)+9(AX,Y )7, (45)+9(4.8Y.ViE))n(&)E,

+9(Y,08,6)((7(V&)+ 7 (#AX)) &, +n(&) VS, )|

_Z{( Oyt (X7 (B28Y )+ Oa (X )77 (8,008Y ) 411, (Y )1 (AX )=

g(AX,gY )7, (&)

+7(Y )7, (6, AX )+ g (AX.Y ) (4.8)+ 9(4,8Y.V &) 485
+1 (¢V¢Y)(_qv+l (X )¢v+2¢§+ Q.2 (X )¢v+1¢§i +1, (¢§| ) AX -g (AX , 05, )5\/
+17(&) 4 AX =17, (AX) g, + 4,0V & )}

(V&) +1 (V,£))} ¥

+77(‘§i)(_qi+1 (X)¢|+2¢Y + 0, (X)¢|+1¢Y +77; (¢Y)AX —g(AX,¢Y)§i +77(Y)¢|AX _g(AX’Y)ﬂ(S)
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+9 (Y. V&) d0& +n(Y ) (=0, (X)do0E + 0, (X) 4088
—Q(AX.E)E + BV & +n(E)AAX =1 (AX ) E + 44V &)

(3.2)
+(77i (VxAS)+9(AS, VL& )) AY +1, (AS ) (Vi A)Y
—{(m (Ve A)Y)+9(AY.V, &) AL +7 (AY)vag}
forany X,Y tangentto M . null, where X,eD is unit, as ¢£=0 we get
We will write &=7(X,)X,+7(&)& . for a unit #X, =-n(&)4X,. Moreover, AX,=aX,.
X, € D, where we suppose 77(X,)n(&)#0. Then we Taking X = X, in Proposition 2.1 we have

have , v=1,2,3. Notice this is true 2
even 1? (gem;l 6'ﬁll“})lus the covariant derivative of R, is —an(§)Ag X, —a'n (&) 4 X, +2an(5) 4 X,
given by Equation (3.3), for any X,Y tangent to '™ . =4n* (X, )n(&) X,

From this expression we have:

Lemma 3.1 Let M be a Hopf real hypersurface in
G,(C™?) such that D or D" -component of the
Reeb vector field is A -invariant. If (V4R )Y =

ViR, )X , 1=1,2,3, for any XYeTM , then
€ D or £eD".

From this, if =0 we obtain 7(X,)n(&)=0, giving
us the result. Thus we suppose «a # 0. Therefore

1
Ag X, :;(4772 (Xo)+a® )4 X,
We also have

Proof: As we suppose A& =aé and have written

E=n(Xy)X,+n(&) & with n(X,) and 7(&) non #& =45 =n(X,)hX,

(VxRy )Y =V (R (Y)) =Ry (V,Y)
= (Y \4 51)51 1(Y)Vx§1
g(Aan)U(é)"'g(¢Y3Vx§1)}¢6€1+771(¢Y)77(§1)AX_771(AX)§+¢VX§1}

{{ v+1( ) (¢V+2Y)+qv+2( )771(¢v+1Y)+77v(Y)771(AX)_g(AX’Y)UV(51)+g(¢vavx§1)}¢v§1
+1, (¢VY){_ 0y (X )¢v+2§1 +0,., (X )¢v+1§1 +n, (651)AX -1 (AX )ézv +¢VVX§1}}
3 ()0 (Y08 )+ 8y (X) O (Y-8 )+, (), (AX) 5 (AX. Y )1, (&)

: +7(Y )7 (4,AX )+ g (AX,Y )7, (85)+9(4.8Y, V&)1 n(5)S,
+0 (Y. 06,5) (Ve &)+ (#AX)E, +1 (&) Vi E |}

A0 () BafV) + s (X)) 1, (#Y )1, (AX) = g (AX,BY )1, (&) + 17, (4, AX ) 1(Y)

v=1

+g(AXY)n(8,6)+9(4.8Y.V &)} 6,65
+1 (8.8 ) {00 (X) 8,288 +0,.5 (X) 8,6 +7, (#5) AX
~g(AX,$5) &, +1(&) 4, AX = (AX)4.E+ 4,4V &}
_{{”(Vxé)ﬂh (ng)}gﬁl(/ﬁY
+7(E)=0 (X) @Y +0, (X)hY +7,(8Y ) AX =g (AX,4Y )& +7(Y) 4AX - g (AX.Y ) $&}}

+0 (Y, Vi &) +n(Y)(=0 (X )i + 0 (X) o8& — 9 (AXE) & + AV & +71(E) FAX =1, (AX) BE + 9V &)
+H{m (Vi AL )+ (AG V&) AY +17, (AL ) (V< A)Y
—{{771 ((VeA)Y)+g(AY.V, &)} A +771(AY)VXA§1}

~g
3{{n(y
=y

(3.3)
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From (3.3) we get

0((V:Ry )%, ) =-am(X,)-a'n(x,) (34)
“Tan’ (X,)+an(X,)n* (&)

and

9((V4 Ry )&.d X, | = —4an(X,)
+an(X,)n’ (&)—4an’ (X,).

As we suppose that R is of Codazzi type (3.4)
and (3.5) must be equal. Th1s yields «a 77(X ) 0.As
we suppose « # 0 the result follows. O

With the hypothesis in Lemma 3.1, we can prove:

Lemma3.21If &eD* then g(AD,D")=0

Proof: In this case, we can take & =¢& . Thus the
condition of R being of Codazzi type is equivalent
to R. also belng Taking Y=¢ and X e D we get

(ViR.)&=-pAX —aAgAX — 21, (AX )&,
+217, (AX )&, — ¢ AX.

(3.5)

(3.6)

On the other hand
(V.R)X =&(a)AX +a(V.A)X.  (37)
Therefore we have
—¢pAX —a AgAX =215 (AX )&, + 217, (AX) & — ¢ AX
=&(a) AX +a(V,A)X
Taking its scalar product with &, it follows
—ag(APAX. &, ) - 217, (AX)

3.8
:(f(a)nz(AX)+ag((V§A)X,§2). 38)
and the scalar product with &, yields
~ag(APAX, &) +2m, (AX)
(3.9)
:é(a)n3(AX)+ag((V§A)X,§3)
Now the Codazzi equation gives
g((ng)X’gz)zg((VXA)évgz)
=-9(APAX. &, ) +am, (AX).
and
9((V-A) X&) =g((VxA)EE)
=-g(ABAX. &)~ an, (AX).
From (3.8) and (3.9) we get
> +2)n, (AX , (AX)=0.
(e 2 (AX) el ()0

(@ +2)m, (AX)+&(a)m; (AX) =

Copyright © 2011 SciRes.

If £(a)=0 we have finished. If &(a)#0, from (3.10)
a’+2

&(a)

Clearly, this yields 7, (AX)

we obtain 77, (AX)=-——=n,(AX) and 7, (AX)
a’+2

——n, (AX).
f( O() m ( )
=15 (AX) =0, finishing the proof. o

From this Lemma and Proposition 2.2, in order to fin-
ish the proof of our Theorem, we only have to see if the
real hypersurfaces of either type (A) or type (B)
satisfy our condition.

In the case of a real hypersurface of type (A) we get
from Proposition 3 in [1], considering £=¢ and taking
X=¢&,, Y=£, that if our condition is satisfied we
should have (V. R. )¢ =(V.R.)¢, . This yields

—a(V.A)E +af’é + 285 = 0.As (V. A)& = (a- p)
0, (£)& we have
~a(a-p)6;(§)s+B(ap+2)& =0.

From (3.11) we have a(a-p)q,(£)=0 and
B(af+2)=0.1If a=0, from the second equality we
also obtain f=0,but S :\/Ecot(\/zr) for some

(3.11)

T
r e| 0,— |. Thus this is impossible.
[ 8 j

If a=p, from the second equality we get
a’+2=0, having a contradiction. Thus g, (f):().
From the second equality we get aff+2=0, with

a:\/gcot(\/gr) and ﬁ:\/zcot(ﬁr) for some
b
re|0,—= |. Then af+2=2cot’ J2r =0, which is
0 %) ()

impossible and we can conclude that type (A) real hy-
persurfaces do not satisfy our condition.

In the case of a real hypersurface of type (B) let us
suppose it satisfies our condition. From Proposition 2 in

[1] it is easy to see that g((Vngl )§l,¢§1) =—4a and

g ((VﬂRg] )§,¢§1) =—4fB+af>. As both expressions
4p

-, where now

must be equal, we obtain o=

a=-2tan(2r) and B=2cot(2r), for some re (Q%) :

This yields tan® (2r) = -2, which is impossible and the
proof concludes.

As a conclusion we have obtained that Jacobi opera-
tors corresponding to D" -directions have the same be-
haviour as the normal Jacobi operator and structure Ja-
cobi operator if we consider their covariant derivatives in
the direction of any tangent vector field are null. In order
to continue this research it is interesting to investigate
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what occurs if the covariant derivatives are taken in di-
rections corresponding to the two distributions appearing
on the real hypersurface, namely D and D*. Also we
can consider as a future work what happens if we deal
with Lie derivatives of these Jacobi operators instead
covariant derivatives.
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