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Abstract 
 
In this paper we study the existence of solution for the differential equation of arbitrary ( fractional) orders  

   d
  = , ,  0,1  
d

x
f t D x t

t
  , with the general form of internal nonlocal condition    

=1 =1

   =    , 
pm

k k j j
k j

a x b x      

       , 0,1 , , 0,1 , k ja c d b c d      . The problem with nonlocal integral condition will be studied. 
 
Keywords: Internal Nonlocal Problem, Integral Condition, Fractional Calculus, Existence of Solution, 

Caratheodory Theorem 

1. Introduction 
 
Problems with non-local conditions have been exten-
sively studied by several authors in the last two decades. 
The reader is referred to ([1-10]), and references therein. 

In this work we study the existence of at least one so-
lution for the nonlocal problem of the arbitrary (frac-
tional) order differential equation 

        d
 = , ,   0,1   and  0,1

d

x t
f t D x t t

t
    (1) 

with the general nonlocal condition 

   
=1 =1

   =    ,
pm

k k j j
k j

a x b x           (2) 

where        , 0,1 , , 0,1 ,  k ja c d b c d       and 
0   is parameter. 

As an application, we deduce the existence of solution 
for the nonlocal problem of the differential (1) with the 
integral condition 

     d  =   d . 
c b

a d
x s s x s s          (3) 

It must be noticed that the following nonlocal and inte-
gral conditions are special cases of our nonlocal and in-
tegral conditions 

        =  , ,   and  , ,x x a c d b         (4) 

       
=1

 =  ,   ,  and  , ,
m

k k k
k

a x x a c d b       (5) 

   
=1

 = 0, , ,
m

k k k
k

a x a c         (6) 

      d  =  ,  , ,
c

a
x s s x d b         (7) 

and 

    d  = 0,  , .
c

a
x s s a c          (8) 

 
2. Preliminaries 
 
Let  1L I  denotes the class of Lebesgue integrable 
functions on the interval   = ,I a b , with the norm 

 1 = d
L I

u u t t  and   C I  denotes the class of con-
tinuous functions on the interval I , with the norm 

  = supt Iu u t  and  .    denotes the gamma func-
tion. 

Definition 2.1 The fractional-order integral of the 
function  1 ,f L a b  of order  R   is defined by 
(see [11]) 

   
   

  1
  

 =    d .
t

a a

t s
I f t f s s







  

Definition 2.2 The Caputo fractional-order derivative of 
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order  0,1   of the absolutely continuous function 
 f t  is defined by (see [11] and [12]) 

   1  d
 =   .

da aD f t I f t
t

   

Definition 2.3 The function  : 0,1  f R R   is called 
1L Caratheodory if 
1)  ,t f t x  is measurable for each x R , 
2)  ,x f t x  is continuous for almost all  0,1t , 
3) there exists   1 0,1 , ,  m L D D R   such that 
  f m . 
Now we state Caratheodory Theorem ([13]). 
Theorem 2.1 Let  0,1  f R R   be 1L  Cara- 

theodory, then the initial-value problem 

      
d

= , ,   for a.e. t > 0,   and  0 =
d o

x t
f t x t x x

t
 (9) 

has at least one absolutely continuous solution 
 0,x AC T . 

Here we generalize Caratheodory theorem for the 
nonlocal problem (1) - (2). 
 
3. Main Results 
 
Consider firstly the fractional-order integral equation 

    1 = , ,y t I f t y t          (10) 

Definition 3.1 The function y  is called a solution of 
the fractional-order integral Equation (10), if 

 0,1y C  and satisfies (10). 
Theorem 3.1 Let  : 0,1  f R R   be 1L  Cara 

theodory. Then there exists at least one solution of the 
fractional-order integral Equation (10). 

Proof. Let  
       = Max : 0,1 , 0 and 0,1aM I m t t a    , then 

    
    

 
   

1

1

   
,     , d

   
     d   ,  0.

t

a a

t

a

t s
I f t y t f s y s s

t s
m s s M a




















  






 

Define the sequence   ny t  by 

   
      

 

1 0

   
 =   ,  d ,  0,1

1  

t

n n

t s
y t f s y s s t












   

which can be written in the operator form 

      1   
1  =   , .n ny t I I f t y t   
  

Then 

      
 

 
   

   

1    
1 0

1    

   
 ,      d

1   

 
     

2    2    

t

n n

t s
y t I I f t y t M s

t M
M

 
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 
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 
 


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  

 
     
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For  1 2,  0,1t t   such that 1 2 < t t , then 
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1

1

2

1
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2

0

2

1

1

0

1
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    ,
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t
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t s
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t s
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t s
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t s
f s y s s

t s
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
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
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


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








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t
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t s
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Therefore 

     
   

 
     

 
 
 

2
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1 1

2
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2 2

1   
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       d  
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   d      d  
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  .

2   

t

n n t

t t

t t

t s
y t y t m s s

t t
m M

t t
M



  

 



 
  

  

 



 

  

 


 

 

 
 

    




  



   

Hence      2 1 1 2 1 1 <      <  n nt t y t y t       and 
  ny t  is a sequence of equi-continuous and uni-

formly bounded functions. By Arzela-Ascoli Theorem, 
([14] and [15]) there exists a subsequence   kny t  of 
continuous functions which converges uniformly to a 
continuous function y  as   k  . 

Now we show that this limit function is the required 
solution. 

Since 

     1,    ,nk
f s y s m s L   

and   , nk
f s y s  is continuous in the second argu-

ment, 
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     . . ,   ,    as     ,nk
i e f s y s f s y s k   

therefore the sequence       
   , ,nk

t s f s y s
  

   0,1  satisfies Lebesgue dominated convergence 
theorem. Hence 

 
    
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    
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
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


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
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


 

which proves the existence of at least one solution 
 0,1y C  of the fractional-order functional integral 

Equation (10). 
For the existence of solution for the nonlocal problem 

(1) - (2) we have the following theorem. 
Theorem 3.2 Let the assumptions of Theorem 3.1 are 

satisfied. Then nonlocal problem (1) - (2) has at least one 
solution  0,1x AC . 

Proof. Consider the nonlocal problem (1) - (2). 
Let     = , y t D x t  then 

   1 d
 = ,

d

x t
y t I

t
            (11) 

    1 = ,y t I f t y t         (12) 

and y  is the solution of the fractional-order integral 
Equation (10). 

Operating by I  on both sides of Equation(11), we 
obtain 

       
d

 =  = 0   
d

x t
I y t I x t x

t
      (13) 

      = 0    .x t x I y t        (14) 

Let = kt   in Equation (13), we get 
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And let = jt   in Equation (13), we get 
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From Equation (2), we get 
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
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


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Then we get 

   
   

 
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p
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s
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and 
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  (15) 

where 
1

=1 =1

=   
p m

j k
j k

A b a


 
 

 
   

which, by Theorem 3.1, has at least one solution 
 0,1 .x AC  

Now, from Equation (15), we have 
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
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

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     
   

 
     

   

1

0
 1 =1

1 1
1

0 0
=1

1 =  =     dlim

1
   d  dj

m
kk

k
t k

p
j

j
j

s
x x t A a y s s

s s
A b y s s y s s




 








 







 


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from which we deduce that Equation (15) has at least one 
solution  0,1 .x AC   

To complete the proof, differentiating (15), we obtain 

    d
 =   = , .

d

x
y t f t D x t

t
  

Also from (15) we can prove that the solution satisfies 
the nonlocal condition (2). 
 
4. Nonlocal Integral Condition 
 
Let  0,1 .x AC  be the solution of the nonlocal prob-
lem (1) - (2). 

Let  1 1 0 1 2= , , ,  = < < , < =  k k k k k k ma t t t t a t t t t c     
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and 1 1 0 1 2= , ( , ),  = < < , < =  j j j j j j pb s s s s d s s s s b     
then the nonlocal condition (2) will be 

       1 1
=1 =1

   =   .
pm

k k k j j j
k j

t t x s s x       

From the continuity of the solution x  of the nonlocal 
problem (1) - (2) we can obtain 

       1 1
=1 =1

   =    .lim lim
pm

k k k j j j
m pk j

t t x s s x   
 

    

and the nonlocal condition (2) transformed to the integral 
one 

     d  =   d  .
c b

a d
x s s x s s        (16) 

Now, we have the following Theorem 
Theorem 4.1 Let the assumptions of Theorem 3.2 are 

satisfied. Then there exist at least one solution 
 0,1 .x AC  of the nonlocal problem with integral 

condition, 

       = , ,  0, 1 ,x t f t D x t t   

         d  =   d  ,   .
c b

a d
x s s y s s b d c a       

Letting  = 0  in (16), the we can easily prove the 
following corollary . 

Theorem 4.2 Let the assumptions 1) - 2) are satisfied. 
Then the nonlocal problem 

       = , ,  0, 1 ,x t f t D x t t   

       d  = 0,   , 0,1
c

a
x s s a c   

has at least one solution  0,1 .x AC  
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