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Abstract

The purpose of this note is to point out several obscure places in the results of Ahmed and Zeyada [J. Math.
Anal. Appl. 274 (2002) 458-465]. In order to rectify and improve the results of Ahmed and Zeyada, we in-
troduce the concepts of locally quasi-nonexpansive, biased quasi-nonexpansive and conditionally biased qu-
asi-nonexpansive of a mapping w.r.t. a sequence in metric spaces. In the sequel, we establish some theorems
on convergence of a sequence in complete metric spaces. As consequences of our main result, we obtain
some results of Ghosh and Debnath [J. Math. Anal. Appl. 207 (1997) 96-103], Kirk [Ann. Univ. Mariae Cu-
rie-Sklodowska Sec. A LI.2, 15 (1997) 167-178] and Petryshyn and Williamson [J. Math. Anal. Appl. 43
(1973) 459-497]. Some applications of our main results to geometry of Banach spaces are also discussed.
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1. Introduction

In the last four decades of the last century, there have
been a multitude of results on fixed points of nonexpan-
sive and quasi-nonexpansive mappings in Banach spaces
(e.g., [6-7, 9-11]).

Our aim in this note is to point out several obscure
places in the results of Ahmed and Zeyada [J. Math.
Anal. Appl. 274 (2002) 458-465]. In order to rectify and
improve the results of Ahmed and Zeyada, we introduce
the concepts of locally quasi-nonexpansive, biased quasi-
nonexpansive and conditionally biased quasi-nonexpan-
sive of a mapping w.r.t. a sequence in metric spaces.

Let X be a metric space and D a nonempty subset
of X .Let 7be amapping of D into Xand let F(T) be
the set of all fixed points of T . For agiven x, € D, the
sequence of iterate {x,} is determined by

xn=T(xnfl)=T"(xo),n=1,2,3-~ )

Let X beanormed space, 2¢(0,1) and xe<(0,1),
the sequence of iterates {x,} are defined by
xn = Ti (xnfl) = T; ('XO)’

(1)
T,=AM+(1-2)T,n=123--
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Xy = Tl,/l (xn71) = T;np (xo)’
TM,:(l—i)l-i-/?.T[(l—,u)I+,uT], (nry
n=123...

The iteration scheme (I) is called Teoplitz iteration
and the iteration scheme (Il) was introduced by Mann
[12] while the iteration scheme (111) was introduced by
Ishikawa [9].

The concept of quasi-nonexpansive mapping was ini-
tiated by Tricomi in 1941 for real functions. It was fur-
ther studied by Diaz and Metcalf [5] and Doston [6,7] for
mappings in Banach spaces. Recently, this concept was
given by Kirk [10] in metric spaces as follows:

Definition 1.1. The mapping 7 is said to be quasi-
nonexpansive if for each x e D and for every p e F(T),
d(T(x),p)<d(x,p). A mapping T is conditionally
quasi-nonexpansive if it is quasi-nonexpansive whenever
F(T)=D.

We now introduce the following definition;

Definition 1.2. The mapping 7 is said to be locally
quasi-nonexpansive at pe F(T) if for each xeD,
d(T(x),p)Sd(x,p).

Obviously, quasi-nonexpansive locally quasi-nonex-
pansive at each pe F(T) but the reverse implication
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may not be true. To this end, we observe the following
example.

Example 1.1. Let X =[0,1) and D:[O,%j be en-
dowed with the Euclidean metric d. Define the mapping

T:D—X by T(x):gxz for each xe D. Then we
observe that F(T):{Oé}, for all xeD and p=0
e F(T), we have that

d(T(x),p)= <|x-0/=d(x,p),

Exz—O
2

ie., T is locally quasi-nonexpansive at p=0e F(T).
However, one can easily see that 7 is not locally quasi-

nonexpansive at p = % € F(T). Indeed, for all x e [O%)

and p :ée F(T) we have

>

2 2

d(T(x),p)—‘Zx 3 X 3‘—d(x,p).

Hence we conclude that 7' is not quasi-nonexpansive,
although it is locally quasi-nonexpansive at p =0e F(T).

The concept of asymptotic regularity was formally in-
troduced by Browder and Petryshyn [3] for mappings in
Hilbert spaces. Recently, it was defined by Kirk [11] in
metric spaces as follows:

Definition 1.3. The mapping 7 is said to be asymp-
totically regular if lim d(T" (x),T”*l(x)):O for each
xeD. "

2. Main Results

Let N denote the set of all positive integers and @
=Nu{0} Ahmed and Zeyada [1] introduce-ed the fol-
lowing:

Definition 2.1. The mapping 7 is said to be quasi-
nonexpansive w.r.t. a sequence {x,} if for all new
and foreach pe F(T), d(x,.,p)<d(x,. p).

The following lemma was quoted by Ahmed and
Zeyada [1] without proof.

Lemma A. If T is quasi-nonexpansive, then T is
quasi-nonexpansive w.r.t. a sequence {T”xo} (respec-
tively, {Tﬂ”xo},{T;ﬂxo} ) foreach x,eD.

Remark 2.1. We notice that the above lemma is valid
if {T"x,jeD for each new and a given x;eD
(or D is T-invarient). So the correct version of Lemma
A should be read as follows:

Lemma 2.1. If T is quasi-nonexpansive and for a
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given x,eD and each new, {T"x,JeD, then T
is quasi-nonexpansive w.rt. a sequence {T"x| (re-
spectively, {foo},{TX#xo})for each x,eD.

Further, they claimed that the reverse implication in
Lemma A may not be true in their Example 2.1. We
again notice that there are several obscure places in this
example. We now quote Example 2.1 of Ahmed and
Zeyada [1] in the following:

Example A. Let X =[0,1) and Dz[o,gj be en-

dowed with the Euclidean metric d We define the
mapping T:D — X by T(x)=2x’ for each xeD.

2"+1
|2
2

Foragiven x,= % e D we have

2
z o

:d(T”(xO),p)

where T"(1/4)= (]/2)2n+1 eDVneNuU{0} and F(T)
={0}, ie, T is quasi-nonexpansive W.r.t. a sequence
T"(1/4) Furthermore, the map T is quasi-nonexpan-

sive w.r.t. a sequence {T]/2 (],/2)} and {T]/"z‘l/2 (],/2)}.
They found that 7 is neither conditionally quasi-non-

a’(T”+1 (xo),p) =

. . . 3
expansive nor quasi-nonexpansive, for x:ZED and

p=0eF(T),d(3/4,0)>d(3/4,0) and D is not
closed.

Remark 2.2. We notice that the following claims
made in Example A were false:

1) T:D— X isamapping. In fact,

T(D):[O,%j >[01)=X.

2) F(T)={0}, Infact, F(T)z{o%}.
3) T is quasi-nonexpansive w.r.t. a sequence {T"

(4)}-

4) T is quasi-nonexpansive W.r.t.

{1}, (12)} and {1},,,(1/2)}.

However, (i) can be rectified by taking X as

O,g or any superset of 0,2 in [0,0) Even if
25 25

a sequence

this correction is made we find that the remaining state-
ments 2) - 4) will remain false. Consequently, the claim
of Ahmed and Zeyada [1] that the reverse implication in
Lemma 2.1 may not be true seems false.

We now introduce the following definition.

Definition 2.2. The mapping 7 is said to be locally
quasi-nonexpansive at p e F(T) w.r.t. asequence {x,}
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ifforall new, d(x,,,p)<d(x,. p).

Obviously, locally quasi-nonexpansiveness at pe
F(T)= locally quasi-nonexpansiveness at p e F(T)
w.r.t. asequence {x,}.

We now state the following lemma without proof.

Lemma 2.2. If T is quasi-nonexpansive w.r.t. a se-
guence {xn} then T is locally quasi-nonexpansive at
each peF(T) w.r.t. thesequence {x,}.

The reverse implication in Lemma 2.2 may not be true
as shown in the following example:

Example 2.1. Let X =[0,1) and D :[Oéj be en-

dowed with the Euclidean metric d Define the map- ping
T:D— X by T(x)=2x* for each xeD Then we

observe that F(T):{O,%}. For a given x, I%ED

and p=0eF(T) we have that

2mlig
[%) -0/ <

d(T“l(xo),p):

:d(T" (xo),p)

1 1 2"+1
where Tﬂ[Z):(EJ eD ie., T is locally quasi-

nonexpansive at p=0eF(T) w.r.t. a sequence

{T” (%)} However, one can easily see that 7 is not

locally quasi-nonexpansive at p:%EF(T) w.r.t. the

sequence {T” (%)} Indeed, we have

1 2n+1+l 1 1 2n+1+l 1
J— __> J— —_
(2) 2 (2) 2
:d(T"(xo),p)

forall new Consequently, 7 is neither quasi-nonex-
pansive nor quasi-nonexpansive w.r.t. the sequence

(&)

We now introduce the following:

Definition 2.3. The mapping 7:D — X is said to
be biased quasi-nonexpansive (b.g.n) w.r.t. a sequence
{x,} c X ifforall new andateach pecond(F(T)),

d(x,.,p)<d(x,.p)

a’(T”+1 (%), p) =

(*)

where
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cond(F (T))= {p € F(T):limsup d(x,, p)

<liminfd(x,, F(T)) }

A mapping T is conditionally biased quasi-nonex-
pansive (ch.gn) wrt a sequence {x,} if
cond(F(T)) =D .

Remark 2.3. We observe that the following implica-
tions are obvious:

(a) Conditional biased quasi-nonexpansiveness w.r.t. a
sequence {x,} = biased quasi-nonexpansiveness w.r.t.
a sequence {x} but the reverse implication may not be
true (Indeed, any mapping 7:D— X for which
cond(F(T)) =@ is a biased quasi-nonexpansive w.r.t.
a sequence {x,} but not conditionally biased quasi-
nonexpansive w.r.t. a sequence {xn}. However, under
certain conditions a biased quasi-nonexpansive map w.r.t.
a sequence {x} may be a conditional biased quasi-
nonexpansive W.r.t. a sequence{x,} (see Lemma 2.6
below).

(b) If T is conditionally biased quasi-nonexpansive
w.rt. a sequence {x,} and cond(F(T))=F(T)=@
then 7 is locally quasi-nonexpansive at each p e F(T)
w.r.t. asequence {x,}.

(c) If T is biased quasi-nonexpansive w.r.t. a se-
quence {x,} and @=cond(F(T))OF(T) then T
is locally quasi-nonexpansive at each p econd(F (7))
w.r.t. asequence {x,}.

(d) Quasi-nonexpansivenes = locally quasi-nonex-
pansiveness at pe F(7T)= locally quasi-nonexpan-
sivenessat p e F(T) w.r.t asequence {x,}.

In Example 2.1 above, we observe that

1)for p=0eF(T), we have
2"+1
o) -
2

2" 41
=lim (lj =0
n—wo \ 2

2) for p:%eF(T),We have

limsup d(x,, p) = limsup

n— n—sm

limsupd (x,, p)=limsup

n—e0 n—>m

EEJZH{L _1
2 2

liminf d (x,, F(T)) = liminf GJZ . lim (J ' =0

n—o n—o
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Here cond(F(T))={0} and in view of (*) and (**),
it is evident that 7 is conditionally biased quasi-non-

expansive (c.b.g.n.) w.r.t. a sequence {T” (%j} and

hence it is biased quasi-nonexpansive (b.q.n.) w.r.t. a

sequence {T” (lj} .
4

We now show in the following example that
cond(F (T)) need not be a singleton set.

Example 2.2. Ler X =[0,2] and D=[0,1)u(1,2]
be endowed with the Euclidean metric d Define the
mapping T:D—>X by Tx = +/x for xe[O,l)
u(1,2) and T(x)=2 for x=2 . Clearly, F(T)
:{0,2} Consider the sequence {xﬂ}z{l} in X then
we observe that

1)for p=0e F(T), we have

limsupd (x,, p) = limsup 1-0| = lim1=1;

2)for p=2eF(T), we have

limsupd (x,, p) = limsup 1-2| = lim1=1;

n—o0
and

liminf d (x,, F(T))=lim1=1.

Thus we have cond(F(T)):{O, 2} and it is evident
that T is conditionally biased quasi nonexpansive
(cb.g.n) wrt the sequence {x,}={1} in X, and
hence it is biased quasi-nonexpansive (b.q.n.) w.r.t. the
sequence {x,}={1} in X.

However, interested reader can check that if we con-
sider the sequence {x,} such that x, »>1° then
cond(F(T))={2} Further, we observe that for p =2
€ cond(F(T)) and forall new® we have

d(xﬁl,p)éd(x,,,p)

Thus, T is conditionally biased quasi-nonexpansive
(c.b.g.n.) w.rt. the sequence {x,} in X.

On the other hand, if we consider the sequence {x,}
such that x, -1 then cond(F(7))={0} and T is
conditionally biased quasi-nonexpansive (c.b.g.n.) w.r.t.
the sequence {x,} in X.

Remark 2.4. Example 2.2 above also shows that
cond(F(7')) is a closed set even though T is discon-
tinuousat p=2.

We need the following lemmas to prove our main
theorem:

Lemma 2.3. Let T be locally quasinonexpansive at
p eF(T) W.r.t. {xn} and lim d(xn,F(T))=O .

Then {x,} isa Cauchy sequénce.

Copyright © 2011 SciRes.

Proof. Since limd (x,, F(T))=0 then for any given
&£>0 there exists n, €0 such that for each n>n,

d(xn,F(T))<§ So, there exists g F(T) such that

for all nan,d(x",q)<%.
Thus, for any m,n>n, we have
d(xm,xn)Sd(xm,q)+d(xn,q)<§+§=5, qu(T),

Hence {x,} isa Cauchy sequence.
Lemma 2.4. Let T be conditionally biased quasi-

nonexpansive w.r.t. {x,}.,and liminfd(x,,F(T))=0

Then:

1) {x,} converges to a point p in cond(F(T ) and
T is locally quasi-nonexpansive at pecond(F(T) W.I.L.
{x,}.
2) {x,} isaCauchy sequence.

Proof. 1) Since T is conditionally biased quasi-
nonexpansive w.rt. {x,}, it follows that cond(F(T))

#@. As liminfd(x,, F(T))=0 we have that
limsupd (x,,p)=0 for some pecond(F(T)).So, we

have limd(x,,p)=0 forsome pecond(F(T));ie.

{x,} converges to a point p in cond(F(T)) and T
is locally quasi-nonexpansive at p e cond(F(T)) w.r.t.
{x.}-

2) From limd(x,,p)=0 it follows that for any
given ¢>0 there exists n €N such that for each

nan,d(xn,p)<§. Thus, for any m,n>n;, we have

d(xm’xn)Sd(xrn'q)+d(xn1q)<§+§:8 qEF(T),

Hence {x,} isa Cauchy sequence.

The following lemma follows easily.

Lemma 2.5. Let T be biased quasi-nonexpansive
w.rt {x,}, and let {x,} converges to a point p in
F(T) Then:

1) {x,} converges to a point p in cond(F(T))
and T is conditionally biased quasi-nonexpansive w.r.t.
X, (s
{2§ {x,} isa Cauchy sequence.

We now state our main theorem in the present paper.

Theorem 2.1. Let F(T) be a nonempty closed set.
Then

1) limd(x, F(T))=0 if {x,} converges to a po-

int p in F(T);
2) {x,} convergestoapointin F(T) if
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limd(x,,F(T))=0, T is locally quasi-nonexpansive

at peF(T)wrt{x,} and X iscomplete.

Proof. 1) Since F(T) is closed, peF(T) and the
mapping x> d(x,F(T)) is continuous (see [1, p. 13]),
then

limd x,, 7 (7)) = d(limx,, (7)) = d (p.F (7)) =0

2) From Lemma 2.3, {x} is a Cauchy sequence.

Since X is complete, then {xﬂ} converges to a point,
say ¢ in X.Since F(T) isclosed, then

0=limd(x, F (7)) =d(limx, F(T)|=d(p,F(T))

implies that g e F(T).

As consequences of Theorem 2.1, we have the fol-
lowing:

Corollary 2.1. Let F(T) anonempty closed set and
foragiven x,eD andeach ne a),{T”xo} e D Then

1) lmd(T”xo,F(T)):O if {T"x,} converges to

apoint p in F(T);
2) {T"x,} convergestoapointin F(T) if,
limd (T"x,, F(T))=0, T is locally qusi-nonexpansive

at peF(T) wrt {T"x} and X iscomplete.

Corollary 2.2. Let X be a normed linear space,
F(T) a nonempty closed set and for a given x, e D
andeach new, {T/x,}eD.

(1) If the sequence {foo} converges to a point p
in F(T), then
limd (T} x,, F(T))=0

(2) If limd(Tx, F(T))=0 T is locally quasi-

nonexpansive at peF(7T) w.rt. {foo} and X is
complete, then {E"xo} converges to a point p in
F(T).

Corollary 2.3. Let X be a normed linear space,
F(T) a nonempty closed set and for a given x, € D
andeach new, {T/,x}eD Then

1) !md(ﬂfﬂxo,F(T)):O if the sequence {7}, x,

converges to apoint p in F(T);
(2) {T7,%| converges to a point p in F(T) if
limd (7} ,x,,F(T))=0, T is locally quasi-nonexpan-

siveat peF(T) w.rt. {Tfuxo and X is complete.
Note that the continuity of 7 implies that F(T) is
closed but the converse need not be true. To effect this
consider the following example.
Example 2.3. Let X =[0,0) and D=[01) be
endowed with the Euclidean metric d. Define the map-
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ing T:D— X by T(x)zx if xe[O,%} and T(x)

=3 if xe(%,l) Obviously, F(T)=[0,1/2] is a

nonempty closed but 7 is not continuous at x =1/2.

Remark 2.5. (a) In order to support the above fact
Ahmed and Zeyada [1] stated wrongly in their Example
2.2, where X =[0,1), D =[0,1/4)U(1/2,5/6],T(x)=x.

If Xe[01/4) and T(x)=x/2 if xe(1/2,5/6)
that 7 is not continuous. In fact, we observe that in this
example T is continuous.

(b) From Lemma 2.1, Examples 2.1 and 2.3, the con-
tinuity of 7 implies that F(7) is closed but the con-
verse may not be true; then we have that Corollaries 2.1,
2.2 and 2.3 are improvement of Theorem 1.1 in [13,
p.462], Theorem 1.1' in [13, p. 469], and Theorem 3.1
in [8, p. 98], respectively.

(c) Since every quasi-nonexpansive map w.r.t. a se-
quence {x} is locally quasi-nonexpansive at each
peF(T) wrt a sequence {x,}, but the converse
may not be true; we have that Theorem 2.1, Corollaries
21, 2.2 and 2.3 are improvement of corresponding
Theorem 2.1, Corollary 2.1, 2.2 and 2.3 of Ahmed and
Zeyada [1].

(d) By considering the closedness of F(7T') in lieu of
the continuity of 7 and 7:D— X instead of
T:X —> X we have that our Corollary 2.1 improves
Proposition 1.1 of Kirk [10, p. 168].

(e) The closedness condition of D in Theorem 1.1
and 1.1' of Petryshyn and Williamson [12, p. 462, 469]
and Theorem 3.1 in [8, p. 98] is superfluous.

(f) The convexity condition of D in Theorem 1.1’
of Petryshyn and Williamson [12, p. 469] is superfluous
because the author assumed in their theorem that
{foo eD for each new and a given x,eD in
condition (1.3).

Theorem 22. Let cond(F(T)) be a nonempty
closed set. Then {x,} converges to a point in
cond(F (7)) if Iian_)igfd(xﬂ,cond(F(T))):0, T is
condionally biased quasi-nonexpansive w.r.t. {x,} and
X is complete.

Proof. Since cond(F(T))cF(T) we have that
liminf d x,,cond(F (7)))=0 implies liminfd (x,,
F(T)):O Now using the technique of the proof of
Theorem 2.1 the conclusion follows from Lemma 2.3.

The following results follows easily from Lemma 2.5.

Theorem 2.3. Let F(T) be a nonempty closed set.
Then {x,} converges to a point in cond(F(T)) if
{x,} converges to a point p in F(T), T is biased
quasi-nonexpansive w.rt. {x,} and X iscomplete.
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Theorem 2.4. Let X be a complete metric space and
let cond(F (7)) beanonempty closed set. Assume that

1) T isbiased quasi-nonexpansive w.rt. {x,};

2) ,!i_r)rjod(xn,x,ﬁl) =0 or {x,} is a Cauchy se-

quence;
3) if the sequence {y,} satisfies limd(y,,,.)=0
then
liminf dy,,cond(F(T)))=0
or

limsupd (,,cond(F(T)))=0.

n—0

Then {x,} convergestoapointin cond(F(T)).

Proof. Since cond(F(T))=@ it follows from (i)
that 7 is condionally biased quasi-nonexpansive w.r.t.
{x,} and the sequence {d(xn,cond(F(T)))} is mono-
tonically decreasing and bounded from below by zero.
Then Iiminfd(x cond(F(T))) exists.

nt
n—o

From 2) and 3), we have that

liminf d (x,,cond(F (T))) =0

n—>0

or

limsupd (x,,cond(F(T)))=0.

n!
n—®

Then Iinld(x cond(F(T))):O Therefore, by The-

n?

orem 2.2, the sequence {x,} converges to a point in
cond(F (T)).

As consequences of Theorem 2.4, we obtain the
following:

Corollary 2.4. Let X be a complete metric space
and let cond(F(T)) be a nonempty closed set. Assume
that

1) T isbiased quasi-nonexpansive w.rt. {x,};

2) T isasymptoticc regularat x, € D (or
{T" (x )} is a Cauchy sequence );

3) if the sequence {y,} satisfies ’!md(yn,ym):O

then
liminf d(,,cond(F(T)))=0

n—x0

or

limsupd (y,,cond(F(T)))=0.

n—o

Then {T"(x,)} converges to a pointin cond(F(T)).

Corollary 2.5. Let X be a Banach space and let
cond(F (T)) be anonempty closed set. Assume that

Copyright © 2011 SciRes.

1) T is biased quasi-nonexpansive w.r.t. {7"(x, )} ;
2) T is asymptoticc regular at x, € D (or {T" (xo)}
is a Cauchy sequence );

3) if the sequence {y,} satisfies lim|y, -7,»,|=0,
n—>%0

then
0

liminf d y,,cond(F(7)))

n—x0

or
limsupd (y,,cond(F(T)))=0.

Then {T”(xo)} converges to a pointin cond(F(T)).
Corollary 2.6. Let X be a Banach space and let
cond(F(T)) be anonempty closed set. Assume that

1) 7 is biased quasi-nonexpansive w.r.t. {7}, (x,)};
2) T is
{71, (x)} isaCauchy sequence );

asymptoticc regular at x,eD (or
3) if the sequence {y,} satisfies lim|y, -7, [ =0,
then

0

liminf d y,,cond(F(7)))

n—o0

lim supd(yn,cond(F(T))) =0.

Then {T;fﬂ (% )} converges to a point in
cond(F (T)).

Remark 2.6. From Lemmas 2.1 and 2.2, Examples 2.1
and 2.3, Remark 2.3, the continuity of 7 implies that
F(T) is closed but the converse may not be true; we
obtain that Corollary 2.4 include Theorem 1.2 in [12, p.
464] and Theorem 3.2 in [7, p. 99] as special cases.

As another consequence of Theorem 2.1, we establish
the following theorem:

Theorem 2.5. Let X be a complete metric space and
let cond(F (7)) be anonempty closed set. Assume that

1) T isbiased quasi-nonexpansive w.rt. {x,};
2) for every xe D—cond(F(T)) thereexists p, e
cond(F(T)) suchthat d(x,.,, p,)<d(x, p,);

3) the sequence {xﬂ} contains a subsequence {xn/}
convergingto x" e D.
Then {x,} converges toapointin cond(F(T)).

Proof. Since cond(F(T))= it follows from (i)
that T is condionally biased quasi-nonexpansive w.r.t.

{x,} and the sequence {d(xn,cond(F(T)))} is mono-
tonically decreasing and bounded from below by zero.
Then Iimd(x,,,cond(F(T)))=d(lim xﬂ,cond(F(T)))
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=r2>0 exists. We now apply Theorem 2.4. It suffices to
show that r=0. If limx, =x" econd(F(T)) then
r=0. If x" ¢cond(F(T)) then x"eD-cond(F(T)
Thus there exists p . econd(F(T)) such that
d(xp.)=d(limz,,.p )=timd(x,..p,.)

< |imd(x*,px*)=d(|imxn,px* )=d<x*,px*)

n—»0 n—o

This is a contradiction. So, x* cond(F(T)).

Corollary 2.7. Let X be a complete metric space,
cond(F(T)) a nonempty closed set and for a given
x,eD andeach new, {T"xo} € D . Assume that

1) T is biased quasi-nonexpansive w.rt. {7"(x, )} ;

2) for every xeD—cond(F(T)) there exists
p, econd(F(T)) such that

d(T" (x,),p.)<d(T" (%), p.);
3) the sequence {7"(x,)} contains a subsequence
{T"f (% )} convergingto x" e D.
Then {T” (xo)} converges to a point in

cond(F(T)).
Corollary 2.8. Let X be a Banach space,
cond (F(T)) a nonempty closed set and for a given

x, €D andeach new, {Tl”# (xo)} e D Assume that
1) T is biased quasi-nonexpansive w.r.t. {T,{’,”(xO )}

2) for every xe D—cond(F(T)) there exists p, e
cond(F(T)) such that

|77 (x0) = .| < |1 (%)= £

3) the sequence {7"(x,)| contains a subsequence

{T,{’f (% )} convergingto x e D.
Then {T/ (xo)} converges to a point in

cond(F(T)).
Corollary 2.9. Let X be a Banach space,
cond(F(T)) a nonempty closed set and for a given

x,eD andeach new, {T},(x,)} D Assume that
1) T is biased quasi-nonexpansive w.r.t. {T;f”(xo )}

2) for every xeD-cond(F(T)) there exists
p, econd(F(T)) such that

| 7 (%)= P, " < "T/lny (%) -2

3) the sequence {T" (xo)} contains a subsequence

Copyright © 2011 SciRes.

{T/ﬂ (xo)} convergingto x* eD.
Then {7}, (x,)} converges to a pointin cond(F (T)).
Remark 2.7. From Lemmas 2.1 and 2.2, Examples
2.1 and 2.3, Remark 2.3, the continuity of 7 implies
that F(T) is closed but the converse may not be true ;
we obtain that Corollary 2.7 is an improvement of Theo-
rem 1.3 in [13, p. 466].

3. Applications to Geometry of
Banach Spaces

Throughout this section, let R denote the set of real
numbers. Let K =K (z,r) be a closed ball in a Banach

space X . For a sequence {x,}” UK converging to

X we define
limD, = SD(x,K)
where
D, =conv({x,} UK)
and

D,., =conv({x,} UD,)Vrew

and SD(x,K) iscalleda super drop.

Clearly, for a constant sequence {x,}={x} con-
verging to x we have D,,=D,Vinew so that
D(x,k)=conv({x}UK) and is called a drop Thus
the concept of a drop is a special case of super drop
It is also clear that if yeD(xK) then
D(y,K)cD(x,K) andif z=0 then ||y||:||x||

Recall that a function ¢: X — R is called a lower
semicontinuous Whenever {xeX:(/)(x)Sa} is closed
foreach aeR.

Caristi [4] proved the following:

Theorem A. Let (X,d) be complete and
¢:X >R a lower semicontinuous function with a
finite lower bound. Let T:X — X be any function
such that d(x,7(x))<@(x)-¢(T(x)) for each
xeX. Then T hasa fixed point.

We now state and prove some applications of our
main results in section 2 to geometry of Banach Spaces.

Theorem 3.1. Let C be a closed subset of a Banach
space X let zeX—-C and let K=K(z,r) be a
closed ball of radius r<d(z,C)=R Let x be an
arbitrary element of C let {x,} be a sequence in C
convergingto X andlet 7:C — X be any continuous
function defined implicitly by 7(x)e CnSD(x,K)
for each xeC in the sense that 7'(x,)e CnD, for
each new.Then
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1) limd(x,, F(T))=0 if {x,} converges to a point

n—w

p in F(T);
2) {xn}

limd(x,,F(T))=0, T islocally quasi-nonexpansive

at peF(T) w.r.t. {xn}.

Proof. Without loss of generality we may assume that
z=0. Let |x|=p=R and let X =A4NSD(xK)
Then it is clear that T maps X into itself. For given
yeX and a sequence {y,} converging to y, we
shall estimate |y—7(y)| on X.

For given ye X and the corresponding sequence
{r,} there is a sequence {b,} in X with
T(y,)=th,+(1-1)y,, 0<t<1 Now [T(y,)|<¢|p,]

converges to a point in F(T) if

+(1=1)|, |, we have
(=l ) < =l ()]
so because |y, |6, = R—n , we find that
2 |7 (»,) |
R-n
Thus,
vl )| <ty -2,
<t(|wll+le.f) < (n+r)
n+r ~
SR_r(yn |7 (x)])

Define d(x,y) = "x—y"Vx,y eX and w(y)
=Z—+r||y|| then X is complete as a metric space and
—-r

¢:X —>R is a continuous function. So, ¢ is a
lower-semicontinuous function. Also, the above inequal-
ity takes the form d(y,.7(y,))<e(v,)-0(T(3,)).
Proceeding to the Ilimit as n-—>o we obtain
d(y,T(y)) S;o(y)—(p(T(y)) for each yeX .
There- fore, applying the theorem of Caristi we obtain
that 7 has a fixed point p=p(x) for each xeC,
ie, F(T)#@. By continuity of 7, F(T) is closed.
Hence the conclusion follows from Theorem 2.1.

Since drop is a special case of super drop, we have the
following:

Corollary 3.1. Let C be a closed subset of a Banach
space X let zeX-C and let K=K(z,r) be a
closed ball of radius r<d(z,C)=R Let x be an
arbitrary element of C,andlet 7:C — X be any (not
necessarily continuous) function defined implicitly by
T(x)eCnD(x,K) foreach xeC. Then

(1) limd(x,, F(T))=0 if {x,} converges to a point
p in F(T);

Copyright © 2011 SciRes.

(2) {x,} converges to a point in F(T) if
limd(x,,F(T))=0, T is locally quasi-nonexpansive

n!

at peF(T) wrt {x,

We now prove the following result for biased quasi-
nonexpansive mapping w.r.t. a sequence {x,} .

Theorem 3.2. Let C be a closed subset of a Banach
space X let zeX—-C and let K=K(z,r) be a
closed ball of radius r<d(z,C)=R Let x be an
arbitrary element of C, {x,} a sequence in C con-
vergingto X, and let T:C — X be any con- tinuous
function defined implicitly by 7(x)eC nSD(x,K)
for each xeC in the sense that T(x,) eCnD, for
each new.If {x,} convergestoapointin F(T), T
is biased quasi-nonexpansive w.rt. {x,} then {x,}
converges to a point in cond(F (7)).

Proof. Using Theorem 2.3. instead of Theorem 2.1 the
conclusion follows on the lines of the proof technique of
Theorem 3.1.

As a consequence of Theorem 3.2, we obtain the
following:

Corollary 3.2. Let C be a closed subset of a Banach
space X let zeX—-C and let K=K(z,r) be a
closed ball of radius »<d(z,C)=R. Let x be an
arbitrary element of C,andlet T:C — X be any (not
necessarily continuous) function defined implicitly by
T(x)eCnD(x,K) for each xeC. If {x,} conver-
gestoapointin F(7),T is biased quasi-nonexpansive
w.rt. {x,} then {x,} converges to a point in
cond(F (T)).

Open Question. To what extent can the continuity
hypothesison 7 be muted in Theorems 3.1 and 3.2?
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