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Abstract 
 
In this paper, we point out some small mistakes in [6] and revise them, we obtain some new oscillation re-
sults for certain even order neutral differential equations with deviating arguments. Our results extend and 
improve many known oscillation criteria because the article just generalizes Meng and Xu’s results. 
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1. Introduction 
 
Oscillation of some even order differential equations 
have been studied by many authors. For instance, see 
[1-7] and the references therein. We deal with the oscil-
latory behavior of the even order neutral differential eq-
uations with deviating arguments of the form 
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where 2n   is even, throughout this paper, it is as-
sumed that: 

(A1)       0, , , , , , 0i j j jp q C t R f C R R uf u     
for 0u  and  jf u is non-decreasing on R , 

1,2, , , 1,2, , ;i m j l    

(A2)     0 , , ,i iC t R t t t    and  lim ,i
t
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1,2, ,i m  ; 

(A3)       1 , , , , limj j j
t

C t R t t t  
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and   0j t   , 1,2, , ;j l   
(A4) There exists a constant M 0  such that 
   sgn Mjf x x x  for 0, 1, 2, ,x j l   ; 
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tion     0 , ,q t C t R  such that,    min :jq t q t  
1, 2, ,j l  . 

By a solution of Equation (1) we mean a function 

 x t which has the property that       
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  , ,n
xC t R   for some 0xt t  and satisfies Equa-

tion (1) on  ,xt  . We restrict our attention to those 
solutions  x t  of Equation (1) which exist on some 
half-line  ,xt   with   sup : 0x t t T   for any 

xT t . A nontrivial solution of Equation (1) is called 
oscillatory if it has arbitrarily large zeros, otherwise it is 
said to be nonoscillatory. Equation (1) is said to be os-
cillatory if all of it’s nontrivial solutions are oscillatory. 

Recently, Meng and Xu [6] studied Equation (1) and 
obtained some sufficient conditions for oscillation of the 
Equation (1), we list the main results of [6] as follows. 

Following Philos [5], we say that a function 
 ,H H t s  belongs to a function class W , denotes by 

H W , if  ,H C D R , where   0, :D t s t s t   , 
which satisfies: (H1)  , 0H t t   and  , 0H t s   for 

0t s t    ; (H2) H  has a continuous non-positive 

partial derivative 
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for some  ,loch L D R     1
0, , , 0,k C t    is a 

non-decreasing function. 
Theorem A ([6, Theorem 2.1]). 
Assume that (A1) - (A5) hold, let the functions 
, ,H h k satisfy (H1) and (H2), suppose 
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holds for every 0 1 2, 0, 0,r t C C    where 
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and 1 p   , then every solution of Equation (1) is 
oscillatory. 

Theorem B ([6, Theorem 2.2]).  

Assume that (A1)-(A5) hold, and , ,H h k  are the same 
as in Theorem A, suppose that 
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where     max ,0m t m t  , then every solution of 
Equation (1) is oscillatory. 

In Theorem A and B, function  ,G t r  should be 
 ,jG t r , so each of the condition (2), (4), (5) and (6) has 

as many as l  conditions. Meanwhile, the Riccati func-
tion  t  is not well-defined and there exist some 
small errors in the proof of the theorems. The purpose of 
this paper is further to strengthen oscillation results ob-
tained for Equation (1) by Meng and Xu [6]. In our paper, 
we redefine the functions      ,,, ,t r tF rG t  and 
provide some new oscillation criteria for oscillation of 
Equation (1). 
 
2. Main Results 
 
In the sequel, we need the following lemmas: 

Lemma 2.1 ([1]). 
Let  x t  be a n  times differentiable function on 

 0 ,t   of one sign,     0nx t   on  0 ,t   which 
satisfies    ( ) 0nx t x t  . Then: 

(I1) There exists a 1 0t t  such that 
    , 1, 2, , 1ix t i n   are of one sign on  1,t  ; 
(I2) There exists a number  1,3,5, , 1h n   when 

n  is even, or  2, 4,6, , 1h n   when n  is odd,  

such that       0ix t x t   for 0,1, ,i h  , 1;t t  
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Lemma 2.2 ([1]).  
If  x t  is as in Lemma 2.1 and        1 0n nx xt t   

for 0t t , then for every  0 1   , there exists a  
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11 nnNt tx t X
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for all large t . 
Lemma 2.3([7]).  
Suppose that  x t  is an eventually positive solution  
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Theorem 2.1  
Assume that (A1) - (A5) hold, let the functions , ,H h k  

satisfy (H1) and (H2), suppose 
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holds for every 0r t  and for some 1  , where 
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and 1 p   , then every solution of Equation (1) is 
oscillatory. 

Proof. Suppose to the contrary that  x t  is a 
nonoscillatory solution of Equation (1) and that  x t  is 
even- tually positive (when  x t  is eventually negative, 
the proof is similar). 

Let  z t  be defined as in Lemma 2.3, then following 
the proof of Theorem 2.1 in [6], without loss of 
generality, assume there exists a 1 0t t  such that 
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Multiplying the above equation, with t  replaced by 
s , by  ,H t s  and integrating it from T  to t , for all 
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Hence, we have 
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which contradicts (7). This completes the proof of the 
Theorem. 

The assumption (7) in Theorem 2.1 can fail, conse-
quently, Theorem 2.1 does not apply. The following re-
sults provide some essentially new oscillation criteria for 
Equation (1). 

Theorem 2.2  
Assume that (A1)-(A5) hold, the functions , , ,H h k F  

and G  be the same as in Theorem 2.1, suppose that 
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where     max ,0m t m t  . Then every solution of 
Equation (1) is oscillatory. 

Proof. Assume to the contrary that (1) is non-oscil- 
latory. Following the proof of Theorem 2.1, without loss 
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there exists a 1 0t t  such that, 
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Then, for 1t t , we have 
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By (15), there exists a 2 1t t  such that, for all 

2t t , 
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2t t . Since   is arbitrary, we have 
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which contradicts (12), thus (13) holds. Then by (11) and 
(13) we get 
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which contradicts (10). This completes the proof. 
Remark 1 Let 1   in Theorem 2.1, Theorem 2.1 

reduces to Theorem A [6]; we obtain the same result in 
Theorem 2.2 in which we omit the assumption (4) in 
Theorem B [6]. Therefore, Theorem 2.1 and 2.2 are gen-
eralizations and improvements of the results obtained in 
[6]. 

Remark 2 With an appropriate choices of the func-
tions ,H h  and k , one can derive a number of oscilla-
tion criteria for Equation (1) from our theorems. 

Let ( ) 1, 0k t    is a constant,    ,t s sH t
  , 

    1
, ,t s sh t

    0t s t  , and we have 
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Consequently, let 2  , using Theorem 2.2, we 
have: 

Corollary 2.1 Assume that (A1)-(A5) and (8) hold, 
suppose that there exists a function   0 , ,m C t R   
such that, for some 1  , 
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(16) 
and (10) (with   1k s  ) hold. Then every solution of 
Equation (1) is oscillatory. 

Example 1 Let  4,t  , consider the following 
second order neutral differential equation 

            0x t p t x t q t x t        (17) 
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where         1
, max 2 1 sin ,0 ,

2
p t q t t t f x x    , 
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t
t s

s s
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  , in this case 1M  , Let  

1, 2N   , by direct calculation, we get 
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It is easy to verify that (10) holds, therefore, Equation 
(17) is oscillatory by Corollary 2.1. However, we can 
easily find that 

     
0

20

1
limsup limsup d, 1 2 sin

t

tt t
G st t s s

t 
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so condition (4) in Theorem B is not satisfied, these 
show that Theorem B cannot be applied to Equation (17). 
Obviously our results are superior to the results obtained 
before. 
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