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Abstract

In this paper we study the existence of solution for the differential equation of arbitrary ( fractional) orders

dx
dt

m P
—=1f(t,D),te(0,1) , with the general form of internal nonlocal condition a, x(z,)= A b, x(7,),
k=1 =1

e(a,c)<(0,1),7; €(d,b)=(0,1),c < d . The problem with nonlocal integral condition will be studied.

Keywords: Internal Nonlocal Problem, Integral Condition, Fractional Calculus, Existence of Solution,

Caratheodory Theorem

1. Introduction

Problems with non-local conditions have been exten-
sively studied by several authors in the last two decades.
The reader is referred to ([1-10]), and references therein.

In this work we study the existence of at least one so-
lution for the nonlocal problem of the arbitrary (frac-
tional) order differential equation

dx(t
%): f(t,Dx(t)), te(0,1) and ae(0,1] (1)
with the general nonlocal condition

38 x(2)= A3, x(n;). @)

where 7,¢(a,c)=(0,1),7,€(d,b)=(0,1),c<d and
B =0 is parameter.

As an application, we deduce the existence of solution
for the nonlocal problem of the differential (1) with the
integral condition

j:x(s)ds:ﬁj:x(s)ds. ©)

It must be noticed that the following nonlocal and inte-
gral conditions are special cases of our nonlocal and in-
tegral conditions

x(z)=px(n),re(ac) and 7e(d,b), (4
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S ax(r)=px(n). 7 <(ac)and 7e(d,b), ()
iakx(rk)=0,rk e(a,c), (6)

[[x(s)ds= px(n), ne(db), @)

a

and

j:x(s)ds:O, (a,c). (8)

2. Preliminaries

Let L'(1) denotes the class of Lebesgue integrable

functions on the interval 1=[a,b], with the norm
Jlulla = J,Ju(t)|dt and C(I) denotes the class of con-
tinuous functions on the interval 1|, with the norm

Jlu|=sup,,|u(t)] and T'(.) denotes the gamma func-
tion.

Definition 2.1 The fractional-order integral of the
function f eL'[a,b] of order BeR" is defined by
(see [11])

1 f(t):j;%

Definition 2.2 The Caputo fractional-order derivative of

f(s)ds.
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order ae(O,l] of the absolutely continuous function
f(t) is defined by (see [11] and [12])

D; f (1) =13 1(1)

Definition 2.3 The function f:[O,l]xR—)R is called
L — Caratheodory if

1) t— f(t,x) ismeasurable foreach xeR,

2) x—f(t,x) is continuous for almostall te[0,1],

3) there exists mel'([0,1],D),D<R such that
[f|<m.

Now we state Caratheodory Theorem ([13]).

Theorem 2.1 Let f[0,1]JxR—>R be L' - Cara-
theodory, then the initial-value problem

dx(t

%: f(t,x(t)), forae.t>0, and x(0)=x, (9)
has at least one absolutely continuous solution
XeAC[O,T].

Here we generalize Caratheodory theorem for the
nonlocal problem (1) - (2).

3. Main Results

Consider firstly the fractional-order integral equation
y(t)=1"f(t,y(t)), (10)

Definition 3.1 The function y is called a solution of
the fractional-order integral Equation (10), if
yeC[0,1] and satisfies (10).

Theorem 3.1 Let f:[0,1]xR—>R be L - Cara
theodory. Then there exists at least one solution of the
fractional-order integral Equation (10).

Proof. Let
M = Max{lfm(t) :te(0,1),a>0and e (0,1)} , then

125 (t, y(t))|£_|:%

| (s.y(s))|ds

Define the sequence {y, (t)} by

Yo (t)=,f;1(_t(1—i)0;; f (s, Y, (s))ds, t[0,1]

which can be written in the operator form

Your ()= 17717 (1), v, (1)).

Then
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<|t-e-A||8 < t—(t_s)_a_ﬂ S
|yn+1(t)|—| || f(t' yn(t))|—M OF(l—a—ﬂ)

l-a-p
WM
F(Z—a—,b’) F(Z—a—ﬂ)
For t,t,€[0,1] suchthat t <t,, then

o)~ Yo ()= % f (5., (5)) s

—IHM f(s,y,(s))ds

°T(l-a)

:FM f(s,y,(s))ds

O T(1-a)

n (=S -
+Ll % f(s,y,(s))ds
[ (L-s)"
°* T(l-«a)

a

f(s,y,(s))ds

< 4y ('[1 - S)_
° T(l-«a)

+IIZM f(s.y,(s))ds

b T(l-a)

f(s,y,(s))ds

—jtlﬁ f(s,y,(s))ds.

° T(l-a)
Therefore
b (t,—s)”
[Voun (t2) = Yo ()] < ], mm(s)ds
_ —-a _ —a-p
e gyapem "D gy
v I(1-a) " T(1-a-p)
. (tz_tl)l—a—/?
T T(2-a-p)
Hence |t,—t|<5 = yn+1(t2)_yn+l(t1)|<g(5) and
{yn (t)} is a sequence of equi-continuous and uni-

formly bounded functions. By Arzela-Ascoli Theorem,
([14] and [15]) there exists a subsequence {ynk (t)} of
continuous functions which converges uniformly to a
continuous function y as k— .

Now we show that this limit function is the required
solution.

Since

‘f (s, Yo, (s))‘ <m(s)el,

and f(s, Yo, (s)) is continuous in the second argu-
ment,
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i.e.f(s,ynk (s))—>f(s,y(s)) as k — oo,

therefore  the sequence  {(t-s) f(s, Yo, (s))}
ae(O,l) satisfies Lebesgue dominated convergence
theorem. Hence

lim [ (t-s) -

K —o0"0 F(l—(l)

t(t—S)ia

o r(l-a)

f (s, Yo, (s))ds

f(s,y(s))ds=y(t),

which proves the existence of at least one solution
yeC[0,1] of the fractional-order functional integral
Equation (10).

For the existence of solution for the nonlocal problem
(1) - (2) we have the following theorem.

Theorem 3.2 Let the assumptions of Theorem 3.1 are
satisfied. Then nonlocal problem (1) - (2) has at least one
solution x e AC[0,1].

Proof. Consider the nonlocal problem (1) - (2).

Let y(t)=D“x(t), then
y(t)=1+ d);(tt), (11)
y(t)= 177 (t, y(t)) (12)

and y is the solution of the fractional-order integral
Equation (10).

Operating by 1 on both sides of Equation(11), we
obtain

1“y(t)=1 d);it) =x(t)-x(0)= (13)
x(t)=x(0)+ 1 y(t). (14)
Let t =7, in Equation (13), we get
m m 4 (7, =S a-l m
kZ:;akx(rk) = ;akjo % y(s)ds+x(0)kzz‘1 a,.
And let t =7, inEquation (13), we get

ébjﬂj% (s)ds+x(0 )ibj.

=1

p
Z b, X(”j ) =
j=1

From Equation (2), we get

kzri;akj‘gk %y(s)dsﬂ@)éak

:ﬁébjﬂi%y(s)ds+x(0)ﬂzp:bj.

Then we get

Copyright © 2011 SciRes.

and

where
p m 1
:(ﬁ ij—Zakj
j=1 k=1
which, by Theorem 3.1, has at least one solution

Xxe AC (0,1).
Now, from Equation (15), we have

()= limx(t)= A3 [ (j); y(s)ds
-Aﬁjzilbjj”( (Z)) y(s
and
(0= ()= Z [ Oy
(7, s)“ (1-s)
Aﬂij ) (s)ds+j0 () y(s)ds

from which we deduce that Equation (15) has at least one
solution xe AC[0,1].
To complete the proof, differentiating (15), we obtain
dx

b AULE (t, Dx(t)).

Also from (15) we can prove that the solution satisfies
the nonlocal condition (2).

4. Nonlocal Integral Condition
Let xe AC[0,1]. be the solution of the nonlocal prob-

lem (1) - (2).

Let a =t —t_,re(t .t ), a=ty<t<t,--<t =c
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and bj:sj—sjfl,nje('sjfl,sj), d =8,<8<S,, <8, = b
then the nonlocal condition (2) will be

m p
kZ:(tk _tk—l)X(Tk ) = ﬂZ(Sj —SH) X(nj )
=1 j=1
From the continuity of the solution x of the nonlocal
problem (1) - (2) we can obtain

m p
rlnimel(tk ~t)X(n)= 4 ‘!imzi(sj _Sj—l) X(”J )
0| = aooj:
and the nonlocal condition (2) transformed to the integral
one

j: x(s)ds =ﬂj: x(s)ds.

Now, we have the following Theorem

Theorem 4.1 Let the assumptions of Theorem 3.2 are
satisfied. Then there exist at least one solution
xe AC[0,1]. of the nonlocal problem with integral
condition,

(16)

X'(t)=f(t,D*x(t)), te(0,1),

.[:x(s)ds:ﬂ.[dby(s)ds, B (b-d)=(c-a).

Letting #=0 in (16), the we can easily prove the
following corollary .

Theorem 4.2 Let the assumptions 1) - 2) are satisfied.
Then the nonlocal problem

X'(t)=f(t,D*x(t)), te(0,1),

j: x(s)ds=0, (ac)c(0,)

has at least one solution x e AC[0,1].
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