

A Note on Convergence of a Sequence and its Applications to Geometry of Banach Spaces

Hemant Kumar Pathak

School of Studies in Mathematics, Pandit Ravishankar Shukla University, Raipur, India E-mail: hkpathak05@gmail.com Received January 9, 2011; revised April 22, 2011; accepted April 30, 2011

Abstract

The purpose of this note is to point out several obscure places in the results of Ahmed and Zeyada [J. Math. Anal. Appl. 274 (2002) 458-465]. In order to rectify and improve the results of Ahmed and Zeyada, we introduce the concepts of locally quasi-nonexpansive, biased quasi-nonexpansive and conditionally biased quasi-nonexpansive of a mapping w.r.t. a sequence in metric spaces. In the sequel, we establish some theorems on convergence of a sequence in complete metric spaces. As consequences of our main result, we obtain some results of Ghosh and Debnath [J. Math. Anal. Appl. 207 (1997) 96-103], Kirk [Ann. Univ. Mariae Curie-Sklodowska Sec. A LI.2, 15 (1997) 167-178] and Petryshyn and Williamson [J. Math. Anal. Appl. 43 (1973) 459-497]. Some applications of our main results to geometry of Banach spaces are also discussed.

Keywords: Locally Quasi-Nonexpansive, Biased Quasi-Nonexpansive, Conditionally Biased Quasi-Nonexpansive, Drop, Super Drop

1. Introduction

In the last four decades of the last century, there have been a multitude of results on fixed points of nonexpansive and quasi-nonexpansive mappings in Banach spaces (e.g., [5-7, 9-11]).

Our aim in this note is to point out several obscure places in the results of Ahmed and Zeyada [J. Math. Anal. Appl. 274 (2002) 458-465]. In order to rectify and improve the results of Ahmed and Zeyada, we introduce the concepts of locally quasi-nonexpansive, biased quasi-nonexpansive and conditionally biased quasi-nonexpansive of a mapping w.r.t. a sequence in metric spaces.

Let X be a metric space and D a nonempty subset of X. Let T be a mapping of D into X and let F(T) be the set of all fixed points of T. For a given $x_0 \in D$, the sequence of iterate $\{x_n\}$ is determined by

$$x_n = T(x_{n-1}) = T^n(x_0), n = 1, 2, 3...$$
 (I)

Let X be a normed space, $\lambda \in (0,1)$ and $\mu \in (0,1)$, the sequence of iterates $\{x_n\}$ are defined by

$$\begin{aligned} x_n &= T_{\lambda} \left(x_{n-1} \right) = T_{\lambda}^n \left(x_0 \right), \\ T_{\lambda} &= \lambda I + (1 - \lambda) T, n = 1, 2, 3 \cdots \end{aligned} \tag{II}$$

$$x_{n} = T_{\lambda,\mu}(x_{n-1}) = T_{\lambda,\mu}^{n}(x_{0}),$$

$$T_{\lambda,\mu} = (1-\lambda)I + \lambda T[(1-\mu)I + \mu T], \quad \text{(III)}$$

$$n = 1, 2, 3....$$

The iteration scheme (I) is called Teoplitz iteration and the iteration scheme (II) was introduced by Mann [12] while the iteration scheme (III) was introduced by Ishikawa [9].

The concept of quasi-nonexpansive mapping was initiated by Tricomi in 1941 for real functions. It was further studied by Diaz and Metcalf [5] and Doston [6,7] for mappings in Banach spaces. Recently, this concept was given by Kirk [10] in metric spaces as follows:

Definition 1.1. The mapping *T* is said to be quasinonexpansive if for each $x \in D$ and for every $p \in F(T)$, $d(T(x), p) \leq d(x, p)$. A mapping *T* is conditionally quasi-nonexpansive if it is quasi-nonexpansive whenever $F(T) \neq \emptyset$.

We now introduce the following definition:

Definition 1.2. The mapping *T* is said to be locally quasi-nonexpansive at $p \in F(T)$ if for each $x \in D$, $d(T(x), p) \le d(x, p)$.

Obviously, quasi-nonexpansive locally quasi-nonexpansive at each $p \in F(T)$ but the reverse implication

Copyright © 2011 SciRes.

may not be true. To this end, we observe the following example.

Example 1.1. Let X = [0,1) and $D = \left\lfloor 0, \frac{3}{4} \right\rfloor$ be endowed with the Euclidean metric d. Define the mapping $T: D \to X$ by $T(x) = \frac{3}{2}x^2$ for each $x \in D$. Then we observe that $F(T) = \left\{0, \frac{2}{3}\right\}$, for all $x \in D$ and p = 0

 $\in F(T)$, we have that

$$d(T(x), p) = \left|\frac{3}{2}x^2 - 0\right| \le |x - 0| = d(x, p),$$

i.e., *T* is locally quasi-nonexpansive at $p = 0 \in F(T)$. However, one can easily see that *T* is not locally quasinonexpansive at $p = \frac{2}{3} \in F(T)$. Indeed, for all $x \in \left(0, \frac{2}{3}\right)$

and $p = \frac{2}{3} \in F(T)$ we have

$$d(T(x), p) = \left|\frac{3}{2}x^2 - \frac{2}{3}\right| > \left|x - \frac{2}{3}\right| = d(x, p).$$

Hence we conclude that T is not quasi-nonexpansive, although it is locally quasi-nonexpansive at $p = 0 \in F(T)$.

The concept of asymptotic regularity was formally introduced by Browder and Petryshyn [3] for mappings in Hilbert spaces. Recently, it was defined by Kirk [11] in metric spaces as follows:

Definition 1.3. The mapping *T* is said to be asymptotically regular if $\lim_{n\to\infty} d(T^n(x), T^{n+1}(x)) = 0$ for each $x \in D$.

2. Main Results

Let **N** denote the set of all positive integers and $\omega = \mathbf{N} \cup \{0\}$ Ahmed and Zeyada [1] introduce-ed the following:

Definition 2.1. The mapping *T* is said to be quasinonexpansive w.r.t. a sequence $\{x_n\}$ if for all $n \in \omega$ and for each $p \in F(T)$, $d(x_{n+1}, p) \le d(x_n, p)$.

The following lemma was quoted by Ahmed and Zeyada [1] without proof.

Lemma A. If *T* is quasi-nonexpansive, then *T* is quasi-nonexpansive w.r.t. a sequence $\{T^n x_0\}$ (respectively, $\{T^n_{\lambda} x_0\}, \{T^n_{\lambda,\mu} x_0\}$) for each $x_0 \in D$.

Remark 2.1. We notice that the above lemma is valid if $\{T^n x_0\} \in D$ for each $n \in \omega$ and a given $x_0 \in D$ (or *D* is *T*-invarient). So the correct version of Lemma A should be read as follows:

Lemma 2.1. If T is quasi-nonexpansive and for a

Copyright © 2011 SciRes.

given $x_0 \in D$ and each $n \in \omega$, $\{T^n x_0\} \in D$, then T is quasi-nonexpansive w.r.t. a sequence $\{T^n x_0\}$ (respectively, $\{T^n_{\lambda} x_0\}, \{T^n_{\lambda,\mu} x_0\}$) for each $x_0 \in D$.

Further, they claimed that the reverse implication in Lemma A may not be true in their Example 2.1. We again notice that there are several obscure places in this example. We now quote Example 2.1 of Ahmed and Zeyada [1] in the following:

Example A. Let X = [0,1) and $D = \left\lfloor 0, \frac{4}{5} \right\rfloor$ be endowed with the Euclidean metric **d** We define the

aboved with the Euclidean metric **d** we define the mapping $T: D \to X$ by $T(x) = 2x^2$ for each $x \in D$. For a given $x_0 = \frac{1}{4} \in D$ we have

$$d(T^{n+1}(x_0), p) = \left| \left(\frac{1}{2}\right)^{2^{n+1}+1} - 0 \right| \le \left| \left(\frac{1}{2}\right)^{2^n+1} - 0 \right|$$
$$= d(T^n(x_0), p)$$

where $T^n(1/4) = (1/2)^{2^{n+1}} \in D \forall n \in \mathbb{N} \cup \{0\}$ and $F(T) = \{0\}$, *i.e.*, T is quasi-nonexpansive w.r.t. a sequence $T^n(1/4)$ Furthermore, the map T is quasi-nonexpansive w.r.t. a sequence $\{T_{1/2}^n(1/2)\}$ and $\{T_{1/2,1/2}^n(1/2)\}$. They found that T is neither conditionally quasi-non-expansive nor quasi-nonexpansive, for $x = \frac{3}{4} \in D$ and $p = 0 \in F(T), d(3/4, 0) > d(3/4, 0)$ and D is not closed.

Remark 2.2. We notice that the following claims made in Example A were false:

1) $T: D \to X$ is a mapping. In fact,

$$T(D) = \left[0, \frac{32}{25} \right] \supset \left[0, 1 \right] = X.$$

2) $F(T) = \{0\}$, In fact, $F(T) = \left\{ 0, \frac{1}{2} \right\}$.

3) T is quasi-nonexpansive w.r.t. a sequence $\{T^n (1/4)\}$.

4) T is quasi-nonexpansive w.r.t. a sequence $\{T_{1/2}^n(1/2)\}$ and $\{T_{1/2,1/2}^n(1/2)\}$. However, (i) can be rectified by taking X as

However, (i) can be rectified by taking X as $\left[0,\frac{32}{25}\right)$ or any superset of $\left[0,\frac{32}{25}\right)$ in $\left[0,\infty\right)$ Even if

this correction is made we find that the remaining statements 2) - 4) will remain false. Consequently, the claim of Ahmed and Zeyada [1] that the reverse implication in Lemma 2.1 may not be true seems false.

We now introduce the following definition.

Definition 2.2. The mapping T is said to be locally quasi-nonexpansive at $p \in F(T)$ w.r.t. a sequence $\{x_n\}$

C

if for all $n \in \omega$, $d(x_{n+1}, p) \leq d(x_n, p)$.

Obviously, locally quasi-nonexpansiveness at $p \in$ $F(T) \Rightarrow$ locally quasi-nonexpansiveness at $p \in F(T)$ w.r.t. a sequence $\{x_n\}$.

We now state the following lemma without proof.

Lemma 2.2. If T is quasi-nonexpansive w.r.t. a sequence $\{x_n\}$ then T is locally quasi-nonexpansive at each $p \in F(T)$ w.r.t. the sequence $\{x_n\}$.

The reverse implication in Lemma 2.2 may not be true as shown in the following example:

Example 2.1. Let
$$X = \begin{bmatrix} 0,1 \end{pmatrix}$$
 and $D = \begin{bmatrix} 0,\frac{2}{3} \end{bmatrix}$ be endowed with the Euclidean metric d Define the mapping $T: D \to X$ by $T(x) = 2x^2$ for each $x \in D$ Then we

observe that $F(T) = \left\{0, \frac{1}{2}\right\}$. For a given $x_0 = \frac{1}{4} \in D$ and $p = 0 \in F(T)$ we have that

$$d(T^{n+1}(x_0), p) = \left| \left(\frac{1}{2}\right)^{2^{n+1}+1} - 0 \right| < \left| \left(\frac{1}{2}\right)^{2^n+1} - 0 \right| \quad (*)$$
$$= d(T^n(x_0), p)$$

where $T^n\left(\frac{1}{4}\right) = \left(\frac{1}{2}\right)^{2^n+1} \in D$ *i.e.*, *T* is locally quasinonexpansive at $p = 0 \in F(T)$ w.r.t. a sequence $\left\{T^n\left(\frac{1}{4}\right)\right\}$ However, one can easily see that T is not locally quasi-nonexpansive at $p = \frac{1}{2} \in F(T)$ w.r.t. the

sequence $\left\{T^n\left(\frac{1}{4}\right)\right\}$. Indeed, we have

$$d(T^{n+1}(x_0), p) = \left| \left(\frac{1}{2}\right)^{2^{n+1}+1} - \frac{1}{2} \right| > \left| \left(\frac{1}{2}\right)^{2^{n+1}+1} - \frac{1}{2} \right| \quad (**)$$
$$= d(T^n(x_0), p)$$

for all $n \in \omega$ Consequently, T is neither quasi-nonexpansive nor quasi-nonexpansive w.r.t. the sequence $\left\{T^n\left(\frac{1}{4}\right)\right\}$.

We now introduce the following:

Definition 2.3. The mapping $T: D \to X$ is said to be biased quasi-nonexpansive (b.q.n) w.r.t. a sequence $\{x_n\} \subset X$ if for all $n \in \omega$ and at each $p \in \operatorname{cond}(F(T))$,

$$d(x_{n+1},p) \leq d(x_n,p)$$

where

Copyright © 2011 SciRes.

$$\operatorname{cond}(F(T)) = \left\{ p \in F(T) : \limsup_{n \to \infty} \sup d(x_n, p) \\ \leq \liminf_{n \to \infty} d(x_n, F(T)) \right\}$$

A mapping T is conditionally biased quasi-nonexpansive (c.b.q.n) w.r.t. a sequence $\{x_n\}$ if $\operatorname{cond}(F(T)) \neq \emptyset$.

Remark 2.3. We observe that the following implications are obvious:

(a) Conditional biased quasi-nonexpansiveness w.r.t. a sequence $\{x_n\} \Rightarrow$ biased quasi-nonexpansiveness w.r.t. a sequence $\{x_n\}$ but the reverse implication may not be true (Indeed, any mapping $T: D \to X$ for which $\operatorname{cond}(F(T)) \neq \emptyset$ is a biased quasi-nonexpansive w.r.t. a sequence $\{x_n\}$ but not conditionally biased quasinonexpansive w.r.t. a sequence $\{x_n\}$. However, under certain conditions a biased quasi-nonexpansive map w.r.t. a sequence $\{x_n\}$ may be a conditional biased quasinonexpansive w.r.t. a sequence $\{x_n\}$ (see Lemma 2.6 below).

(b) If T is conditionally biased quasi-nonexpansive w.r.t. a sequence $\{x_n\}$ and $\operatorname{cond}(F(T)) = F(T) \neq \emptyset$ then T is locally quasi-nonexpansive at each $p \in F(T)$ w.r.t. a sequence $\{x_n\}$.

(c) If T is biased quasi-nonexpansive w.r.t. a sequence $\{x_n\}$ and $\emptyset \neq \operatorname{cond}(F(T)) \ddot{O} F(T)$ then T is locally quasi-nonexpansive at each $p \in \operatorname{cond}(F(T))$ w.r.t. a sequence $\{x_n\}$.

(d) Quasi-nonexpansivenes \Rightarrow locally quasi-nonexpansiveness at $p \in F(T) \Rightarrow$ locally quasi-nonexpansiveness at $p \in F(T)$ w.r.t. a sequence $\{x_n\}$.

In Example 2.1 above, we observe that

1) for $p = 0 \in F(T)$, we have

$$\lim_{n \to \infty} \sup d(x_n, p) = \limsup_{n \to \infty} \left| \left(\frac{1}{2} \right)^{2^n + 1} - 0 \right|$$
$$= \lim_{n \to \infty} \left(\frac{1}{2} \right)^{2^n + 1} = 0$$

2) for
$$p = \frac{1}{2} \in F(T)$$
, we have

$$\lim_{n \to \infty} \sup d(x_n, p) = \limsup_{n \to \infty} \left| \left(\frac{1}{2}\right)^{2^n + 1} - \frac{1}{2} \right| = \lim_{n \to \infty} \left| \left(\frac{1}{2}\right)^{2^n + 1} - \frac{1}{2} \right| =$$

$$\liminf_{n \to \infty} d\left(x_n, F\left(T\right)\right) = \liminf_{n \to \infty} \left(\frac{1}{2}\right)^{2^n + 1} = \lim_{n \to \infty} \left(\frac{1}{2}\right)^{2^n + 1} = 0$$

APM

2

 $\left| -\frac{1}{2} \right| = \frac{1}{2}$

Here $\operatorname{cond}(F(T)) \neq \{0\}$ and in view of (*) and (**), it is evident that T is conditionally biased quasi-nonexpansive (c.b.q.n.) w.r.t. a sequence $\left\{T^n\left(\frac{1}{4}\right)\right\}$ and hence it is biased quasi-nonexpansive (b.q.n.) w.r.t. a sequence $\left\{T^n\left(\frac{1}{4}\right)\right\}$.

sequence $\left\{T^n\left(\frac{1}{4}\right)\right\}$.

We now show in the following example that $\operatorname{cond}(F(T))$ need not be a singleton set.

Example 2.2. Let X = [0,2] and $D = [0,1) \cup (1,2]$ be endowed with the Euclidean metric **d** Define the mapping $T: D \to X$ by $Tx = +\sqrt{x}$ for $x \in [0,1)$ $\cup (1,2)$ and T(x) = 2 for x = 2. Clearly, F(T) $= \{0,2\}$ Consider the sequence $\{x_n\} = \{1\}$ in X then we observe that

1) for $p = 0 \in F(T)$, we have

$$\lim_{n\to\infty}\sup d(x_n, p) = \limsup_{n\to\infty}\sup |1-0| = \lim_{n\to\infty}1 = 1;$$

2) for
$$p = 2 \in F(T)$$
, we have

$$\lim_{n\to\infty}\sup d(x_n,p) = \limsup_{n\to\infty}\sup |1-2| = \lim_{n\to\infty}1 = 1;$$

and

$$\liminf d(x_n, F(T)) = \lim 1 = 1$$

Thus we have $\operatorname{cond}(\mathsf{F}(T)) = \{0,2\}$ and it is evident that T is conditionally biased quasi nonexpansive (c.b.q.n.) w.r.t. the sequence $\{x_n\} \equiv \{1\}$ in X, and hence it is biased quasi-nonexpansive (b.q.n.) w.r.t. the sequence $\{x_n\} \equiv \{1\}$ in X.

However, interested reader can check that if we consider the sequence $\{x_n\}$ such that $x_n \to 1^+$ then $\operatorname{cond}(F(T)) = \{2\}$ Further, we observe that for $p = 2 \in \operatorname{cond}(F(T))$ and for all $n \in \omega$ we have

 $d(x_{n+1},p) \leq d(x_n,p)$

Thus, T is conditionally biased quasi-nonexpansive (c.b.q.n.) w.r.t. the sequence $\{x_n\}$ in X.

On the other hand, if we consider the sequence $\{x_n\}$ such that $x_n \to 1^-$ then $\operatorname{cond}(F(T)) = \{0\}$ and T is conditionally biased quasi-nonexpansive (c.b.q.n.) w.r.t. the sequence $\{x_n\}$ in X.

Remark 2.4. Example 2.2 above also shows that $\operatorname{cond}(F(T))$ is a closed set even though T is discontinuous at p = 2.

We need the following lemmas to prove our main theorem:

Lemma 2.3. Let *T* be locally quasinonexpansive at $p \in F(T)$ w.r.t. $\{x_n\}$ and $\lim_{n \to \infty} d(x_n, F(T)) = 0$. Then $\{x_n\}$ is a Cauchy sequence.

Copyright © 2011 SciRes.

Proof. Since $\lim_{n\to\infty} d(x_n, F(T)) = 0$ then for any given $\varepsilon > 0$ there exists $n_1 \in \Box$ such that for each $n \ge n_1$, $d(x_n, F(T)) < \frac{\varepsilon}{2}$ So, there exists $q \in F(T)$ such that for all $n \ge n_1, d(x_n, q) < \frac{\varepsilon}{2}$. Thus, for any $m, n \ge n_1$ we have

$$d(x_m, x_n) \le d(x_m, q) + d(x_n, q) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \quad q \in F(T),$$

Hence, (x_n) , is a Couchy accuracy

Hence $\{x_n\}$ is a Cauchy sequence.

Lemma 2.4. Let *T* be conditionally biased quasinonexpansive w.r.t. $\{x_n\}$, and $\liminf_{n\to\infty} d(x_n, F(T)) = 0$ Then:

1) $\{x_n\}$ converges to a point p in $\operatorname{cond}(F(T))$ and T is locally quasi-nonexpansive at $p \in \operatorname{cond}(F(T))$ w.r.t. $\{x_n\}$.

2) $\{x_n\}$ is a Cauchy sequence.

Proof. 1) Since *T* is conditionally biased quasinonexpansive w.r.t. $\{x_n\}$, it follows that $\operatorname{cond}(F(T)) \neq \emptyset$. As $\liminf_{n \to \infty} d(x_n, F(T)) = 0$ we have that $\limsup_{n \to \infty} d(x_n, p) = 0$ for some $p \in \operatorname{cond}(F(T))$. So, we have $\lim_{n \to \infty} d(x_n, p) = 0$ for some $p \in \operatorname{cond}(F(T))$; *i.e.*, $\{x_n\}$ converges to a point *p* in $\operatorname{cond}(F(T))$ and *T* is locally quasi-nonexpansive at $p \in \operatorname{cond}(F(T))$ w.r.t. $\{x_n\}$. 2) From $\lim_{n \to \infty} d(x_n, p) = 0$ it follows that for any

given $\varepsilon > 0$ there exists $n_1 \in \mathbf{N}$ such that for each $n \ge n_1, d(x_n, p) < \frac{\varepsilon}{2}$. Thus, for any $m, n \ge n_1$, we have

$$d(x_m, x_n) \leq d(x_m, q) + d(x_n, q) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad q \in F(T),$$

Hence $\{x_n\}$ is a Cauchy sequence.

The following lemma follows easily.

Lemma 2.5. Let T be biased quasi-nonexpansive w.r.t. $\{x_n\}$, and let $\{x_n\}$ converges to a point p in F(T) Then:

1) $\{x_n\}$ converges to a point p in cond(F(T))and T is conditionally biased quasi-nonexpansive w.r.t. $\{x_n\}$;

2) $\{x_n\}$ is a Cauchy sequence.

We now state our main theorem in the present paper.

Theorem 2.1. Let F(T) be a nonempty closed set. Then

1) $\lim_{n\to\infty} d(x_n, F(T)) = 0$ if $\{x_n\}$ converges to a point p in F(T);

2) $\{x_n\}$ converges to a point in F(T) if

 $\lim d(x_n, F(T)) = 0$, T is locally quasi-nonexpansive

at $p \in F(T)$ w.r.t. $\{x_n\}$ and X is complete. Proof. 1) Since F(T) is closed, $p \in F(T)$ and the

mapping $x \mapsto d(x, F(T))$ is continuous (see [1, p. 13]), then

$$\lim_{n \to \infty} d\left(x_n, F\left(T\right)\right) = d\left(\lim_{n \to \infty} x_n, F\left(T\right)\right) = d\left(p, F\left(T\right)\right) = 0$$

2) From Lemma 2.3, $\{x_n\}$ is a Cauchy sequence. Since X is complete, then $\{x_n\}$ converges to a point, say q in X. Since F(T) is closed, then

$$0 = \lim_{n \to \infty} d\left(x_n, F(T)\right) = d\left(\lim_{n \to \infty} x_n, F(T)\right) = d\left(p, F(T)\right)$$

implies that $q \in F(T)$.

As consequences of Theorem 2.1, we have the following:

Corollary 2.1. Let F(T) a nonempty closed set and for a given $x_0 \in D$ and each $n \in \omega, \{T^n x_0\} \in D$ Then

1) $\lim_{n \to \infty} d(T^n x_0, F(T)) = 0$ if $\{T^n x_0\}$ converges to a point p in F(T);

2) $\{T^n x_0\}$ converges to a point in F(T) if, $\lim_{n \to \infty} d(T^n x_0, F(T)) = 0, T \text{ is locally qusi-nonexpansive}$

at $p \in F(T)$ w.r.t. $\{T^n x_0\}$ and X is complete. Corollary 2.2. Let X be a normed linear space, F(T) a nonempty closed set and for a given $x_0 \in D$ and each $n \in \omega$, $\{T_{\lambda}^n x_0\} \in D$.

(1) If the sequence $\{T_{\lambda}^{n}x_{0}\}$ converges to a point p in F(T), then

$$\lim_{n\to\infty}d\left(T_{\lambda}^{n}x_{0},F\left(T\right)\right)=0$$

(2) If $\lim_{n\to\infty} d(T_{\lambda}^n x_0, F(T)) = 0$ T is locally quasinonexpansive at $p \in F(T)$ w.r.t. $\{T_{\lambda}^{n}x_{0}\}$ and X is complete, then $\{T_{\lambda}^{n}x_{0}\}$ converges to a point p in F(T).

Corollary 2.3. Let X be a normed linear space, F(T) a nonempty closed set and for a given $x_0 \in D$

and each $n \in \omega$, $\{T_{\lambda,\mu}^n x_0\} \in D$ Then (1) $\lim_{n \to \infty} d(T_{\lambda,\mu}^n x_0, F(T)) = 0$ if the sequence $\{T_{\lambda,\mu}^n x_0\}$

converges to a point p in F(T);

(2) $\{T_{\lambda,\mu}^n x_0\}$ converges to a point p in F(T) if $\lim_{n \to \infty} d(T_{\lambda,\mu}^n x_0, F(T)) = 0$, T is locally quasi-nonexpan-

sive at $p \in F(T)$ w.r.t. $\{T_{\lambda,\mu}^n x_0\}$ and X is complete. Note that the continuity of T implies that F(T) is closed but the converse need not be true. To effect this consider the following example.

Example 2.3. Let $X = [0, \infty)$ and D = [0,1) be endowed with the Euclidean metric d. Define the map-

Copyright © 2011 SciRes.

ing
$$T: D \to X$$
 by $T(x) = x$ if $x \in \left[0, \frac{1}{2}\right]$ and $T(x)$

 $=3x^2$ if $x \in \left(\frac{1}{2}, 1\right)$ Obviously, F(T) = [0, 1/2] is a

nonempty closed but T is not continuous at x = 1/2.

Remark 2.5. (a) In order to support the above fact Ahmed and Zeyada [1] stated wrongly in their Example 2.2, where X = [0,1), $D = [0,1/4) \cup (1/2,5/6]$, T(x) = x. If $X \in [0, 1/4)$ and T(x) = x/2 if $x \in (1/2, 5/6)$ that T is not continuous. In fact, we observe that in this example T is continuous.

(b) From Lemma 2.1, Examples 2.1 and 2.3, the continuity of T implies that F(T) is closed but the converse may not be true; then we have that Corollaries 2.1, 2.2 and 2.3 are improvement of Theorem 1.1 in [13, p.462], Theorem 1.1' in [13, p. 469], and Theorem 3.1 in [8, p. 98], respectively.

(c) Since every quasi-nonexpansive map w.r.t. a sequence $\{x_n\}$ is locally quasi-nonexpansive at each $p \in F(T)$ w.r.t. a sequence $\{x_n\}$, but the converse may not be true; we have that Theorem 2.1, Corollaries 2.1, 2.2 and 2.3 are improvement of corresponding Theorem 2.1, Corollary 2.1, 2.2 and 2.3 of Ahmed and Zeyada [1].

(d) By considering the closedness of F(T) in lieu of the continuity of T and $T: D \to X$ instead of $T: X \to X$ we have that our Corollary 2.1 improves Proposition 1.1 of Kirk [10, p. 168].

(e) The closedness condition of D in Theorem 1.1 and 1.1' of Petryshyn and Williamson [12, p. 462, 469] and Theorem 3.1 in [8, p. 98] is superfluous.

(f) The convexity condition of D in Theorem 1.1' of Petryshyn and Williamson [12, p. 469] is superfluous because the author assumed in their theorem that $\{T_{\lambda}^{n}x_{0}\} \in D$ for each $n \in \omega$ and a given $x_{0} \in D$ in condition (1.3').

Theorem 2.2. Let cond(F(T)) be a nonempty closed set. Then $\{x_n\}$ converges to a point in

 $\operatorname{cond}(F(T))$ if $\liminf d(x_n, \operatorname{cond}(F(T))) = 0$, T is condionally biased quasi-nonexpansive w.r.t. $\{x_n\}$ and X is complete.

Proof. Since $\operatorname{cond}(F(T)) \subset F(T)$ we have that $\liminf_{n\to\infty} d(x_n, \operatorname{cond}(F(T))) = 0 \quad \operatorname{implies} \quad \liminf_{n\to\infty} d(x_n, \operatorname{cond}(F(T))) = 0$ F(T) = 0 Now using the technique of the proof of Theorem 2.1 the conclusion follows from Lemma 2.3.

The following results follows easily from Lemma 2.5.

Theorem 2.3. Let F(T) be a nonempty closed set. Then $\{x_n\}$ converges to a point in cond(F(T)) if $\{x_n\}$ converges to a point p in F(T), T is biased quasi-nonexpansive w.r.t. $\{x_n\}$ and X is complete.

Theorem 2.4. Let X be a complete metric space and let $\operatorname{cond}(F(T))$ be a nonempty closed set. Assume that

1) T is biased quasi-nonexpansive w.r.t. $\{x_n\}$;

2) $\lim_{n\to\infty} d(x_n, x_{n+1}) = 0$ or $\{x_n\}$ is a Cauchy sequence;

3) if the sequence $\{y_n\}$ satisfies $\lim_{n \to \infty} d(y_n, y_{n+1}) = 0$

then

$$\liminf d(y_n, \operatorname{cond}(F(T))) = 0$$

or

 $\limsup d\left(y_n, \operatorname{cond}(F(T))\right) = 0.$

Then $\{x_n\}$ converges to a point in $\operatorname{cond}(F(T))$.

Proof. Since $\operatorname{cond}(F(T)) \neq \emptyset$ it follows from (i) that T is condionally biased quasi-nonexpansive w.r.t. $\{x_n\}$ and the sequence $\{d(x_n, \operatorname{cond}(F(T)))\}$ is monotonically decreasing and bounded from below by zero.

Then $\liminf_{n\to\infty} d(x_n, \operatorname{cond}(F(T)))$ exists.

From 2) and 3), we have that

$$\liminf_{n \to \infty} d(x_n, \operatorname{cond}(F(T))) = 0$$

or

$$\limsup_{n \to \infty} \sup d(x_n, \operatorname{cond}(F(T))) = 0.$$

Then $\lim_{n \to \infty} d(x_n, \operatorname{cond}(F(T))) = 0$ Therefore, by The-

orem 2.2, the sequence $\{x_n\}$ converges to a point in $\operatorname{cond}(F(T))$.

As consequences of Theorem 2.4, we obtain the following:

Corollary 2.4. Let X be a complete metric space and let cond(F(T)) be a nonempty closed set. Assume that

1) T is biased quasi-nonexpansive w.r.t. $\{x_n\}$;

2) T is asymptotic regular at $x_0 \in D$ (or

 $\{T^n(x_0)\}$ is a Cauchy sequence);

3) if the sequence $\{y_n\}$ satisfies $\lim_{n \to \infty} d(y_n, y_{n+1}) = 0$

then

$$\liminf_{n\to\infty} d\left(y_n, \operatorname{cond}\left(F\left(T\right)\right)\right) = 0$$

or

$$\lim_{n \to \infty} \sup d(y_n, \operatorname{cond}(F(T))) = 0$$

Then $\{T^n(x_0)\}$ converges to a point in $\operatorname{cond}(F(T))$.

Corollary 2.5. Let X be a Banach space and let cond(F(T)) be a nonempty closed set. Assume that

Copyright © 2011 SciRes.

1) *T* is biased quasi-nonexpansive w.r.t. $\{T^n(x_0)\}$;

2) *T* is asymptotic regular at $x_0 \in D$ (or $\{T^n(x_0)\}$ is a Cauchy sequence);

3) if the sequence $\{y_n\}$ satisfies $\lim_{n \to \infty} ||y_n - T_{\lambda}y_n|| = 0$, then

$$\liminf_{n \to \infty} d\left(y_n, \operatorname{cond}\left(F\left(T\right)\right)\right) = 0$$

or

$$\lim_{n\to\infty}\sup d\left(y_n,\operatorname{cond}\left(F\left(T\right)\right)\right)=0.$$

Then $\{T^n(x_0)\}$ converges to a point in $\operatorname{cond}(F(T))$. **Corollary 2.6.** Let X be a Banach space and let $\operatorname{cond}(F(T))$ be a nonempty closed set. Assume that

1) *T* is biased quasi-nonexpansive w.r.t. $\{T_{\lambda,\mu}^n(x_0)\};$

2) *T* is asymptotic regular at $x_0 \in D$ (or $\{T_{\lambda,\mu}^n(x_0)\}$ is a Cauchy sequence);

3) if the sequence $\{y_n\}$ satisfies $\lim_{n \to \infty} ||y_n - T_{\lambda,\mu}y_n|| = 0$, then

$$\liminf_{n \to \infty} d(y_n, \operatorname{cond}(F(T))) = 0$$

or

$$\limsup_{n \to \infty} d\left(y_n, \operatorname{cond}\left(F\left(T\right)\right)\right) = 0.$$

Then $\{T_{\lambda,\mu}^n(x_0)\}$ converges to a point in $\operatorname{cond}(F(T))$

 $\operatorname{cond}(F(T)).$

Remark 2.6. From Lemmas 2.1 and 2.2, Examples 2.1 and 2.3, Remark 2.3, the continuity of T implies that F(T) is closed but the converse may not be true; we obtain that Corollary 2.4 include Theorem 1.2 in [12, p. 464] and Theorem 3.2 in [7, p. 99] as special cases.

As another consequence of Theorem 2.1, we establish the following theorem:

Theorem 2.5. Let X be a complete metric space and let cond(F(T)) be a nonempty closed set. Assume that

1) T is biased quasi-nonexpansive w.r.t. $\{x_n\}$;

2) for every $x \in D - \operatorname{cond}(F(T))$ there exists $p_x \in \operatorname{cond}(F(T))$ such that $d(x_{n+1}, p_x) < d(x_n, p_x)$;

3) the sequence $\{x_n\}$ contains a subsequence $\{x_{n_j}\}$

converging to $x^* \in D$.

Then $\{x_n\}$ converges to a point in $\operatorname{cond}(F(T))$.

Proof. Since $\operatorname{cond}(F(T)) \neq \emptyset$ it follows from (i) that *T* is condionally biased quasi-nonexpansive w.r.t. $\{x_n\}$ and the sequence $\{d(x_n, \operatorname{cond}(F(T)))\}$ is monotonically decreasing and bounded from below by zero. Then $\lim_{n \to \infty} d(x_n, \operatorname{cond}(F(T))) = d(\lim_{n \to \infty} x_n, \operatorname{cond}(F(T)))$

 $r \ge 0$ exists. We now apply Theorem 2.4. It suffices to show that r=0. If $\lim_{n\to\infty} x_n = x^* \in \operatorname{cond}(F(T))$ then r=0. If $x^* \notin \operatorname{cond}(F(T))$ then $x^* \in D - \operatorname{cond}(F(T))$ Thus there exists $p_{x^*} \in \operatorname{cond}(F(T))$ such that

$$d\left(x^{*}, p_{x^{*}}\right) = d\left(\lim_{n \to \infty} x_{n+1}, p_{x^{*}}\right) = \lim_{n \to \infty} d\left(x_{n+1}, p_{x^{*}}\right)$$
$$< \lim_{n \to \infty} d\left(x^{*}, p_{x^{*}}\right) = d\left(\lim_{n \to \infty} x_{n}, p_{x^{*}}\right) = d\left(x^{*}, p_{x^{*}}\right)$$
This is a contradiction. So, $x^{*} \in \text{cond}\left(F(T)\right)$

This is a contradiction. So, $x^* \in \operatorname{cond}(F(T))$.

Corollary 2.7. Let X be a complete metric space, cond(F(T)) a nonempty closed set and for a given $x_0 \in D$ and each $n \in \omega$, $\{T^n x_0\} \in D$. Assume that

1) *T* is biased quasi-nonexpansive w.r.t. $\{T^n(x_0)\}$; 2) for every $x \in D - \operatorname{cond}(F(T))$ there exists $p_x \in \operatorname{cond}(F(T))$ such that

$$d(T^{n+1}(x_0), p_x) < d(T^n(x_0), p_x);$$

3) the sequence $\{T^n(x_0)\}$ contains a subsequence $\{T^{n_j}(x_0)\}$ converging to $x^* \in D$.

Then $\{T^n(x_0)\}$ converges to a point in $\operatorname{cond}(F(T))$.

Corollary 2.8. Let X be a Banach space, $\operatorname{cond}(F(T))$ a nonempty closed set and for a given

 $x_0 \in D$ and each $n \in \omega$, $\{T_{\lambda,\mu}^n(x_0)\} \in D$ Assume that

1) *T* is biased quasi-nonexpansive w.r.t. $\{T_{\lambda,\mu}^n(x_0)\}$;

2) for every $x \in D - \operatorname{cond}(F(T))$ there exists $p_x \in \operatorname{cond}(F(T))$ such that

$$\left\|T_{\lambda}^{n+1}\left(x_{0}\right)-p_{x}\right\|<\left\|T_{\lambda}^{n}\left(x_{0}\right)-p_{x}\right\|;$$

3) the sequence $\{T^n(x_0)\}$ contains a subsequence $\{T_{\lambda}^{n_j}(x_0)\}$ converging to $x^* \in D$.

Then $\{T_{\lambda}^{n_{j}}(x_{0})\}$ converges to a point in $\operatorname{cond}(F(T))$.

Corollary 2.9. Let X be a Banach space, $\operatorname{cond}(F(T))$ a nonempty closed set and for a given $x_0 \in D$ and each $n \in \omega$, $\{T_{\lambda,\mu}^n(x_0)\} \in D$ Assume that 1) T is biased quasi-nonexpansive w.r.t. $\{T_{\lambda,\mu}^n(x_0)\};$

2) for every $x \in D - \operatorname{cond}(F(T))$ there exists $p_x \in \operatorname{cond}(F(T))$ such that

$$||T_{\lambda,\mu}^{n+1}(x_0) - p_x|| < ||T_{\lambda,\mu}^n(x_0) - p_x||;$$

3) the sequence $\{T^n(x_0)\}$ contains a subsequence

Copyright © 2011 SciRes.

 $\left\{T_{\lambda,\mu}^{n_j}\left(x_0\right)\right\}$ converging to $x^* \in D$.

Then $\{T_{\lambda,\mu}^n(x_0)\}$ converges to a point in $\operatorname{cond}(F(T))$.

Remark 2.7. From Lemmas 2.1 and 2.2, Examples 2.1 and 2.3, Remark 2.3, the continuity of T implies that F(T) is closed but the converse may not be true; we obtain that Corollary 2.7 is an improvement of Theorem 1.3 in [13, p. 466].

3. Applications to Geometry of Banach Spaces

Throughout this section, let **R** denote the set of real numbers. Let K = K(z,r) be a closed ball in a Banach space X. For a sequence $\{x_n\}_{n=0}^{\infty} \acute{\mathrm{U}} K$ converging to X we define

$$\lim_{n} \mathbf{D}_{n} = \mathbf{SD}(x, K)$$

where

$$\mathbf{D}_0 = \operatorname{conv}(\{x_0\} \cup K)$$

$$\mathbf{D}_{n+1} = \operatorname{conv}(\{x_n\} \cup \mathbf{D}_n) \forall n \in \omega$$

and SD(x, K) is called a super drop.

Clearly, for a constant sequence $\{x_n\} = \{x\}$ converging to x we have $D_{n+1} = D_n \forall n \in \omega$ so that $D(x,k) = \operatorname{conv}(\{x\} \cup K)$ and is called a drop Thus the concept of a drop is a special case of super drop It is also clear that if $y \in D(x,K)$ then $D(y,K) \subset D(x,K)$ and if z = 0 then ||y|| = ||x||.

Recall that a function $\varphi: X \to \mathbf{R}$ is called a *lower* semicontinuous whenever $\{x \in X : \varphi(x) \le a\}$ is closed for each $a \in \mathbf{R}$.

Caristi [4] proved the following:

Theorem A. Let (X,d) be complete and $\varphi: X \to \mathbf{R}$ a lower semicontinuous function with a finite lower bound. Let $T: X \to X$ be any function such that $d(x,T(x)) \le \varphi(x) - \varphi(T(x))$ for each $x \in X$. Then T has a fixed point.

We now state and prove some applications of our main results in section 2 to geometry of Banach Spaces.

Theorem 3.1. Let *C* be a closed subset of a Banach space *X* let $z \in X - C$ and let K = K(z,r) be a closed ball of radius r < d(z,C) = R Let *x* be an arbitrary element of *C* let $\{x_n\}$ be a sequence in *C* converging to *X* and let $T: C \to X$ be any continuous function defined implicitly by $T(x) \in C \cap SD(x,K)$ for each $x \in C$ in the sense that $T(x_n) \in C \cap D_n$ for each $n \in \omega$. Then 1) $\lim_{n \to \infty} d(x_n, F(T)) = 0$ if $\{x_n\}$ converges to a point p in F(T);

2) $\{x_n\}$ converges to a point in F(T) if $\lim_{n \to \infty} d(x_n, F(T)) = 0$, T is locally quasi-nonexpansive at $p \in F(T)$ w.r.t. $\{x_n\}$.

Proof. Without loss of generality we may assume that z = 0. Let $||x|| = \eta \ge R$ and let $X = A \cap SD(x, K)$ Then it is clear that T maps X into itself. For given $y \in X$ and a sequence $\{y_n\}$ converging to y, we shall estimate ||y - T(y)|| on X.

For given $y \in X$ and the corresponding sequence $\{y_n\}$ there is a sequence $\{b_n\}$ in X with $T(y_n) = tb_n + (1-t)y_n, 0 < t < 1$ Now $||T(y_n)|| \le t ||b_n|| + (1-t)||y_n||$, we have

$$t(||y_n|| - ||b_n||) \le ||y_n|| - ||T(y_n)||$$

so because $||y_n|| - ||b_n|| \ge R - \eta$, we find that

$$t \leq \frac{\left\|y_n\right\| - \left\|T\left(y_n\right)\right\|}{R - \eta}.$$

Thus,

$$||y_n|| - ||T(y_n)|| \le t ||y_n - b_n||$$

$$\le t (||y_n|| + ||b_n||) \le (\eta + r)$$

$$\le \frac{\eta + r}{R - r} (||y_n|| - ||T(y_n)||)$$

Define $d(x, y) = ||x - y|| \forall x, y \in X$ and $\varphi(y)$

 $= \frac{\eta + r}{R - r} \|y\|$ then X is complete as a metric space and $\varphi: X \to \mathbf{R}$ is a continuous function. So, φ is a lower-semicontinuous function. Also, the above inequality takes the form $d(y_n, T(y_n)) \le \varphi(y_n) - \varphi(T(y_n))$. Proceeding to the limit as $n \to \infty$ we obtain $d(y, T(y)) \le \varphi(y) - \varphi(T(y))$ for each $y \in X$. There- fore, applying the theorem of Caristi we obtain that T has a fixed point p = p(x) for each $x \in C$, *i.e.*, $F(T) \ne \emptyset$. By continuity of T, F(T) is closed. Hence the conclusion follows from Theorem 2.1.

Since drop is a special case of super drop, we have the following:

Corollary 3.1. Let *C* be a closed subset of a Banach space *X* let $z \in X - C$ and let K = K(z,r) be a closed ball of radius r < d(z,C) = R Let *x* be an arbitrary element of *C*, and let $T: C \to X$ be any (not necessarily continuous) function defined implicitly by $T(x) \in C \cap D(x, K)$ for each $x \in C$. Then

(1) $\lim_{n \to \infty} d(x_n, F(T)) = 0$ if $\{x_n\}$ converges to a point p in F(T);

Copyright © 2011 SciRes.

(2) $\{x_n\}$ converges to a point in F(T) if $\lim_{n \to \infty} d(x_n, F(T)) = 0$, T is locally quasi-nonexpansive at $p \in F(T)$ w.r.t. $\{x_n\}$.

We now prove the following result for biased quasinonexpansive mapping w.r.t. a sequence $\{x_n\}$.

Theorem 3.2. Let *C* be a closed subset of a Banach space *X* let $z \in X - C$ and let K = K(z,r) be a closed ball of radius r < d(z,C) = R Let *x* be an arbitrary element of *C*, $\{x_n\}$ a sequence in *C* converging to *X*, and let $T: C \to X$ be any con-tinuous function defined implicitly by $T(x) \in C \cap SD(x,K)$ for each $x \in C$ in the sense that $T(x_n) \in C \cap D_n$ for each $n \in \omega$. If $\{x_n\}$ converges to a point in F(T), *T* is biased quasi-nonexpansive w.r.t. $\{x_n\}$ then $\{x_n\}$ converges to a point in cond(F(T)).

Proof. Using Theorem 2.3. instead of Theorem 2.1 the conclusion follows on the lines of the proof technique of Theorem 3.1.

As a consequence of Theorem 3.2, we obtain the following:

Corollary 3.2. Let *C* be a closed subset of a Banach space *X* let $z \in X - C$ and let K = K(z,r) be a closed ball of radius r < d(z,C) = R. Let *x* be an arbitrary element of *C*, and let $T: C \to X$ be any (not necessarily continuous) function defined implicitly by $T(x) \in C \cap D(x, K)$ for each $x \in C$. If $\{x_n\}$ converges to a point in F(T), T is biased quasi-nonexpansive w.r.t. $\{x_n\}$ then $\{x_n\}$ converges to a point in cond(F(T)).

Open Question. To what extent can the continuity hypothesis on T be muted in Theorems 3.1 and 3.2?

4. References

- M. A. Ahmed and F. M. Zeyad, "On Convergence of a Sequence in Complete Metric Spaces and its Applications to Some Iterates of Quasi-Nonexpansive Mappings," *Journal of Mathematical Analysis and Applications*, Vol. 274, No. 1, 2002, pp. 458-465. doi:10.1016/S0022-247X(02)00242-1
- [2] J.-P. Aubin, "Applied Abstract Analysis," Wiley-Interscience, New York, 1977.
- [3] F. E. Browder and W. V. Petryshyn, "The Solution by Iteration of Nonlinear Functional Equations in Banach Spaces," *Bulletin of the American Mathematical Society*, Vol. 272, 1966, pp. 571-575. doi:10.1090/S0002-9904-1966-11544-6
- [4] J. Caristi, "Fixed Point Theorems for Mappings Satisfying Inwardness Conditions," *Transaction of the American Mathematical Society*, Vol. 215, 1976, pp. 241-251. doi:10.1090/S0002-9947-1976-0394329-4
- [5] J. B. Diaz and F. T. Metcalf, "On the Set of Sequencial Limit Points of Successive Approximations," *Transactions of the American Mathematical Society*, Vol. 135,

1969, pp. 459-485.

- [6] W. G. Dotson Jr., "On the Mann Iteration Process," *Transaction of the American Mathematical Society*, Vol. 149, 1970, pp. 65-73. doi:10.1090/S0002-9947-1970-0257828-6
- [7] W. G. Dotson Jr., "Fixed Points of Quasinon-Expansive Mappings," *Journal of the Australian Mathematical Society*, Vol. 13, 1972, pp. 167-170.
- [8] M. K. Ghosh and L. Debnath, "Convergence of Ishikawa Iterates of Quasi-Nonexpansive Mappings," *Journal of Mathematical Analysis and Applications*, Vol. 207, No. 1, 1997, pp. 96-103. doi:10.1006/jmaa.1997.5268
- S. Ishikawa, "Fixed Points by a New Iteration Method," *Proceedings of the American Mathematical Society*, Vol. 44, No. 1, 1974, pp. 147-150. <u>doi:10.1090/S0002-9939-1974-0336469-5</u>

- [10] W. A. Kirk, "Remarks on Approximationand Approximate Fixed Points in Metric Fixed Point Theory," *Annales Universitatis Mariae Curie-Skłodowska, Section A*, Vol. 51, No. 2, 1997, pp. 167-178.
- [11] W. A. Kirk, "Nonexpansive Mappings And Asymptotic Regularity," Ser. A: Theory Methods, *Nonlinear Analysis*, Vol. 40, No. 1-8, 2000, pp. 323-332.
- W. R. Mann, "Mean Valued Methods In Iteration," *Proceedings of the American Mathematical Society*, Vol. 4, No. 3, 1953, pp. 506-510. doi:10.1090/S0002-9939-1953-0054846-3
- [13] W. V. Petyshyn and T. E. Williamson Jr., "Strong and Weak Convergence of The Sequence of Successive Approximations for Quasi-Nonexpansive Mappings," *Journal of Mathematical Analysis and Applications*, Vol. 43, 1973, pp. 459-497. doi:10.1016/0022-247X(73)90087-5