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Abstract 
 
In this paper, we consider the dual of the generalized Erlang (n) risk model under a threshold dividend strat-
egy. We derive an integro-differential equation satisfied by the expectation of the discounted dividends until 
ruin. The case when profits follow an exponential distribution is solved. 
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1. Introduction 
 
In recent years, a few interesting results have been obtained 
on a model which is dual to the classical insurance risk 
model. See Avanzi et al.[1] Avanzi and Gerber [2,3] and A. 
C. Y. Ng [4] for example. In this model, the surplus at time 
t is 
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where u  and c  are constants, u  is the initial sur-
plus, 0c   is the rate of expenses,    

1

N t

kk
S t Z


   is 

the aggregate positive gains process and  : 1, 2,kZ k    
is a sequence of independent and identically distributed 
claim amount nonnegative random variables with a com- 
mon probability density function   , 0p y y  . The or-
dinary renewal process   , 0N t t   denotes the num-
ber of gains up to time t  with 

   1 2max 1: kN t k W W W t       

where the i.i.d gains waiting times iW  have a common 
generalized Erlang (n) distribution, i.e. the iW s  are 
distributed as the sum of n independent and exponen-
tially distributed random variables: 

1 2 , 1,2, , ,i nW i n            (2) 

where  1, 2, ,j j n    may have different exponential 
parameters 0.j   Furthermore, we assume that 
  1i i
W


 and   1i i

Z


 are independent. In this model, the 
expected increase of the surplus per unit time is 
    1 1E X cE W  and is assumed to be positive. 
In this model, the premium rate is negative, causing 

the surplus to decrease. Claims, on the other hand, cause 

the surplus to increase. Thus the premium rate should be 
viewed as an expense rate and claims should be viewed 
as profits or gains. Though not very popular in insurance 
mathematics, this model has appeared in various litera- 
ture (see Cramer [5], Seal [6], Takcs [7] and the refer-
ences cited therein. In Avanzi et al. [1], the authors stud-
ied the expected total discounted dividends until ruin for 
the dual model under the barrier strategy by means of 
integro-differential equations. In [8] the authors consider 
a Sparre Andersen risk process that is perturbed by an 
independent diffusion process in which claim inter-arrival 
times have a generalized Erlang (n) distribution. 

In this paper, we will study the expectation of the dis-
counted dividends until ruin. We get integro-differential 
equation of the expectation of the discounted dividends 
until ruin. We also get the the expectation of the dis-
counted dividends until ruin when profits follow an ex-
ponential distribution. 
 
2. Main Result 
 
We now consider a threshold dividend strategy. When 
 U t  is below b, no dividends are paid and the surplus 

decreases at the original rate 1c . When  U t  is above 
b , the surplus would decrease at a different rate 

 2 1c c  and dividends are paid at rate 2 1c c  Then 
 U t  can be expressed by 
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(T    if ruin does not occur) be the time of ruin and 
 I A  be equal to 1 if event A  occurs and 0 otherwise. 

The total discounted dividends until ruin is 

    2 1 0
( ) d

T tD b c c e I U t b t    

where 0   is the force of interest for valuation. Let 

     ; 0V u b E D b U u     

denote the expectation of the discounted dividends until 
ruin, if the threshold dividend strategy with parameter b  
is applied. 

Since  U t have different paths for  0 U t b   
and  U t b , we define 
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The following theorem provides integro-differential 
equations for the expectation of the discounted dividends 
of  ;V u b . 

Theorem 2.1 The expectation of the discounted divi- 
dends of  ;V u b  satisfy the following integro-diffe- 
rential equations: when 0 u b   we have 
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(3) 

when u b , we have 
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where I  is the identity operator. 
Proof. Let 0 0S   and 1 2j jS        for 

1, 2, , 1j n   Define 

     , ; , 0i j jV u b E D b S t U u      

with    ,0i iV u V u  for 1,2i  . 
We first consider the case when u b . We consider 

the infinitesimal interval from jS  to d .jS t  For 
0,1, , 2j n  , we have 
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Note that  d 1 d dte t o t     . Also we have 
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Substituting these formulas into (5), subtracting 
 2, ;jV u b  from both sides, interpreting dt  and  do t  

terms, canceling common factors and letting d 0t  , 
we have 
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for 0,1, , 2j n  . Similarly for 1j n  , we have 
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Thus we have 
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Now suppose 0 u b  . Similar arguments as above 
shows that we have 

 
   

   

1,

d
1 1, 1

1 1, 1 1

;

d d ;

d d ;

j

t
j j

j j

V u b

e P t E V u c t b

P t E V u c t b

 






 

     
    

  (8) 

for 0,1, , 2j n   and 
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(9) 

for 1j n   respectively. Substituting (8) into (9), we 
have (3). □ 

Remark 2.2 Consider a compound Poisson dual mod-
el, i.e. the iW   has an exponential distribution with pa-
rameter  . When 0 u b  , we have 
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When u b , we have 
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Thus Theorem 2.1 generalized results obtained in A. C. 
Y. Ng [4]. 

Corollary 2.3 When iW s  have generalized Erlang (2) 
distributions, we have 
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for 0 u b   and 
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for u b  with the boundary conditions: 

 1 0; 0V b                   (12) 

   1 20; 0;V b b V b b            (13) 
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(15) 

Proof. Since ruin is immediate when 0u  , we have 
(12) and (13) by the continuity condition, According to L. 

J. Sun [9] and Y. H. Dong et al. [10], we have 
   21 11; ;V u b V u b . This together with (6) and (8) 

yields (14). Similarly we can get (15) from (3) and (4). □ 
Example 2.4 (Expectation of Discounted Dividends 

when Profits Follow an Exponential Distribution) Let 
profits follow an exponential distribution with  p y  

ye    for 0y  . Putting the distribution function 
into (11) for u b , we have 
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Applying the operator 
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 to both sides, we 

get 
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It follows that we have 
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The third-order linear differential equation above has a 

particular solution 2 1c c




. Since the characteristic equa-

tion of the differential equation 
3 2

1 2 3 4 0B r B r B r B     

has two negative roots 1r  and 2r  and a positive root 

3r , we have 

  31 2 2 1
2 1 2 3; r ur u r u c c
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where 1D , 2D  and 3D  are constants. Similar to An-
drew C.Y. Ng [7], we have 1 0D  , 2 0D   and 

3 0D  . Hence we have 
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We put the distribution function of   yp y e    
into (10). Then, for 0b u  , we have 
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Applying the operator 
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Hence we have 

  31 2
1 1 2 3; s us u s uV u b E e E e E e    

where 1E , 2E  and 3E  are constants, 1s , 2s  and 3s  
 1 2 30s s s      are the solutions of the character-
istic equation 

3 2
1 2 3 4 0B s B s B s B        

Since  0, 0V b  , we get 

1 2 3 0.E E E               (17) 

Substituting back the solution for  1 ;V u b  and 
 2 ;V u b  into (16), we have 
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Since the expression above must be satisfied for all 
0 u b  , the sum of the coefficients of ue  must be 

zero. Thus we have 
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On the other hand, since    1 20; 0;V b b V b b   , 
we have 

31 2

1 2

1 2 3

2 1
1 2

s us u s u

r b r b

E e E e E e

c c
D e D e



 


  

       (19) 

It follows from (10) and (11) that we have 
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From Equations of (17), (18), (19), (20) and (21), we 
can get the solution of  1 ;V u b  and  2 ;V u b . 
 
3. Acknowledgements 
 
This work was supported by National Natural Science 
Foundation of China (No. 10771119). The author would 
like to thank Professor Chuancun Yin for his support and 
useful discussions. 
 
4. References 
 
[1] B. Avanzi, H. U. Gerber and E. S. W. Shiu, “Optimal Divi-

dends in the Dual Model,” Insurance: Mathematics and 
Economics, Vol. 41, No. 1, 2007, pp. 111-123. 
doi:10.1016/j.insmatheco.2006.10.002 

[2] B. Avanzi and H. U. Gerber, “Optimal Dividends in the 

http://dx.doi.org/10.1016/j.insmatheco.2006.10.002�


Y. Z. WEN 
 

Copyright © 2011 SciRes.                                                                                 APM 

58 

Dual Model with Diffusion,” ASTIN Bulletin, Vol. 38, No. 
2, 2008, pp. 653-667. doi:10.2143/AST.38.2.2033357 

[3] H. Albrecher, A. L. Badescu and D. Landriault, “On the 
Dual Risk Model with Tax Payments,” Insurance: 
Mathematics and Economics, Vol. 42, No. 3, 2008, pp. 
1086-1094. doi:10.1016/j.insmatheco.2008.02.001 

[4] A. C. Y. Ng, “On a Dual Model with a Dividend Thresh-
old,” Insurance: Mathematics and Economics, Vol. 44, 
No. 2, 2009, pp. 315-324. 
doi:10.1016/j.insmatheco.2008.11.011 

[5] H. Cramer, “Collective Risk Theory: A Survey of the The-
ory from the Point of View of the Theory of Stochastic 
Process,” Ab Nordiska Bokhandeln, Stockholm, 1955. 

[6] H. L. Seal, “Stochastic Theory of a Risk Business,” Wiley, 
New York, 1969. 

[7] L. Takacs, “Combinatorial Methods in the Theory of Sto-
chastic Processes,” Wiley, New York, 1967. 

[8] S. M. Li and J. Garrido, “The Gerber-Shiu Function in a 
Sparre Andersen Risk Process Perturbed by Diffusion,” 
Scandinavian Actuarial Journal, Vol. 2005, No. 3, 2005, 
pp. 161-186. doi:10.1080/03461230510006955 

[9] L. J. Sun, “The Expected Discounted Penalty at Ruin in the 
Erlang (2) Risk Process,” Statistics and Probability Let-
ters, Vol. 72, No. 3, 2005, pp. 205-272.  
doi:10.1016/j.spl.2004.12.015 

[10] Y. H. Dong, G. J. Wang and Kam C. Yuen, “On the Re-
newal Risk Model under a Threshold Strategy,” Journal 
of Computational and Applied Mathematics, Vol. 230, 
No. 1, 2009, pp. 22-33. doi:10.1016/j.cam.2008.10.049 

 

 

http://dx.doi.org/10.2143/AST.38.2.2033357�
http://dx.doi.org/10.1016/j.insmatheco.2008.02.001�
http://dx.doi.org/10.1016/j.insmatheco.2008.11.011�
http://dx.doi.org/10.1080/03461230510006955�
http://dx.doi.org/10.1016/j.spl.2004.12.015�
http://dx.doi.org/10.1016/j.cam.2008.10.049�

