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Abstract

In this paper we are interested in studying the dissipativity of degenerate mixed differential operators in-
volving an interface point. We show that, under particular interface conditions, such operators generate ana-
lytic semigroups on an appropriate Hilbert space H . To illustrate the results an example is discussed.
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1. Introduction

The evolution of a physical system in time is usually
described in a Banach space by an initial value problem
for a differential equation on the form:
du (t)
—=+LU(t)=0, t>0
U (0)=U,

Such problems are well posed in Banach space X if
and only if the operator L generates a C,-semigroup
(T)., On X [1]. Here the solution U (t) is given by
U (t)=TU, for Uy e D(L).

Problems involving interface arise naturally in many
applied situation such as acoustic wave in ocean [2] and
also as heat conduction in non homogeneous bodies. A
systematic study of interface problems involving ordi-
nary differential operator was done in [3].

Several authors have been interested to differential
operators with matrix coefficients. Such operators arise
in diverse range of applications (e.g. in Quantum phys-
ics), some examples in harmonic analysis have been
treated in [4-6] and for an example in semigroups theory
we refer to [7-8].

In this paper, inspired in the works of A. Saddi and O.
A. Mahmoud Sid Ahmed [9] and also that of T. G.
Bhaskar and R. Kumar [10], we establish with suitable
assumptions the analyticity of semigroups generated by a
class of differential operators involving matching inter-
face conditions in the setting of complex Hilbert space.

As it is well known, in order that an operator L gen-
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erates an analytic semigroup it suffices that it satisfies
the m -dissipativity and we must have (see [11])

Re(LU,U)+4|3m(LU,U)<0,6>0 (2)

The paper is organized as follows: In section 2 we in-
troduce the different notions and notations which we
shall need in the sequel. In section 3 we study the mixed
operator L and its adjoint L and we investigate some
of its properties. In section 4 we study the dissipativity of
the operator (L—4) and its adjoint for some suitable
real number A . We show that, under particular interface
conditions, such operators generate strongly continuous
semigroups. Using the previous results we conclude in
section 5 with the aim of the paper about generation of
analytic semigroups of operators with respect some reg-
ular interface conditions. Finally we discuss an example
as an application to our results.

2. Notations and Preliminaries

Let M, (C) be the space of all square n order matrix
with complex coefficients, and GL,(C) the subset of
M, (C) consisting of invertible matrices. The adjoint of
amatrix AeM, (C) isdenoted by A"

Let 1,=[a0],1,=[0,b], where —w<a<0<b
<+, and I, =1, \{0}. For k=12 and an interval
X, Iy, denote by L*(X,,C) the complex Hilbert
space defined by

LZ(Xk,C)z{u : X, —>C, measurable/jxk |u(t)|2dt<+oo}

endowed with the canonical inner product
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(u,v), =jxku(t)v(t)dt ?3)
We set also,
H?(X,) ={

Consider now the product Hilbert space L*(X;,C)
xL*(X,,C) equipped with the inner product

UV)=(ww) +(Lv), @

uel?(X,,C)/u,u’ exist and absolutely
continuous on X, and u” e L* ( X,,C)

for all
U =(ul,u2),V :(vl,vz)e LZ(Xl,C)x LZ(XZ,C)

Fix now H=L*(1,C)xL*(1,,C) and denote its
subspace H =H?(1,)xH?(l,) Let L  be the dif-
ferential operator defined on 1, by

Lu, =au; +bu,, k=12 (5)

where a, and b, are two real measurable functions on
l,. We make the following assumptions: For k = 1,2
(h):a, is continuous and a >0 on I, ab are
absolutely continuouson I, .

(hz):a;,ak"eLz(l;,C),
tim (b, ~a;) (). tim (b, - 25)()

existinR and (b, —a;) isboundedon I;.
Let A and A, two matrices in GL,(C) For
u, e H?(1,), denote

UK(X)z(EEEXJ xel, k=12

The interface condition at the singular point x=0, is
given by (h,):A(0):=Au (0)-A,u,(0)=

Note that this work can be easily generalized to de-
generate matrix differential operators. Here the operator
may have non-regular coefficients and may be singular at
the extremities of intervals and especially at the interface
point. In particular with this meaning this study is a
proper extension of [9].

3. Mixed Operator (L,D(L)) and
its Adjoint

In order to study the operator L, we introduce its Green
formula. We will be able to obtain some characteristic
properties. According to ([12], p. 189) the corresponding
formal Lagrange adjoint expression of L, k=12 are

given as
Lu, = (akuk) —(bkuk)', k=12 (6)

We consider the operator (L, D(L)) given by
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L(U)=L(uy,u,)=(Luy, Lu,)

for U =(u,,u,)e D(L) @

where
D(L)={U =(u,u,)

and

eH/A(0)=0,8, = 4, =0}
B = U{(a)_?/aui(a)’ﬂb =U, (b)_7bu2 (b) 8

7, and y, are here two fixed real numbers.

It is easy to show that (L,D(L)) is a densely defined
closed unbounded linear operator in H and hence has a
unique adjoint (see for example Theorem 3.6 [5]).

For U =(u,u,),V =(v,v,)eD(L), and a<p<0
<o <b,asimple calculation gives the Green’s Formula.

J‘:(alul”+ bl )(x)¥; (x)dx
+Lb(a2u;’ +b,uy ) ()Y, (x)dx

=[—(a1vl)' u1+a1vlu;+b1v1ul}

P

a

+ [—(azv2 )' u, +a,%,u; +b,v,u, IT
(0 ) Y )

+[ (( (a,V,) bvz)) 2(x)jdx

Using the conditions S, =0 and S, =0 we get,
(LUV ) = (L, vy ), +(L,u,,v,),
:((( Vb &2 +b2_a,2)\72 —a,Y, )uz)(b)
_((( Va &y +b1_ai)v_1 -a, v )Ul)(a)
{XILTV B,u, (x )—Xll_)rgl v,B,u, (x)z}

SN (AR L
+I (( (a,v,) bvz)j 2J(x)dx

where B, ,k =12 are matrix functions defined on I,

given by
Bk _ (bk - al; akj
—-a, 0

The matching interface condition A(0)=0, and the
:(Ak-l)*(Bk)*,kzl,Z, imply

notation C,
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(LUV) =(Lu,v,), +(Lu,,v, ),
((( 7y 8, +b,—a})V, —a, )uz)(b)
(7.2, +b-a))¥, —ay )u )(a

-
o{im (e Aw) >-JL%1(<C ) A

o p
+J0 (( azv2 +(b,%, ) juzj(x)dx
= Bu, (b)- Ay, (a)+<ul, L1v1>1 +<u2, L*2v2>2
fim(cau)” Ao im (Cov) A )0

where

)
)

B =((raa +b —a))% -a¥ ) (),
;31: z((%az +b2 _aé)vz _azvz)(b)

with these simplifications, we obtain the following result.
Proposition 3.1 Let (L,D(L)) be the operator de-

fined as in (7) and (8). Then its adjoint (L, D(L* 2)) isa

densely defined closed unbounded operator given by

D(L)={V =(v,v,)eH/A"(0)=0,5 = =0}
L' (V) =L (V) =(Lv, Ly, ) w0
forV =(v,v,)e D(L)
where A™(0) = lim (Cpv; )(x) - lim (C,v, )(x).
Proof. Let (M ,XIS((JM )) be the :)BOerator given by
D(M)={V =(v,v,)eH/A"(0)=0,4 = 4 =0}
M (V) =L (v.v,) = (L, LY, )
for V =(v,,v,)e D(M)
One has to prove that M =L and D(M):D(L*).

From Green’s formula, it follows thatD(M ) < D(L*).

To show the opposite inclusion, it remains to verify that
<L(u1,u2),(vl,vz)> = <(ul,u2), L (vl,v2)>
for all(u,,u,) e D(L),(v,v,)e D(L*) . From (9) this
is true if one proves that
AN CIRYANCY
{lim ((C ) Aw)0x) - i (€ A )] <0

If we choose (uj,u,)eD(L) verifying u,(a)
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=u,(b) =0, then we get

{xllm (( Vi) Alul)(x)— XILT ((sz2 ) Azuz)(x)} =0
Now from Green’s formula, we obtain

ﬁl:uz (b)_ﬁ;ul (a) =
An appropriate choice of (u,u,)eD(L),

By =, =0 and A"(0)=0. This yields
D(L < D(M) hence the proof is achieved.

implies

4. m -Dissipativity of (L,

D(L))

Recall first the definition due to Pazy [3].
Definition 4.1 A linear closed densely defined opera-
r (M,D(M)) on a complex Hilbert space is called
m -dissipative if
forall ue D(M), Re(Mu,u)<0

and (A-M) is surjective for some 4 > 0.

It is our aim to show, under certain assumptions on the
coefficients of L., k=12, that the mixed operator is
m-dissipative. The next technical lemma may be found in

[°].
Lemma 4.1 Let f,g two numerical functions of
class C' on [a,B]suchthat f isreal then

2%ef’ (fgg)( )dx =
2 B 2 (11)
(B)lo[ (B)= T (@)lgf (@)~ [ T (x)|g]" (x)dx

In what follows, consider the following function ma-
trices T, € M,(C) on I,k =12 given by

T _[Bac &
1 a 0

Theorem 4.1 Assume that the matrices A, k =1,2
satisfy the condition

lim (A%) T, (x) A :Xlij)l(Agl)*Tz(x)Agl (12)

x—0"

Then there exists a real 4 >0 such that the operator
((L=4),D(L)) is m-dissipative.
Proof. Let U =(u,,u,)eD(L), we have

(LUU) = (L), + (Lo U, ),

| 10+ (0. 0)-2 ) (o
Jran (@) 0@)-ai(a) Ju o)
+ lim (@,0u7) (x) - lim (&,d,u; ) (x)
+ 7 (52w - ui) (x) o

+j( —ay)T,u; —a, |us ) x)dx
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Then, by using Lemma 4.1, we get,
Re(LU,U) =S, +S, + S,
where

S, = {ybaz (b)+%(b2 (b)-a; (b))}|u2 (b)
- [na@)+ 3 @)-a@) ju (@)
- (e (0

2

m, (x) = =272 (2) b, (x) =l (X)), xe L
m, (x) :2_);)(27332 (b)+b, (x)-a5(x)), xel,

For k=12 and & >0, we have,

(mk Ju[ )’(x):m; (x)

s|m|; (x)||uk(

s|m¢<x>||uk<x>r+|mk<x|[M+| >r}
So,

S, = Zzl_[,k (mk |u, |2), (x)dx < éj'k [|m,; (x)”uk (x)|2

+|mk (X)|{|uk(§()| + |gu; (x)|2 de

1¢(,. AT ou
S, = E{XILT ((bl - a1)u1u1 + 25Rea1ulul)(x)

x)|2 +2|mk (x) ||u X ||u|; (x)|

— lim ((b2 —ay ) u,, +2€Reazﬁzuf)(x)}

-3 ()00 7))
AR

+I0b((b§ - ag’)|u2|2 +2a, |u§|2 )(x)dx

Thus we obtain,

|2+2a1|u1’|2)(x)dx

<L*V,V>=<L1v1,vl> +<L*v2,v2>
:7b(a2|vz|2) ) Va(a1|vl|)
(b -a)vvi -,
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Ju (0 +2m, (x)steu, (X} (x))

{Ilm( (a/-b)|v| +a1vlv1)( )—Jirgl((a;—bz

V" )( ) X) dx+jo( (b, —a;)v,v; —a, s " )( ) X ) dx
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Re(LU, U><—Ezj (b -

—{|mk (x)| WJ]M (x)|2 dx

] (a0
3 7)o ) )

For sufficiently small ¢ , such that (ak -&*|m, |2) >0

g |mk (x)|2)|u,i (x)|2 dx

we obtain,

Re(LU, u><——zj ( by —ay)(

‘{lma<x>|+'””,ff : lex)r o

+%{ Iim((Aiul)* ((A{l)* TlAil)Aiulj(X)

x—0

- |irq((A2u2)*((Azl)*TzAzl)Azuzj(x)}

x—0

R(CES
+[|m;(x)|+|mk (ZX)| H|uk(x)|2 dx

&

<Al el = 2)(woa)] = A
where,

i'm4T{b-% [w WS)H}

Thus, we have shown that (L—2) is dissipative. For
showing that (L—2) is m -dissipative, we have to
show that (L"—A4) is also dissipative. The interface
term vanishes, since (v,,v,) verifies the condition,

lim ((Cl‘l)* Tlcl‘lvl)(x)— XILT ((Cz‘l)* Tzcz‘lvz)(x) =0,

x—0

which itself is a consequence of (12). So, using same
techniques as above, for all V =(v,v,)e D(L*), we
get,

)|+ azvgvz)(x)}
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Then one has, Re(LV V)<= ZJ'( v —ay)(

+(|m;(x)|+|mk(x)| /gz)j|vk(x)| dx
<A(WlF +vl) = 20 ) = 2

This implies that both (L-4) and (L"-z?1 are
dissipative, thus (L—4) is m-dissipative and hence
the theorem is proved.

5. Analyticity of the Semigroup Generated
by (L,D(L))

The purpose of this section is to prove the analvticity of
the semigroup generated by (L,D(L)). For This goal
we impose some additional conditions on the matrices
A, k=12. In the following we recall a theorem due to
Fattorini [11].

Theorem 5.1 Let (A D(A)) be a densely defined
operator in a Hilbert space such that for any u e D(A):
Re(Au,u)+5|Im(Au,u)| <0, for some5 >0 Then (A,
D(A)) generates an analytic semigroup of contrac-
tions.

With the help of Theorem 5.1, we will establish our
main result.

Theorem 5.2 Assume that the matrices B, and
T,, k=12 defined respectively in sections 3 and 4, sat-
isfy the conditions

lim (A”) B, (x) A = lim (") B, (x) A7 (13)

fim (A7) TOOA" = i (A T (0 0

Then the operator (L,D(L)) generates an analytic
semigroup of contractions.

Proof. Since the operator (L,D(L)) is densely de-
fined, then from Theorem 5.1, to show that it generates
an analytic semigroup, it suffices to verify that
Re(Au,uy +8[Im(Au,u)|<0, for A=L-pl and for
some p>0and 6 >0.

This is equwalent to show
+5[3m(Lu,wy| < pflulf-

Holds for all ue D(L). Using the identity

<LU,U>=[yba2(b)+(],/2)(b2(b)—a' b)) ]|u, (b)[

~[ra(@)+W2)(n(a)-al (@) Ju (a)f
+ xILT (a,0,u; ) (x) - xILT (a,0,u; )(x)

+IO( b, —a/ Ulul'—a1|u1’|2) (x)dx

+; ( —a})T,u; —a, |uf* ) x)dx

that 9Re(Lu,u)
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then
Im (LU,U) =3m {Iim (a,0,u; ) (x )— lim (a,0,u; )(x )}
x—>0"

+3m {j;((bl —al’)Ulul’)(x)dx+.[;( (b, —a;)Uzu;)(x)dx}

=J,+J,

where

J,=3m {Iim (a,0,u; ) (x)— lim (azﬁzug)(X)}
x—0" x-0"

and

J, =

S {j:((b1 ~a)au)(x)ax+ [ (b, —a;)ﬁzu;)(x)dx}
Using the relation 23m (4)=3m (/1—1) for all
A ell, we deduce the expression

23, = Sm {nm (aTu - a,u)(x)
x—0"

— lim (a,0,u; - azuzﬁg)(x)}

x—0"

- o fim (s () B )9
- tim (A (A7) B4 (A, ()

Under the assumption (13) and the interface condition,
we get

2J,=3m {(XILT(Aiul)* (x))
(1m {(A%) BA7)00- tim (A7) 8,7 )

x—0 x—0

a2 00 -

We have also, for sufficiently small ¢,
3o {J7((0 ) ) ()
+ﬁ«m—@Ww»uw4
—'Smw;wwwx
a0 ) (x)x

|‘]2|:

+;| ,—a)3m
SN[ wa
+ﬁmm—%mw%wuwx

< 7[00 (o2l o2 ) ()
# 0y (0= (o2 57 s ()

It follows that, for & >0, we have
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Re(Lu,u) + 5| Im{Lu,u)|

p= max{sup{|b’ ay|+|m|

e |mk |2 +&7 E|bk —al; |}(X)}

Thus the proof is achieved and the result of the Theo-
rem is obtained.

Corollary 5.1 The operator (L+ B, D(L)) gener-
ates an analytic semigroup for all L -Bounded opera-
tors B . In particular the result remains true if we choose
B=(R,R,) defined on H by Ru, =cu,k=12,
where c, is a piecewise continuous functionon 1.

For more detail in perturbation theory of linear opera-
tors we refer to [7] and [13].

In the following an example is given to demonstrate
the effectiveness of our results.

Example 5.1 Let I,=[-10] and I,
consider the following differential system

=[0,1] , and

ou o°u ou .

a—tlzai(x)ale+bl(x)a—xl, xel;
2

%:az(x)&+b2(x)%, xel,

%X
(uy,u,)(0) =u,

ot 194

where a,,b,, k=12 are real functions verifying the
previous assumptions h and h, .
The interface condition at x =0 is such that

aul ou,
0t
a—-(0t)=

The end points conditions are taken to be

ou
a—xl(—l,t)—alul(—l,t) =0,

ou
ﬁz = a—xz(l,t)—azu

(0 t), u (0,t)=-u,(0,t).

B =
2(1’t)20

for some real constants a,b,c,, ande,.
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The operator (S,D(S)) is as follows

S=(S.,S,), Su =auy +buy, k=12

and
D(S) ={U =(u;,u,) € H|Au(
B=5 :O}

where Al:[(c) Zj and Azz(_oc gj

Then it is easily to verify that the conditions of Theo-
rem 5.2 are fulfilled for the operator (S,D(S)) if
8,(0)>0 fork=21,2, lim (b —a/)(x) = lim (b, —a})
(x) and ba,(0)+aa,(0yZ0 X0

Then for all u, € H , the above evolution partial dif-
ferential system has a unique solution which is analytic
intime for t>0.

The following functions are a concrete example for the
above system.

ft sm( jdt+71,bl( )=

0)= AL, (0),

X 7> s
' 1 3

a,(x)=1-x*"2log(x), b, =a}, 7, <

with by, +a=0.
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