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Abstract 
SPH has a reasonable mathematical background. Although VBM and MPS are similar to SPH, their 
mathematical backgrounds seem fragile. VBM has some problems in treating the viscous diffusion 
of vortices but is known as a practical method for calculating viscous flows. The mathematical 
background of MPS is also not sufficient. Not with standing, the numerical results seem reasonable 
in many cases. The problem common in both VBM and MPS is that the space derivatives necessary 
for calculating viscous diffusion are not estimated reasonably, although the treatment of advection 
is mathematically correct. This paper discusses a method to estimate the above mentioned prob-
lem of how to treat the space derivatives. The numerical results show the comparison among FDM 
(Finite Difference Method), SPH and MPS in detail. In some cases, there are big differences among 
them. An extension of SPH is also given. 
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1. Introduction 
The author has once shown how to obtain the space derivative in an irregular mesh using the moving least 
square method [1]. A similar problem is discussed from a different viewpoint in SPH. Gingold & Monaghan [2] 
and Lucy [3] have developed Smooth Particle Hydrodynamics method (SPH). In SPH, the continuous mass dis-
tribution is approximated by the finite number of particles. Namely, the continuous quantities are represented by 
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the finite number of the discrete quantities. At the same time, the space derivatives of the distributed quantities 
are expressed algebraically by the discrete quantities. Then, they transform the continuous system into a discrete 
system convenient for the numerical solution of the initial and boundary value problem. 

Vortex Blob Method (VBM) is one of the practical numerical tools for high Reynolds number flows [4]. The 
abduction is approximated reasonably. However, the diffusion of vortices can’t be approximated precisely. We 
have shown that this problem can be solved, if we apply the ideas developed by SPH. 

Moving Particle Semi-implicit method (MPS) uses a similar discretization of the initial and boundary value 
problem as SPH and VBM. However, the mathematical background is not sufficient. Not with standing, the nu-
merical results seem reasonable in many cases [5]. This suggests us that we may find the mathematical back-
ground [1] [6]. We have shown an interesting relationship between SPH and MPS as far as the gradient operator 
is concerned. 

The numerical results show the comparison among FDM, SPH and MPS in detail. In some cases, there are big 
differences among them. 

A classification of numerical solutions is shown in Figure 1. The weak solutions: FEM, FVM, IRM and 
GIRM are Finite Element Method, Finite Volume Method, Integral Representation Method and Generalized 
Integral Representation Method, respectively. The strong solutions: FDM, SPH, MPS, LBM and ColM are Fi-
nite Difference Method, Smooth Particle Hydrodynamics, Moving Particle Semi-Implicit Method, Voltex Blob 
Method, Lattice Boltzmann Method and Collocation Method, respectively. The general characteristics of the 
various numerical solutions are shown in Table 1. Since SPH, VBM and MPS belong to the strong solutions and 
are mesh-less methods, the low computational cost becomes very important in some cases. 

2. Discretization Used in SPH and the Extension 
Let 1 2 3

1 2 3x x x x x y zα
α= = + + = + +x e e e e i j k  be a position vector, where the suffix in Greek letter is used to 

refer to the component of the coordinates, and the summation convention is used for the Greek suffixes. We de-
fine a function ( )η x  as an integral of ( ) ( ) ( )w ξ ρ′ ′ ′−x x x x  with respect to a volume V, where ( )w x , 
( )ξ x  and ( )ρ x  are a weight function, an auxiliary function and the density of a fluid, respectively: 

( ) ( ) ( ) ( )d
V

w Vη ξ ρ′ ′ ′ ′= −∫x x x x x .                            (1) 

The function ( )η x  and ( )ξ x  can be scalars, vectors and tensors. If we introduce an discretization of the vo-
lume V and the density ρ  as 

, 0,1, , 1,j
j

V V j N= = −∑                                  (2) 

 

 
Figure 1. Classification of numerical solutions. 

 
Table 1. General characteristics of weak and strong solutions (◎: 
very good, ○: good, △: not good). 

 Week method Strong method 

Stability ○ × 

Precision ○ △ 

Computational cost (memory, time) × ◎ 
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( )d , 0,1, , 1,jV M j Nρ = = −x                                 (3) 

where the suffix in Roman letter is used to discriminate the point, and jM  is the mass of the volume element 
d jV . We have an approximation of Equation (1): 

( ) ( ) ( )j j j
j

w Mη ξ= −∑x x x x .                               (4) 

Furthermore, if we assume for the weight w 

( )d 1
V

w V =∫ x                                      (5a) 

and 

0 for .w σ= >x                                     (5b) 

If σ  tends to 0, ( )w x  tends to ( )δ x , where ( )δ x  is Dirac’s delta function, namely: 

( ) ( ) , when 0.w δ σ→ →x x                                 (6) 

Using Equation (6), we have a following approximation: 

( ) ( ) ( ) ( ) ( ) ( )d
V

w Vη ξ ρ ξ ρ′ ′ ′ ′= − =∫x x x x r x x .                       (7) 

From Equations (4) and (7), we obtain 

( ) ( ) ( ) ( )j j j
j

w Mξ ρ ξ= −∑x x x x x .                            (8) 

If we assume ( ) 1ξ =x , then, we have from Equation (8) 

( ) ( ) ( ) ( )d j jV
j

w V w Mρ ρ′ ′ ′= − = −∑∫x x x x x x .                       (9) 

Substituting i=x x , we obtain 

( ) ( )i i j j
j

w Mρ = −∑x x x .                                (10) 

Hence, we have 

( ) ( ) ( ) ( ) ( )0 0 di i i i iw M w Vρ ρ ρ≈ = ≈x x x .                         (11) 

This means that Equation (9) is a plausible approximation. 
Substituting Equation (9) into Equation (8), we obtain 

( )
( ) ( )

( ) ( ) ( ) ( )1j j j
j

j j j
jj j

j

w M
w M

w M

ξ
ξ ξ

ρ

−
= = −

−

∑
∑

∑

x x x
x x x x

xx x
.                 (12) 

Setting x  to ix  in Equation (12), we have using Equation (10) 

( ) ( ) ( ) ( )1
i i j j j

ji

w Mξ ξ
ρ

= −∑x x x x
x

.                           (13) 

Operating xα∂ ∂  on both sides of Equation (8), we obtain 

( ) ( ) ( ) ( ) ( ) ( )j
j j

j

w
M

x x xα α α

ξ ρ
ρ ξ ξ

∂ −∂ ∂
+ =

∂ ∂ ∂∑
x xx x

x x x .                     (14) 
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If we assume 

( ) ( )j jw w− = −x x x x .                                 (15) 

We derive 

( ) ( ) ( )
d

d
j j j j

j
j j

w w x x
w

x x

α α

α α

∂ − − ∂ − −
′= = −

∂ ∂− −

x x x x x x
x x

x x x x
,                   (16) 

( ) ( ) ( )j j
j j j

j j j

w x x
M w M

x x

α α

α α

ρ ∂ − −∂
′= = −

∂ ∂ −
∑ ∑

x xx
x x

x x
.                    (17) 

Substituting Equations (9), (16) and (17) into Equation (14), we obtain 

( )
( ) ( ) ( ) ( )( )1 j

j j j
j j

x x
w M

x

α α

α

ξ
ξ ξ

ρ
−∂

′= − − −
∂ −

∑
x

x x x x
x x x

.                   (18) 

Setting x to xi in Equation (18), we have 

( )
( ) ( ) ( ) ( )( )1 i j

i j i j j
j ii i ji

x x
w M

x

α α

α

ξ
ξ ξ

ρ ≠

−∂ 
′= − − − ∂ − 

∑
x

x x x x
x x x

.                 (19) 

( ) ( ) i j
i j j

j i i ji

x x
w M

x

α α

α

ρ

≠

−∂ 
′= − ∂ − 

∑
x

x x
x x

,                           (20) 

where we assume ( )0 0w′ = . 
Now, we derive formulas for second derivatives. Firstly, from Equation (14), we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 2

2

.
j

j j
j

x x x x x x x x
w

M
x x

α β β α α β α β

α β

ξ ξ ρ ξ ρ ρ
ρ ξ

ξ

∂ ∂ ∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ −
=

∂ ∂∑

x x x x x x
x x

x x
x

                  (21) 

From Equations (16) and (17), we obtain 

( ) ( )

( ) ( )( ) ( ) ( )( )

2

2 3 ,

j j
j

j

j j j j
j j

jj j

w x x
w

x x x

x x x x x x x x
w w

β β

α β α

α α β β α α β βαβδ

 ∂ − −∂ ′ = −
∂ ∂ ∂ −  

 − − − − ′′ ′= − + − −
 −− − 

x x
x x

x x

x x x x
x xx x x x

     (22) 

( ) ( )

( ) ( )( ) ( ) ( )( )

22

2 3 ,

j
j

j

j j j j
j j j

j jj j

w
M

x x x x

x x x x x x x x
w w M

α β α β

α α β β α α β βαβ

ρ

δ

∂ −∂
=

∂ ∂ ∂ ∂

  − − − −  ′′ ′= − + − −
  −− −   

∑

∑

x xx

x x x x
x xx x x x

    (23) 

where αβδ  is Chronecker’s delta: 1αβδ =  and 0αβδ =  when α β=  and α β≠ , respectively. Substitut- 
ing Equations (9), (17), (22) and (23) into Equation (21), we derive 
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( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

22 2

2 3

1

j
j j

j

j j j j
j j j j

j jj j

i j j
i j i j j j

j j

w
M

x x x x x x x x x x

x x x x x x x x
w w M

x x x x
w M w

α β α β β α α β α β

α α β β α α β βαβ

β β α α

ξ ξ ρ ξ ρ ρ
ρ ξ ξ

δ ξ

ξ ξ
ρ

∂ −∂ ∂ ∂ ∂ ∂ ∂
= − − −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

  − − − −  ′′ ′= − + − −
  −− −   

− −
′ ′+ − − −

−

∑

∑

∑

x xx x x x x x
x x x

x x x x x
x xx x x x

x x x x x x
x x x x

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

2 3

2

1
| |

j
j j

i j j
i j i j j j j

j jj j

j j j j
j j j

j jj j

j j j j
j j

jj j

M

x x x x
w M w M

x x x x x x x x
w w M

x x x x x x x x
w w

α α β β

α α β β α α β βαβ

α α β β α α β βαβ

ξ ξ
ρ

δξ

δ

−

− −
′ ′+ − − −

− −

  − − − −  ′′ ′− − + − −
  −− −   

− − − −
′′ ′= − − + − −

−− −

∑

∑ ∑

∑

x

x x x x x x
x x x x x

x x x x x
x xx x x x

x x x x
x xx x x x

( ) ( )( )

( ) ( ) ( ) ( )( ) ( )( )
( ) ( )( )

3

1 .

j j
j

i j k i j k
k i j i j j k

j k j k

M

x x x x x x x x
w w M M

β β α α α α β β

ξ ξ

ξ ξ
ρ

  
   ⋅ −
  
   

 − − + − − ′ ′+ − − −
− ⋅ −

∑

∑∑

x x

x x x x x x
x x x x x

(24) 

Setting x  to ix  in Equations (22), (23) and (24), we have 

( ) ( ) ( )( ) ( ) ( )( )2

2 3

j i j i j i j i j
i j i j

i ji j i ji

w x x x x x x x x
w w

x x

α α β β α α β βαβ

α β

δ  ∂ − − − − −   ′′ ′= − + − −
  ∂ ∂ −− −   

x x
x x x x

x xx x x x
,  (25) 

( ) ( ) ( )( ) ( ) ( )( )2

2 3

i j i j i j i j
i j j j

j i ji i j i j

x x x x x x x x
w w M

x x

α α β β α α β βαβ

α β

ρ δ  − − − − ∂   ′′ ′= − + − −    ∂ ∂ −  − −     
∑

x
x x x x

x xx x x x
, (26) 

( ) ( )

( ) ( )( ) ( ) ( )( )
( ) ( )( )

( ) ( ) ( ) ( )( ) ( )( )
( ) ( )( )

2

2 3

1

i

i

i j i j i j i j
i j i j j j

j i i ji j i j

i j i k i j i k
i k i j i j j k

j i k ii i j i k

x x

x x x x x x x x
w w M

x x x x x x x x
w w M M

α β

α α β β α α β βαβ

β β α α α α β β

ξ
ρ

δ ξ ξ

ξ ξ
ρ

≠

≠ ≠

 ∂
 
∂ ∂  

  − − − −  ′′ ′= − − + − − −
  −− −   

 − − + − − ′ ′+ − − −
− ⋅ −

∑

∑

x
x

x x x x x x
x xx x x x

x x x x x x
x x x x x

,∑

(27) 
where we assume ( )0w′′  is finite. From Equation (19), we obtain for scalar φ  and vector a 

[ ] ( ) ( ) ( ) ( )( )1 i j
i j i j ji

j ii i j

w Mφ φ φ
ρ ≠

−
′∇ = − − −

−
∑

x x
x x x x

x x x
,                  (28) 

[ ] ( ) ( ) ( ) ( ) ( )( )1 i j i j
i j ji

j ii i j

w M
ρ ≠

− ⋅ −
′∇ ⋅ = − −

−
∑

x x a x a x
a x x

x x x
.                 (29) 

From Equation (27), we obtain for scalar φ  
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( ) ( )

( ) ( )( ) ( ) ( )( )
( ) ( )( )

( ) ( ) ( ) ( )( ) ( )( )
( ) ( )( )

( )

2

2 3

1

ii

i j i j i j i j
i j i j j j

j i i ji j i j

i j i k i j i k
i k i j i j j k

j i k ii i j i k

i j

x x x x x x x xdw w M

x x x x x x x x
w w M M

w

α α α α α α α α

α α α α α α α α

φ ρ

φ φ

φ φ
ρ

≠

≠ ≠

 ∇ 

  − − − −  ′′ ′= − − + − − −
  −− −   

 − − + − − ′ ′+ − − −
− ⋅ −

′′= − − +

∑

∑∑

x x

x x x x x x
x xx x x x

x x x x x x
x x x x x

x x ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )
( ) ( )( )

1

12 ,

i j i j j
j i i j

i j i k
i k i j i j j k

j i k ii i j i k

dw M

w w M M

φ φ

φ φ
ρ

≠

≠ ≠

 −′ − −
−  

− ⋅ −
′ ′+ − − −

− ⋅ −

∑

∑∑

x x x x
x x

x x x x
x x x x x x

x x x x x

 

(30) 
where d is the number of the dimension. 

3. Application to Vortex Blob Method (VBM) 
The basic equations for an incompressible viscous flow are given by Navier-Stokes equation [7]: 

2p
t

ρ ρ µ∂
+ ⋅∇ = −∇ + ∇

∂
u u u u ,                              (31) 

or 

2d
d

p
t

ρ µ= −∇ + ∇
u u ,                                  (32) 

where µ  is the coefficient of viscosity, and the continuity equation: 
0∇⋅ =u .                                       (33) 

The pressure p satisfy 

( )2 p ρ∇ = − ∇ ⋅∇u u .                                  (34) 

The viscous flow is determined by Equations (31) or (32), (33) and (34). 
If we introduce vorticity ω, the basic equations can be rewritten as 

, 0= ∇× ∇⋅ =u uω ,                                  (35) 

t
ρ ρ ρ µ∂

+ ⋅∇ = ⋅∇ + ∆
∂

u uω ω ω ω .                            (36) 

Equation (36) can be written as 

d
dt

ν= ⋅∇ + ∆uω ω ω ,                                  (37) 

where ν µ ρ=  is the kinematic viscosity. 
If ω is determined, the velocity u is obtained by an integral representation [7]: 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )

, , , , , , , d

, , , d , , ,
S

V

t t t t t S

t t V t

ε

∞

 = − ⋅ − × × 
− × +

∫∫
∫∫∫

u x G x u n G x n u

G x u x

ξ ξ ξ

ξ

ξ ξ ξ ξ

ξ ω ξ ξ
              (38) 

where 1,1 2, 0ε =  when V∈x , S∈x , V S∉ x , respectively, and 

( ) ( ), ,G δ∆ =x x xξ ξ ,                                (39a) 
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( )
( )
( ) ( )
( ) 1

1 2 in 1D

, 1 2π ln in 2D

1 4π in 3D

G
−

 −
= −

− −

x

x x

x

ξ

ξ ξ

ξ

                          (39b) 

( ) ( ) ( )
( )( )
( )( )
( )( )

2

3

1 2 in 1D

, , , 1 2π in 2D

1 4π in 3D
i iG G

 − −
∇ = = = − −


− −

x

x x

x G x x e x x

x x

ξ ξ

ξ ξ ξ ξ ξ

ξ ξ

             (39c) 

The second term on the right hand side of Equation (38) is usually called Bio-Savart law. 
Vortex Blob Method (VBM) uses Equations (37) and (38) and discretizes the vortex field as an assembly of 

concentrated vortices. The position of the concentrated vortices are determined by 

( ) ( )
d ,

,
d

t
t

t
=

x a
u a ,                                  (40) 

where a is the Lagrangian coordinates. It becomes very important how to obtain ⋅∇uω  and ∆ω . 
In this problem, we use the vorticity ω corresponds to the density ρ in Section 2. Then, we consider instead of 

Equation (1) 

( ) ( ) ( ) ( )d
V

w Vη ξ ω′ ′ ′ ′= −∫x x x x x .                            (41) 

Equation (3) is replaced by 

( )d , 0,1, , 1jV j Nω ′ ′ = Ω = −x  .                             (42) 

Then, we have instead of Equations (8) and (9) 

( ) ( ) ( ) ( )j j j
j

wξ ω ξ= − Ω∑x x x x x .                            (43) 

( ) ( ) ( ) ( )d j jV
j

w V wω ω′ ′ ′= − = − Ω∑∫x x x x x x .                      (44) 

In all equations in Section 2, if we replace ρ and M with ω and Ω, respectively, we obtain the differential 
formulas in Section 3. 

4. Mathematical Background of Moving Particle Semi-Implicit Method (MPS) 
From Equations (19), (28) and (30), we have 

( )
( ) ( ) ( ) ( )( ), 1 , ,i j

i j i j j
j ii i ji

x xu t
w u t u t M

x

β βα
α α

β ρ ≠

  −∂
′= − − − 

∂ −  
∑

x
x x x x

x x x
,             (45) 

[ ] ( ) ( ) ( )( ) ( )1 i j
i j i j ji

j ii i j

p p p w M
ρ ≠

−
′∇ = − − −

−
∑

x x
x x x x

x x x
,                   (46) 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

2 1, , ,

12 .

i i j i j i j ji j i i j

i j i k
i k i j i j j k

j i k ii i ki j

du t w w u t u t M

w w M M

α α αρ

φ φ
ρ

≠

≠ ≠

 −  ′′ ′ ∇ = − − + − −  −  

− −
′ ′+ − − ⋅ −

−−

∑

∑∑

x x x x x x x x
x x

x x x x
x x x x x x

x x xx x

       (47) 

If the weight ( )w r  satisfies 

( ) ( ) ( ) ( ) ( ) 1
1 1 0

d 1~ and 2 1 2 1 π d 1
d

d
i i

w r
w r d w r r r

r r
δ δ

∞ − − + − − =  ∫ ,               (48) 
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then, we obtain 

( ) ( )
~

c d
w r

r
,                                     (49) 

where ( )c d  is a constant. Then, we have 

( ) ( ) ( ) ( ) ( ) ( )
2

2 2 3 2

d d 21 2~ ~ and .
d d

w r c d w r c d
w r w r

r rr r r r
− − = =                   (50) 

Substituting Equations (49) and (50) into Equations (45), (46) and (47), we obtain 

( )
( ) ( ) ( ) ( )( )2

, 1 , ,i j
i j i j j

jii i j

x xu t
w u t u t M

x

β βα
α α

β ρ
  −∂

≈ − − 
∂  − 

∑
x

x x x x
x x x

,            (51) 

[ ] ( ) ( ) ( )( ) ( ) 2

1 i j
i j i j ji

ji i j

p p p w M
ρ

−
∇ ≈ − −

−
∑

x x
x x x x

x x x
,                  (52) 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )
( ) ( )( )

2
2

2 2

3, , ,

12 .

i i j i j ji j i i j

i j i k
i k i j i j j k

j i k ii i j i k

du t w u t u t M

w w u u M M

α α α

α α

ρ

ρ

≠

≠ ≠

− ∇ ≈ − − 
−

− ⋅ −
+ − − −

− ⋅ −

∑

∑∑

x x x x x x
x x

x x x x
x x x x x x

x x x x x

       (53) 

Now, we consider a weight ( )w r  with a small parameter 0 erε< =  and constant α : 

( )
( )

( )

1 0
1

0 ,

e
e

e

e

r r r
r rw r

r r

α
ε ε

  
− ≤ ≤  + +=   

 ≤

                         (54) 

where r = x . The weight ( )w r  has an asymptotic form: 

( ) 1 1 1~ 1 when .
1

e e
e e

e e

r rw r r r r
r r r r r

α α α ε
ε ε

    = − − = − < ≤    + +     
              (55) 

This asymptotic form is similar to ( )k r  defined by Equation (4) in Ref. [5]. If er  is big, ( )w r  satisfies Eq-
uation (49). In this case, Equation (52) has similar forms as given by Equation (2) in Ref. [5], if we assume 

1jM = , 0,1,j =  . 
The author has once discussed this problem from a different angle [1] and had the conclusion that the discrete 

differential operators used in MPS, especially, Laplace operator don’t have the strict background from the ma-
thematical viewpoint. Those operators should be considered to be a kind of experimental formulas that is de-
rived numerically. If we apply them to irregular grids, the results vary irregularly. We should say the operator 
estimate the derivatives statistically. Quite naturally, the results are not unique. It may give a good estimate in 
one time and a wrong result in the other time. Hence, if we need to verify the accuracy, we should obtain several 
numerical results of the same problem using the various discretizations of the region and take the statistical av-
erage. 

Although we do not deny this kind of approach, we wish to ensure the reliability. For the purpose, we need 
much discussion. Recently, a new paper [6] discusses the accuracy of Laplace operator in MPS in detail. Hope-
fully, we wish to prove mathematically, if possible, that, if we decrease the grid size zero, then, the numerical 
error approaches stably to zero. 

5. Numerical Verification of Discretized Differential Operators of SPH with  
Gaussian Kernel 

Numerical calculations were conducted to verify the validity of the discretized differential operators such as 
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Equations (28) and (30). For simplicity, one-dimensional (1D) cases were considered. The first and second de-
rivates of a scalar function ( )xφ : 

( ) ( )sin 2π in 0x x L x Lφ = ≤ ≤                               (56) 

were calculated using Equations (28) and (30), respectively. 
The region is divided into N intervals. First, we consider the uniform mesh. Let dxi and xi ( )0,1, , 1i N= −  

be the length of the interval and the midpoint of the interval i, respectively: 

( )
0

1 1

0.5d for 0
, d d and d d .

0.5 d d for 1, 2,i j j j j
i i i

x i
x V x M V x

x x x i
ρ ρ

− −

== = = = + + = 

      (57), (58) 

As the weight function ( )w r , we use Gaussian function: 

( )
2

2

1 exp
22π
rw r
γγ

 
= − 

 
.                               (59) 

The weight function ( )w r  satisfies 

( )
0

2 d 1w x x
∞

=∫ .                                   (60) 

The 1D version of Equations (28) and (30) are given by 

( ) ( ) ( ) ( )( )d 1
d

i j
i j i j j

j ii i i j

x x
w x x x x M

x x x
φ φ φ

ρ ≠

−  ′= − − −  − 
∑x

,                 (61) 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( )( )

2

2

d
d

12 .

i i j i j j
j ii

i j i k
i k i j i j j k

j i k ii i j i k

x w x x x x M
x

x x x x
w x x w x x x x M M

x x x x x

φ ρ φ φ

φ φ
ρ

≠

≠ ≠

 
′′= − − − 

 

− −
′ ′+ − − −

− −

∑

∑∑
         (62) 

5.1. Uniform Density and Regular Mesh 
The density iρ  and the length of element d ix  are given by 

1 0,1, , 1,i i Nρ = = −                                  (63a) 

d 0,1, , 1,ix L N i N= = −                                (63b) 

where the computational region is defined as 0 x L< < . 

5.1.1. Verification of Gradient Operator 
From Equations (61), (63) and (45), we have 

( ) ( ) ( )( )d
d

i j
i j i j j

j ii i j

x x
w x x x x M

x x x
φ φ φ

≠

−  ′= − − −  − 
∑ .                     (64) 

We used parameters: 4L = , 80N =  and d 0.05xγ = = . The numerical results are shown in Figure 2. Al-
though there exist large errors at the boundaries as shown in Figure 2(a), the numerical results agree very well 
with the exact except the neighborhood of the boundaries. If we extend the region beyond the boundaries, the 
estimations within the original region are improved as shown in Figure 2(b). 

5.1.2. Verification of Laplace Operator 
From Equation (62), we have 
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Figure 2. A comparison between calculated and exact values 
of dφ/dx ((a) Not using extension of region; (b) Using exten-
sion of region). 

 
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )
( ) ( )( )

2

2

d
d

12 .

i i j i j j
j ii

i j i k
i j i k i j j k

j i k ii i j i k

x w x x x x M
x

x x x x
w x x w x x x x M M

x x x x x

φ
ρ φ φ

φ φ
ρ

≠

≠ ≠

   ′′= − − −     

− ⋅ −
′ ′+ − − −

− ⋅ −

∑

∑∑

x

         (65) 

The numerical results are shown in Figure 3. If we extend the region beyond the boundaries, the estimations 
within the original region are improved. 

5.2. Non-Uniform Density and Regular Mesh 
The density iρ  and the length of element d ix  are given by 

( )21 0,1, , 1,i ix L i Nρ = + = −                               (66a) 

d , 0,1, , 1,ix L N i N= = −                                (66b) 

respectively. The other parameters are same as in Section 5.1.1. 
The numerical results are shown in Figure 4. The numerical result agrees well with the exact result. 

5.3. Uniform Density and Non-Uniform Mesh 
The density iρ  and the length of element d ix  are given by 

1 0,1, , 1,i i Nρ = = −                                  (67a) 

( ) ( )
11 1

0
d 1.05 0,1, , 1, 1.05 ,

i Ni i
i

i

L Lx i N L
N N

α α
= −

− −

=

= = − =∑                  (67b) 

respectively. The other parameters are same as in Section 5.1.1. 
The numerical results are shown in Figure 5. The numerical result agrees well with the exact result. 

5.4. Non-Uniform Density and Non-Uniform Mesh 
The density iρ  and the length of element d ix  are given by 

( )21 0,1, , 1,i ix L i Nρ = + = −                             (68a) 



H. Isshiki 
 

 
424 

 
Figure 3. A comparison between calculated and exact values 
of d2φ/dx2 ((a) Not using extension of region; (b) Using ex-
tension of region). 

 

 
Figure 4. A comparison between calculated and exact values 
((a) Gradient operator dφ/dx; (b) Laplace operator d2φ/dx2). 

 

 
Figure 5. A comparison between calculated and exact values 
((a) Gradient operator dφ/dx; (b) Laplace operator d2φ/dx2). 
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( ) ( )
11 1

0
d 1.05 0,1, , 1, 1.05

i Ni i
i

i

L Lx i N L
N N

α α
= −

− −

=

= = − =∑                   (68b) 

respectively. The other parameter are same as in Section 5.1.1. 
The numerical results are shown in Figure 6. The numerical result agrees well with the exact result. 

6. Comparison between SPH and MPS 
6.1. 1D Formulas for Discrete Gradient and Laplacian Operator 
For convenience, we summarize the 1D discrete differential operators used in SHP and MPS as follows. From 
Equations (61) and (62), we have for SHP 

( ) ( ) ( ) ( )( )d 1
d

i j
i j i j j

j ii i i j

x x
w x x x x M

x x x
φ φ φ

ρ ≠

−  ′= − − −  − 
∑x

,                 (69a) 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( )( )

2

12 ,

i i j i j ji j i

i j i k
i k i j i j j k

j i k ii i j i k

x w x x x x M

x x x x
w x x w x x x x M M

x x x x x

φ ρ φ φ

φ φ
ρ

≠

≠ ≠

  ′′∇ = − − − 

− −
′ ′+ − − −

− −

∑

∑∑
         (69b) 

( )di i iM x xρ= .                                   (69c) 
From Refs. [5] and [8], we have for MPS 

( ) ( )2

d 1
d

j i
j i j i

j ii i j i

x x w x x
x n x x

φ φφ
≠

−  = − − 
  −

∑ ,                       (70a) 

( ) ( )
2

2

d 2
d j i j i

j ii ii

w x x
nx

φ φ φ
λ ≠

 
= − − 

 
∑ ,                          (70b) 

where 

( ),i j i
j i

n w x x
≠

= −∑                                  (71a) 

( )
( )

2

.
j i j i

j i
i

j i
j i

x x w x x

w x x
λ ≠

≠

− −
=

−

∑

∑
                             (71b) 

 

 
Figure 6. A comparison between calculated and exact values 
((a) Gradient operator dφ/dx; (b) Laplace operator d2φ/dx2). 
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6.2. Effects of Mesh and Weight on Estimation of Gradient and Laplacian of a Given  
Function 

We summarize the meshes and weights used in the following in Table 2 and Table 3, respectively. 
The parameters used in Sections 6.2.1-6.2.5 are given below. 

4L = , 40N = , 1ρ = , d for SPH0i ixγ = , 

8d for SPH1 and SPH2, and 2d for MPSi i ih x x= , 

_ 8 for SPH0, SPH1 and SPH2, and 2 for MPSend corN = . 

In Sections 6.2.1-6.2.5, the computational results are shown in Figures 7-11. The results are summarized Ta-
ble 4 and Table 5 in Section 6.2.6. 

6.2.1. Regular Mesh  
As shown in Figure 7, there are no big errors in all methods SPH0, SPH1, SPH2 and MPS. The accuracy of 
SPH0 is very high. 
 

Table 2. Classification of mesh. 

Name d ix  

Regular d i

Lx
N

=  

Algebraic d
100i

L Lx i
N

α  = + 
 

, 
1

0

d
i N

i
i

x L
= −

=

=∑  

Geometric 1d 1.05i
i

Lx
N

α −= , 
1

0

d
i N

i
i

x L
= −

=

=∑  

Random ( )( )d 1 0.0625drandi

Lx i
N

α= + , 
1

0

d
i N

i
i

x L
= −

=

=∑  

Sinusoidal d 1 0.5sin 4πi

L ix
N N

α   = +  
  

, 
1

0

d
i N

i
i

x L
= −

=

=∑  

 
Table 3. Classification of weight. 

Name Weight 

SPH0 … Gauss ( )
2

2

1 exp
22π
x

w x
γγ

 
= −  

 
, x < ∞  

SPH1 … Lucy ( )
3

5 1 1 3 1 ,
4
0,

x x
x

w x

x

σ
σ σ σ

σ

   
 + − ≤  =    
 >

 

SPH2 … Opt.kernel ( )

2 3

3

| |1 6 6 , 0 0.5

4 2 1 , 0.5
3

0,

x x x h
h h

x
w x h x h

h h
h x

     − + ≤ <   
   


 

= − ≤ < 
 

 ≤



 

MPS ( ) 1, 0
0,
h x x h

w x
h x

 − ≤ <=  ≤
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Table 4. Summary on dφ/dx (○: good, △: not good, ×: bad). 

 Regular Algebraic Geometric Random Sinusoidal 

SPH0 ○ ○ ○ ○ △ 

SPH1 ○ △ △ ○ × 

SPH2 ○ △ △ ○ × 

MPS ○ ○ × ○ ○ 

 
Table 5. Summary on d2φ/dx2 (○: good, △: not good, ×: bad). 

 Regular Algebraic Geometric Random Sinusoidal 

SPH0 ○ ○ ○ △ △ 

SPH1 △ △ △ △ × 

SPH2 ○ △ △ △ × 

MPS ○ × × ○ × 

6.2.2. Algebraic Mesh  
As shown in Figure 8, a big error occurs in 2 2d dxφ  of MPS. 

6.2.3. Geometric Mesh  
As shown in Figure 9, a big error occurs in 2 2d dxφ  of MPS. 

6.2.4. Random Mesh  
As shown in Figure 10, the errors are rather small in all methods SPH0, SPH1, SPH2 and MPS not only for 
d dxφ  but also for 2 2d dxφ . The errors in MPS are surprisingly small. 

6.2.5. Sinusoidal Mesh  
As shown in Figure 11, the errors are rather big in all methods SPH0, SPH1, SPH2 and MPS not only for 
d dxφ  but also for 2 2d dxφ  except d dxφ  in MPS. The errors in SHP0 are smaller than those in the other 
methods. 

6.2.6. Summary of Results 
From the above mentioned numerical results, the following summaries are obtained. 

6.3. Application to Solution of Initial Value Problem 
6.3.1. 1D Fluid Motion without Pressure and Viscosity 
The motion of vast number of particles distributed in space under the action of the gravitational force may be 
treated as a fluid motion without pressure and viscosity [9] [10]: 

0u
t x
ρ ρ∂ ∂
+ =

∂ ∂
,                                     (72a) 

u uu
t x x

∂ ∂ ∂Π
+ = −

∂ ∂ ∂
,                                   (72b) 

2

2 4πG
x

ρ∂ Π
=

∂
,                                     (72c) 

where ρ , u and Π  is the density, velocity and gravitational potential. G is the gravitational constant. 
The solution of the problem defined above by Eulerian method is given as follows: 
1) At time t, assume ρ , u and Π are given. 
2) tρ∂ ∂  and u t∂ ∂  are obtained from Equations (72a) and (72b), and Π is obtained from Equation (72c). 
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 d dxφ  2 2d dxφ  

SPH0 

  

SPH1 

  

SPH2 

  

MPS 

  

Figure 7. Regular mesh. 
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 d dxφ  2 2d dxφ  

SPH0 

  

SPH1 

  

SPH2 

  

MPS 

  

Figure 8. Algebraic mesh. 
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 d dxφ  2 2d dxφ  

SPH0 

  

SPH1 

  

SPH2 

  

MPS 

  

Figure 9. Geometric mesh. 
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 d dxφ  2 2d dxφ  

SPH0 

  

SPH1 

  

SPH2 

  

MPS 

  

Figure 10. Random mesh. 
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 d dxφ  2 2d dxφ  

SPH0 

  

SPH1 

  

SPH2 

  

MPS 

  

Figure 11. Sinusoidal mesh. 



H. Isshiki 
 

 
433 

3) ρ , and u at time dt t+  is calculated. 
4) Repeat this process. 
In the solution by Lagrangian method, first, the equations in Eulerian form are transformed into Laglangian 

form: 
Dx u
Dt

= ,                                       (73a) 

Du u uu
Dt t x x

∂ ∂ ∂Π
≡ + = −
∂ ∂ ∂

,                                 (73b) 

D uu
Dt t x x
ρ ρ ρ ρ∂ ∂ ∂
≡ + = −
∂ ∂ ∂

,                                (73c) 

2

2 4πG
x

ρ∂ Π
=

∂
.                                     (73d) 

The following procedures give the solution of the problem defined above by Lagrangian method: 
1) At time t, assume ρ , u and Π are given. 
2) Dx Dt , D Dtρ  and Du Dt  is obtained from Equations (73a), (73b) and (73c), and Π is obtained 

from Equation (73d). 
3) x , ρ  and u of the material point at time dt t+  is calculated. 
4) Repeat this process. 
If ix  is obtained, then, d ix  and iρ  is obtained as shown below: 

( ) ( ) ( )1 1 1 1
1 1 1d
2 2 2i i i i i i ix x x x x x x+ − + −= − + − = −                         (74a) 

and 

d
i

i
i

M
x

ρ = .                                       (74b) 

Hence, from the theoretical viewpoint, this problem can be solved without using the gradient operator. How-
ever, we use the gradient operator to obtain iρ  using the continuity equation. 

1) Trapezoidal Distribution of the Initial Density 
The initial conditions are given by 

( )0 0.5i ix x i L N= = + ,                                 (75a) 

( )

( )

101 0.35 0.025 when 0.25 0.35

1 0.025 when 0.35 0.65
101 0.65 0.025 when 0.65 0.75

0 0.025 otherwise,

i i

i
i

i i

x L L x L
L

L x L

x L L x L
L

ρ

 + − + ≤ <

+ ≤ <= 

 − − + ≤ <

 +

                  (75b) 

0iu = .                                        (75c) 

The boundary conditions are specified as 

0 1 1 2, ;N Nρ ρ ρ ρ− −= =                                   (76a) 

0 1 1 2, .N Nu u u u− −= =                                   (76b) 

The computational conditions are as follows: 
4L = , 41N = , 0.0ν = , d 0.00025t = , 30000dendt t= , 0.0015G = , 

d for SPH0i ixγ = , 2d for MPSi ih x= , _ 8 for SPH0 and 2 for MPSend corN = . 

The numerical results are shown in Figure 12. The FDM (Finite Difference Method) uses the central differ-  
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 ρ in x0 ρ in x 

FDM  

 

SPH0 

  

MPS 

  

Figure 12. Trapezoidal distribution of the initial density. 
 
ences for the first and second space derivatives, and the precision of FDM is considered high. The Eulerian solu-
tion is used for FDM, and the Lagrangian solution is used for SPH0 and MPS. The distribution pattern of MPS 
is slightly different from those of FDM and SPH0. 

2) Rectangular Distribution of the Initial Density with G = 0.001 
The initial conditions are given by 

( )0 0.5i ix x i L N= = + ,                                 (77a) 

0 0.5 when 0.25
1 0.5 when 0.25 0.75
0 0.5 when 0.75 ,

i

i i

i

x L
L x L
L x

ρ
+ <

= + ≤ ≤
 + ≤

                          (77b) 
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0iu = .                                        (77c) 
The boundary conditions are specified as 

0 1 1 2, ;N Nρ ρ ρ ρ− −= =                                   (78a) 

0 1 1 2, .N Nu u u u− −= =                                   (78b) 
The computational conditions are as follows: 

4L = , 41N = , 0.0ν = , d 0.00025t = , 30000dendt t= , 0.001G = , 
d for SPH0i ixγ = , 2d for MPSi ih x= , _ 8 for SPH0 and 2 for MPSend corN = . 

The numerical results are shown in Figure 13. The FDM uses the central differences for the first and second 
space derivatives, and the precision of FDM is considered high, if we neglect the spurious oscillation. The dis-
tribution pattern of MPS is slightly different from those of FDM and SPH0. 

 
 ρ in x0 ρ in x 

FDM  

 

SPH0 

  

MPS 

  

Figure 13. Rectangular distribution of the initial density with G = 0.001. 
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3) Rectangular Distribution of the Initial Density with G = 0.0015 
The initial conditions are given by 

( )0 0.5 ,i ix x i L N= = +                                (79a) 

0 0.025 when 0.35
1 0.025 when 0.35 0.75 ,
0 0.025 when 0.35

i

i i

i

x L
L x L
L x

ρ
+ <

= + ≤ <
 + ≤

                       (79b) 

0.iu =                                       (79c) 
The boundary condition are specified as 

0 1 1 2, ;N Nρ ρ ρ ρ− −= =                                 (80a) 

0 1 1 2, .N Nu u u u− −= =                                 (80b) 
Computational condition 

4L = , 41N = , 0.0ν = , d 0.00025t = , 30000dendt t= , 0.0015G = , 

d for SPH0i ixγ = , 2d for MPSi ih x= , _ 8 for SPH0 and 2 for MPSend corN = . 
The numerical results are shown in Figure 14. The FDM uses the central differences for the first and second 

space derivatives, and the precision of FDM is considered high, if we neglect the spurious oscillation. The dis-
tribution pattern of MPS is different from those of FDM and SPH0. 

6.3.2. 1D Fluid Motion without Pressure but with Viscosity 
In the present section, the viscosity is introduced: 

0,u
t x
ρ ρ∂ ∂
+ =

∂ ∂
                                    (81a) 

2

2 ,u u uu
t x x x

ν∂ ∂ ∂Π ∂
+ = − +

∂ ∂ ∂ ∂
                               (81b) 

2

2 4π ,G
x

ρ∂ Π
=

∂
                                    (81c) 

where ν  is the kinematic viscosity. 
Since the discrete Laplacian operator of SPH0 generates a big error at the discontinuity, the initial density dis-

tribution was smoothened using the five point running average, and, in the second example below, an small ar-
tificial numerical viscosity μ = 0.0000005 in case of N = 41 was added at every time step: 

( )1 12
1 2 ,

di i i i i
ix

ρ ρ µ ρ ρ ρ+ −→ + − +                            (82a) 

( )1 12
1 2 .

di i i i i
i

u u u u u
x

µ + −→ + − +                             (82b) 

In the third examples below, a big difference has occurred between SPH and MPS solutions. 
1) Exponential Distribution of the Initial Density 
The initial conditions are given by 

( )0 0.5 ,i ix x i L N= = +                                (83a) 

20.5exp ,
0.2

i
i

x L
L

ρ
 − = −     

                              (83b) 

0.iu =                                       (83c) 
The boundary conditions are specified as 

0 1 1 2, ;N Nρ ρ ρ ρ− −= =                                 (84a) 
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 ρ in x0 ρ in x 

FDM  

 

SPH0 

  

MPS 

  

Figure 14. Rectangular distribution of the initial density with G = 0.0015. 
 

0 1 1 2, .N Nu u u u− −= =                                  (84b) 
The computational conditions are as follows: 

4L = , 41N = , 0.1ν = , d 0.00025t = , 20000dendt t= , d for SPH0i ixγ = , 
2d for MPSi ih x= , 0.005G = , _ 8 for SPH0 and 2 for MPSend corN = . 

The numerical results are shown in Figure 15. The FDM uses the central differences for the first and second 
space derivatives, and the precision of FDM is considered high. In this example, the FDM, SPH and MPS solu-
tions becomes similar. 

2) The Trapezoidal Distribution of the Initial Density 
The initial conditions are given by 

( )0 0.5i ix x i L N= = + ,                               (85a) 
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Figure 15. Exponential distribution of the initial density. 
 

( )

( )

101 0.35 0.025 when 0.25 0.35

1 0.025 when 0.35 0.65
101 0.65 0.025 when 0.65 0.75

0 0.025 otherwise,

i i

i
i

i i

x L L x L
L

L x L

x L L x L
L

ρ

 + − + ≤ <

+ ≤ <= 

 − − + ≤ <

 +

                 (85b) 

0iu = ,                                      (85c) 

where the initial density distribution was smoothened using the five point running average: 

( )2 1 1 2
1
5 i i i i i iρ ρ ρ ρ ρ ρ− − + ++ + + + → .                          (86) 
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The boundary conditions are specified as 
0 1 1 2, ;N Nρ ρ ρ ρ− −= =                                 (87a) 

0 1 1 2, .N Nu u u u− −= =                                 (87b) 
The computational conditions are as follows: 

4L = , 41N = , 0.02ν = , d 0.00025t = , 30000dendt t= , 0.0015G = , 
d for SPH0i ixγ = , 2d for MPSi ih x= , _ 4 for SPH0 and 2 for MPSend corN = . 

The numerical results are shown in Figure 16. The FDM uses the central differences for the first and second 
space derivatives, and the precision of FDM is considered high. In this example, small difference is observed in 
the FDM, SPH and MPS solutions. 

3) The Flat-Slope-Flat Distribution of the Initial Velocity 
 

 ρ in x0 ρ in x 

FDM  

 

SPH0 

  

MPS 

  

Figure 16. Trapezoidal distribution of the initial density. 
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The initial conditions are given by 
( )0 0.5 ,i ix x i L N= = +                                (88a) 

1,iρ =                                       (88b) 

( )

0.5 when 0.25
2 0.5 when 0.25 0.75

0.5 when 0.75

i

i i i

i

x L

u x L L x L
L

L x

<
= − − ≤ ≤

− ≤

                     (88c) 

The boundary conditions are specified as 
0 11, 1;Nρ ρ −= =                                   (89a) 

0 10.5, 0.5.Nu u −= = −                                 (89b) 

The computational conditions are as follows: 

4L = , 41N = , 0.02ν = , d 0.00025t = , 10000dendt t= , 0G = , d for SPH0i ixγ = , 
2d  for MPSi ih x= , _ 8 for SPH0 and 2 for MPSend corN = . 

Since we assume G = 0 in this example, the equation becomes Burgers equation. 
a) Comparison of FDM Solution with the Analytical One  
The central differences were used for the first and second space derivatives. As shown in Figure 17. The 

FDM solution is a very good approximation of the analytical solution [11]. 
b) Comparison of FDM, SPH0 and MPS Solutions  
Figure 18 and Figure 19 show the comparisons of ρ and u among FDM, SPH0 and MPS solutions. SPH0 and 

MPS solutions do not give good approximations. With respect to the velocity u, the difference between SPH0 
and MPS is big. 

7. Modified Gaussian Weight 
Gaussian-type weights of finite support with C1 continuity are given as follows: 

( )

22 2 2 4 2

2 2 2 4 2

2
2

2

2exp 1 1 exp
2 2

πexp cos ,
22

x x x x x
h h h

w x
x x

h

α α
γ γ

α
γ

       
 − − = − + −      
       = 

   −      

         (90a), (90b) 

 

 
Figure 17. Comparison of FDM solution with the analytical 
one ((a) FDM solution; (b) Exact solution). 
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 ρ in x0 ρ in x 
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Figure 18. Comparison of density ρ. 
 
where α  satisfies 

( ) ( )
( )

2 2 22 2 21 2
22 2 00

0 2 22 1 22
22 00

2 exp 1 d2 exp 1 d
22

1 d 2 d
ππ 2 exp cos d .2 exp cos d
2222

h

h h

h
h

h xx x h x xx
h

w x x w x x
h x xx x h xx

h

αα
γγ

αα
γγ

−

      − − − −     
     = = = = 

       −−              

∫∫
∫ ∫

∫∫
  (91) 

The first and the second derivatives of ( )w x  given by Equation (90a) are given by 

( )
5 2

3
2 2 4 2 2 2 4 2

4 1 4 2 exp
2

x xw x x x
h h h h

α
γ γ γ γ

      ′ = − + + + − −      
      

,                (92a) 
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Figure 19. Comparison of velocity u. 
 

( )
2

2 4 6
2 2 4 2 2 4 2 4 4 2 4 4 2

4 1 12 10 1 9 2 1 exp
2
xw x x x x

h h h h h h
α

γ γ γ γ γ γ γ
        ′′ = − + + + + − + + −        

        
.     (92b) 

Numerical examples are shown in Figure 20. When h is small, the accuracy becomes low. As has already 
pointed out in Section 5.1.1, there exist large errors at the boundaries. The numerical results agree well with the 
exact ones on overall. In the examples, γ is equal to dx = L/N = 0.1 and the accuracy seems sufficient when h is 
bigger than or equal to 4dx. 

8. Conclusions 
The author has once shown how to obtain the partial derivative in an irregular mesh using the moving least  
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h d dxφ  2 2d dxφ  

0.2 

  

0.4 

  

0.8 

  

Figure 20. Effect of support 2h ( ( )sin 2πx Lφ = ; L = 4, N = 40, γ = 0.1, h = 0.2, 0.4, 0.8). 

 
square method [1]. A similar problem is discussed from a different viewpoint in SPH. Gingold & Monaghan [2] 
and Lucy [3] have developed Smooth Particle Hydrodynamics method (SPH). We have extended SPH theoreti-
cally in the present paper. 

In Vortex Blob Method (VBM), the abduction is approximated reasonably. However, the diffusion of vortices 
can’t be approximated precisely. We have shown in the present paper that this problem can be solved, if we ap-
ply the ideas developed by SPH. 

Moving Particle Semi-implicit method (MPS) uses a similar dscretization of the initial and boundary value 
problem as SPH and VBM. However, the mathematical background of MPS is not sufficient. We have shown in 
the present paper that the mathematical background of the discrete gradient operator is strengthened by applying 
the ideas developed by SPH. However, that of the discrete Laplacian operator could not given. 
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The discrete gradient and Laplacian operators of SPH include the first, first and second derivatives of the 
weight function with respect to the space coordinates, respectively. On the other hand, those of MPS include 
only the weight function itself. This may be the biggest difference between the discrete differential operators in 
SPH and MPH. 

In the present paper, solutions by FDM (Finite Difference Method), SPH and MPS are compared numerically 
in detail. 

1) Effects of mesh on the discrete gradient and Laplacian operators were studied. MPS showed good results 
with respect to the random mesh. 

2) The FDM, SPH and MPS were applied to the initial value problems, and the effects of the difference of the 
solution method were studied. In some cases, the solutions of initial value problem showed a difference between 
SPH and MPS. 

3) The discrete Laplacian operator of SPH is sensitive to the spacial discontinuities of the solution function. 
Hence, in the case of the initial value problem, the discontinuity in the initial condition should be smoothened 
beforehand, and the small amount of the artificial viscosity should be introduced. 

4) The author has once studied a mathematical background of MPS theoretically [1] and did some numerical 
calculations. In very limited cases, the discrete Laplacian operator of MPS can be obtained mathematically. 
However, the generalization to the general mesh was not obtained. Hence, we are obliged to apply the Laplacian 
operator as a bold approximation in case of the general mesh. 

5) Recently, Ng, Hwang and Sheu [6] discussed the accuracy of the discrete Laplacian operator of MPS theo-
retically and numerically. They clarified an important aspect of the properties of the operator. As one of the 
properties, they pointed out in 2 in conclusion of Ref. [6] that MPS gave generally a favorable result in case of 
the irregular mesh. We also had a similar impression as expressed in (1) above. 

The support of Gaussian weight in SPH is infinite. In the present paper, weights of a Gaussian-type of finite 
support with C1 continuity were also given. 
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