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Abstract

In this paper, we consider the dual of the generalized Erlang (n) risk model under a threshold dividend strat-
egy. We derive an integro-differential equation satisfied by the expectation of the discounted dividends until
ruin. The case when profits follow an exponential distribution is solved.
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1. Introduction

In recent years, a few interesting results have been obtained
on a model which is dual to the classical insurance risk

model. See Avanzi et al.[1] Avanzi and Gerber [2,3] and A.

C. Y. Ng [4] for example. In this model, the surplus at time
tis
N(t)
U(t)=u—ct+ > Z =u—ct+S(t),t>0. (1)

k=1

where U and C are constants, U is the initial sur-
plus, ¢>0 is the rate of expenses, S (t) = E‘:(I)Zk is
the aggregate positive gains process and {Zk k= 1,2,---}
is a sequence of independent and identically distributed
claim amount nonnegative random variables with a com-
mon probability density function p(y),y>0. The or-
dinary renewal process {N (t),t> 0} denotes the num-

ber of gains up to time t with
N (t)=max {k >1:W, +W, +---+W, <t}

where the 1.i.d gains waiting times W, have a common
generalized Erlang (n) distribution, i.e. the WS are
distributed as the sum of n independent and exponen-
tially distributed random variables:

W =& +6++&,i=12,---,n, 2)

where &;(j=1,2,---,n) may have different exponential
parameters 4; >0. Furthermore, we assume that
(W}, and {Z;}  are independent. In this model, the
expected increase of the surplus per unit time is
E(X,)(>cE(W,)) and is assumed to be positive.

In this model, the premium rate is negative, causing
the surplus to decrease. Claims, on the other hand, cause
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the surplus to increase. Thus the premium rate should be
viewed as an expense rate and claims should be viewed
as profits or gains. Though not very popular in insurance
mathematics, this model has appeared in various litera-
ture (see Cramer [5], Seal [6], Takcs [7] and the refer-
ences cited therein. In Avanzi et al. [1], the authors stud-
ied the expected total discounted dividends until ruin for
the dual model under the barrier strategy by means of
integro-differential equations. In [8] the authors consider
a Sparre Andersen risk process that is perturbed by an
independent diffusion process in which claim inter-arrival
times have a generalized Erlang (n) distribution.

In this paper, we will study the expectation of the dis-
counted dividends until ruin. We get integro-differential
equation of the expectation of the discounted dividends
until ruin. We also get the the expectation of the dis-
counted dividends until ruin when profits follow an ex-
ponential distribution.

2. Main Result

We now consider a threshold dividend strategy. When
U (t) is below b, no dividends are paid and the surplus
decreases at the original rate c,. When U (t) is above
b, the surplus would decrease at a different rate
¢,(>c,) and dividends are paid at rate c,—c, Then
U (t) can be expressed by

—c,dt+dS(t), U(t)>b;
du(t)=4 ~ t>0
(t) {—cldt+d5(t), b>U(t)>0; (t=0)
Let
T =inf{t>0:U(t)<0}
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(T =0 if ruin does not occur) be the time of ruin and
I(A) beequaltolifevent A occurs and 0 otherwise.
The total discounted dividends until ruin is

D(b) =(c, —¢,) [ &1 (U (t)>b)dt
where 6 >0 is the force of interest for valuation. Let
V (u;b)=E[D(b)U (0)=u]

denote the expectation of the discounted dividends until
ruin, if the threshold dividend strategy with parameter b
is applied.

Since U (t) have different paths for 0<U(t)<b
and U (t)>b, we define

V, (u;b), b>u=>0,

V(U;b)z{vz(u;b), u>h.

The following theorem provides integro-differential
equations for the expectation of the discounted dividends
of V(u;b).

Theorem 2.1 The expectation of the discounted divi-
dends of V(u;b) satisfy the following integro-diffe-
rential equations: when 0O <u<b we have

ﬁHH%]I +%%}vl (u;b)

i=1 i i

= [V, (u+yib) p(y)dy+ [V, (u+y:b) p(y)dy;

(3)
when u>b, we have
n S c, d
];[HHZJHﬂi " (u;b)
“)

(y)ay+ L[] ”l %(e, )

i=l j=i J

= [V, (u+y:b)

where | is the identity operator.
Proof. Let S,=0 and S;=¢ +¢& +---+¢&; for
j=12,---,n—1 Define

V,.; (usb) = E[ D(b)[s; =t,U (0) =u]

with V,(u)=V,(u) for i=12.

We first consider the case when u>b. We consider
the infinitesimal interval from S j to S i +dt. For
j=0,1,---,n—2, we have

V,.; (ub) =& {P (£, > dt)[E[Vs, (u-c,dtsb)]
+P(&,, <dt)E[V, ., (u-c,dtzb)]]}

1_e—§dt
+(c,—¢) 5

)
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Note that e ™" =1-5dt+0(dt). Also we have
P(&., >dt)=1-4;,dt+o(dt),

j+|

P(&., <dt)=4;,dt+o(dt),
E[ (u—c,dt;b) ]

dv, . (u;b
=V2,j(u;b)—czﬁdt+o(dt)

Substituting these formulas into (5), subtracting
V,;(u;b) from both sides, interpreting dt and o(dt)
terms, canceling common factors and letting dt -0,
we have

/1]+1 2]+1(u b)
(o)t
for j=0,1,---,
(4 +8)1 +6, v, . (u:b)
n Zdu 2n1

=2, Vs (u+y;b) p(y)dy+(c, -¢,).

Thus we have

]jKH%JI +%%}/ (u;b)

(ay+X 1T ’” %(e,c)

i=l j=i J

d . (6)
g Ve (120) (6, )

n—2. Similarly for j=n-1, we have

(7

_I (u+y;h)

Now suppose 0<u<b. Similar arguments as above
shows that we have

V., (usb)
=™ [P(&, > dt)E[V,, (u-cdtb)] @)
+ P(§j+l < dt) E| Vi (U _C1dt;b)]]

for j=0,1,---,n—2 and

[(ﬂ,n+5)|+cl dﬂ o (uib)

b-u 0
=2, ], Vi(u+y:b)p(y)dy+4, [~ V. (u+y;b)p(y)dy
©)
for j=n-1 respectively. Substituting (8) into (9), we
have (3). o
Remark 2.2 Consider a compound Poisson dual mod-

el, i.e. the W, has an exponential distribution with pa-
rameter 4. When 0<u<b, wehave

(A+8)V, (u;b)+c, w

= ijobfuv1 (u+y;b)p(y)dy+ /ljb:V2 (u+y;b)p(y)dy.
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When u>b, we have
dv, (u;b)
du
= 2[ "V, (u+y;b) p(y)dy+, —c,

(A+8)V, (u;h)+c,

Thus Theorem 2.1 generalized results obtained in A. C.
Y. Ng [4].

Corollary 2.3 When W5 have generalized Erlang (2)
distributions, we have

HHiJI +C—1i}{[l+£jl +ii}vl (u;b)
4)  Adu A )  Adu (10)

= [V, (u+ y:b) p(y)dy + [V, (u+ y:b) p(y)dy

for O<u<b and

KH%]I +;2—2% HH%]I +Za}v2(u;b)

/%(cz -c) (11)
+[1 +%J%(C2 -c)

for u>b with the boundary conditions:

\A (0;b)=0 (12)
Vl(b—O;b)=V2 (b+0;b) (13)

dv, (u;b dv, (u;b
c, % |u:b+0 - 1% ‘u:b—oz C,—¢ (14)

(-2t o

(15)

Proof. Since ruin is immediate when u =0, we have
(12) and (13) by the continuity condition, According to L.
J. Sun [9] and Y. H. Dong et al. [10], we have
V,, (u;b)=V,, (u;b) . This together with (6) and (8)
yields (14). Similarly we can get (15) from (3) and (4). o
Example 2.4 (Expectation of Discounted Dividends
when Profits Follow an Exponential Distribution) Let
profits follow an exponential distribution with p(y)
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=pe? for y>0. Putting the distribution function
into (11) for u>b, we have

KH%}+%%}[(1+5J.+%diu}vz<u;b)

= '[:V2 (u+y;b)pedy +%(c2 -c)

frtfreco

Applying the operator (di_ p Ij to both sides, we
u

get
d d :
(a—ﬂlj{cza+(ﬂ+5)l} Vv, (u;b)
= _Zzﬂvz (U;b)
It follows that we have
d’v d*v. dv
BII;'F BZIZZ-'_ BSd—uz— B4V2 + 85 :O
where
_ G
Y

c

BZ:C—2(1+£]+C—2[1+£J—,B ,
AU A) AU A Aty

(o) 8
A L) LU A) AL 4

L A A4
The third-order linear differential equation above has a
G, -G

particular solution

. Since the characteristic equa-

tion of the differential equation
B,r’+B,r’ +B,r-B, =0

has two negative roots I, and r, and a positive root
r,, we have

c,—C
V,(u;b)=De™ +D,e” + De™ + 22—

where D,, D, and D, are constants. Similar to An-

drew CY. Ng [7], we have D, <0, D,<0 and
D, =0. Hence we have
V, (u;b) = De™ + D,e™" +—C2;C‘
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We put the distribution function of p(y)= e
into (10). Then, for b>u >0, we have

[ er
) a7 a) T w
- j;”“v1 (u+y;b) Bedy (16)

+ j:iuvz (u+y;b)Be?dy.

Applying the operator [di_ p I] to both sides, we
u

get
3 2
B’d\g Bzd\i B'dV -BV, =0
du du du

where

.
A,
¢

B;:C—‘(l+ij+&£1+éj—ﬂ—,

A L) AU A4 Ay

B, :[1+£][1+£]—%(Hé]—%[Hij,
4 L) A L) A Z
) )

B, =p|1+— || 1+— |- .

4 ﬁ[+al(+@j g

Hence we have

V,(u;b) = Eje™ + E,e™ + E,e™

where E;, E, and E, are constants, s, s, and s,
(s, <s,<0<s,<p) are the solutions of the character-
istic equation
B/s’ +B.s’ +Bis—B; =
Since V (0,b) =0, we get
E,+E,+E; =0. a7

Substituting back the solution for V,(u;b) and

V, (u;b) into (16), we have

[ (3
1+ I+ 1+— |1+

) Adu)ll A4 ) Adu
[EleSlu +E, e + E3es3“]

= B [V, (y:b) pe dy + ﬂ—e[fD‘ ptpme
! -

—ﬁ(b u)

+ﬂﬂﬁzeﬂuﬁf2 +ﬂ

Since the expression above must be satisfied for all
0<u<b, the sum of the coefficients of e”* must be
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zero. Thus we have

_Ee* Ee” Ee”
-5, -s -s
s X s rj B-s, (18)
De1 +D2e2 LG
ﬂ h :B_rz o
On the other hand, since V,(b—0;b)=V,(b+0;b),

we have

Ee’ + Ee™ + Ee™
c,—cC (19)
=De"™ +De” + 21

It follows from (10) and (11) that we have
HHi} ! dMHi]l ! d}
A) a4 ) A du
[E e +Ee™ +E es‘“]
o c

Abgeza

{D,erlu +D,e™ +

h}z

Q.

c
I__I
1

p—

o

1 o
—(c,—¢ )+ (1+—
+/12( )+(+/12)

Since

¢V, (b-0;b)—cV/(b+0;b)=c, —c,

we have
c, [rl De™ +r, Dzerﬂ
-, [s, Ee™ +s,E,e™ +s, E3e53b] 1)
=C, —C,.
From Equations of (17), (18), (19), (20) and (21), we
can get the solution of V, (u;b) and V, (u;b).
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