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Abstract 
 
The objective of this paper is to design linear quadratic controllers for a system with an inverted pendulum 
on a mobile robot. To this goal, it has to be determined which control strategy delivers better performance 
with respect to pendulum’s angle and the robot’s position. The inverted pendulum represents a challenging 
control problem, since it continually moves toward an uncontrolled state. Simulation study has been done in 
MATLAB Simulink environment shows that both LQR and LQG are capable to control this system success-
fully. The result shows, however, that LQR produced better response compared to a LQG strategy. 
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1. Introduction 
 
Inverted pendulum has been the subject of numerous 
studies in automatic control since the forties. The in- 
verted pendulum is a typical representative of a class of 
high-order nonlinear and non-minimum phase systems 
[1]. Since the system is inherently nonlinear, it is useful 
to illustrate some of the ideas in nonlinear control. 

Wheeled mobile robots have in the recent years 
become increasingly important in industry, since they 
provide a large degree of flexibility and efficiency with 
respect to transportation, inspection, and operation. In 
many cases, however, it is the control, or lack of 
knowledge in control, which limit the area of application. 
In this system, an inverted pendulum is attached to a 
robot equipped with a motor that drives it along a 
horizontal track (robot will in the following mean an 
autonomous robot provided with the Robotics Starter Kit 
from National Instruments). The user is able to dictate 
the position and velocity of the robot through the motor. 
The pendulum is characterized by an unstable equi- 
librium point, and its behavior can be used in the analysis 
and stability control of many similar systems. 

Many different control methods are proposed for the 
inverted pendulum problem. The Proportional-Integral- 
Derivative (PID) and Proportional-Derivative (PD) 
controllers [2] and [3], Model Predictive Control (MPC) 
[4], and fuzzy control [5] to mention a few. However one  

of the obstacles by using the PID and PD controllers are 
that they alone cannot effectively control all of the 
pendulum state variables (modes) since they are of lower 
order than the pendulum itself. Hence, they are usually 
replaced by a full-order controller [3]. A linear state 
feedback controller based on the linearized inverted 
pendulum model can instead be used, and may also be 
extended with a disturbance observer (Kalman filter) to 
improve the disturbance rejection performance. 

The proposed method is to balance an inverted pen- 
dulum placed on top of a mobile robot by use of LQR/ 
LQG control methods. Our solution implements an LQG 
controller with comparison to a simple LQR controller. 
The controller found by means of a more analytical 
approach will be tested with implementation of the 
controller in the MATLAB/Simulink environment. 

With varying input forces the goal is to design a 
controller capable of meeting the following requirements:  
 settling time, sT , less than 5 seconds  
 maximum overshoot of 10 degrees (0.175 radians)  
 rise time T  less than 0.5 s  r

We will in part one describe a simplified mathematical 
model of the problem. Then, when having a state space 
model of the system, we can in part two go on and 
determine the controllers and observers. Finally, the 
results from simulations will then be presented and 
compared in part three. 
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2. Derivation of the Mathematical Model 
 
The main objective in this part is to come up with a valid 
model that can be used as a basis for the control design. 
The overall system can be described as Figure 1 depicts. 
The mass of the robot and the pendulum is here denoted 
as M and m, respectively, together with the applied force 
F and the angle   referred to the vertical axis. 

There are a lot of aspects to take into consideration 
when modeling this system, of which some are more 
crucial than others. Without loosing the generality of the 
model, the authors have considered the following 
assumptions as good approximations for the sake of 
simplifying the model: 
 no friction in the hinge between the pendulum and the 

robot  
 no friction between the wheels and the horizontal 

plane  
 small angle approximations, i.e. the pendulum does 

not move more than a few degrees  
 sensors for measuring all the states are when con- 

sidering LQR control assumed to be available  
By applying the Lagrange’s equations with respect to 

the position of the robot, x , and the pendulum deflec- 
tion angle  , and taking into account the moments 
around the center of mass, the following nonlinear 
dynamic equations of the pendulum system are obtained 
[6]:  

 2 =I ml mglsin mlxcos            (1) 

where I is moment of inertia of the pendulum,   is the 
angle in counterclockwise direction with respect to the 
vertical line (see Figure 1), and  is the distance to the 
center of mass (equal to 

l
2L ). Furthermore, the robot is 

governed by a equation of motion relating the forces  
 

 

Figure 1. The inverted pendulum placed on a simplified 
mobile robot. 

applied by the pendulum on the robot. Then, according to 
Newtons law of motion, the equation of motion of the 
robot in horizontal direction can be given as 

  2 =M m x ml cos ml sin F            (2) 

where F can be derived out from the physical properties 
of the motor to be [7]  

2 2

2
= gt m t

Km KK K
F V

Rr Rr


 x           (3) 

Here , , , , ,m t t gK K K R  and  are coefficients de- 
pendent on the physical properties of the motor and gear. 
The different parameters for (3) is not known for the 
robot used in this project. However, [8] provide values 
which will be used in the following. Based on the 
previous derivation, we can now define four state vari- 
ables, given as the state vector  

r

  TT

1 2 3 4= =x x x x x x    
x     (4) 

Equations (1), (2), and (3) need to be linearized in 
order to represent the system on state space form  

=x Ax BV                  (5) 

=y Cx                    (6) 

where A , , and  are matrices needed for the 
control design and  is the (input) voltage applied on 
the motor. The linearizing point of interest is the unstable 
equilibrium point  

B C
V

 T= 0 0 0 0x  

The assumption of small angle approximation gives 
sin =  , cos = 1 , and . This lead to the 
following linearized equations of motion (note that (3) 
will be the same)  

= 0

 
 2

=
mgl mlx

I ml








               (7) 

 
 

=
F ml

x
M m






                (8) 

We want to make (7) and (8) more convenient for the 
state space representation by expressing   and x  in 
the following way  

   

2 2

2
= m g m g

tt

K K K Kg
x V

L ml Rr M L mlRr M L ml
  

 
   (9) 

   

 

2 2

2
=

      

m g

tt

m g

t

LK K mlg
x x

LM mlRr LM ml

LK K
V

Rr LM ml

 





 
   (10) 
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where for simplicity 
2

=
I ml

L
ml


 and =tM M m . 

Based on these equations and the following relation  
T

2 4= x x x   
 x  

we can now represen first 
The system on state s en be  

t (9) and (10) as a order system. 
pace form th
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0
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V

K K
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 (11) 

           (12) 

Now, by using the values for the different constants 
given in [8], the matrix equations becomes  

 

 

When having the system on state space form, the 
following step is to design a LQR controller (assuming 
that all the states are known and can be measured). Then, 
by assuming no sensor available for m suring the angle, 
we will continue with an observer d sign. Finally, an 
op

placement procedure 
nkage 

es in 

co vior. However, one disadvantage with this 
ethod is that the placing of the poles at desired 

=
0 0 0 1

t L mlRr M L ml 
 
 


x x

1 0 0 0
=

0 0 1 0
y

 
 
 

x  

0 1 0 0 0

0 15.14 3.04 0

0 0 0 1 0

 
   
 

x x
3.39

+
 
 V  

0 37.23 31.61 0 8.33
   

   

1 0 0 0

0 0 1 0
y

 
  
 

x  

ea
e

timal LQR (LQG controller)will be proposed by im- 
plementing a Kalman filter.  
 
3. Linear Quadratic Regulator (LQR)  

Design 
 
There are different methods, or procedures, to control the 
nverted pendulum. One is the pole i

having the advantage of giving a much clearer li
between adjusted parameters and the resulting chang

ntroller beha
m
locations can lead to high gains [8]. In this section a 
linear quadratic regulator (LQR) is proposed as a 
solution. The principles of a LQR controller is given in 
Figure 2. Here is the state space system represented with 
its matrices A , B , and C  with the LQR controller 
(shown with the K ). 

The LQR problem rests upon the following three 
assumptions [9]:  

1) All the states (x(t)) are available for feedback, i.e. it 
can be measured by sensors etc.  

2) The system a  stabiliz ble which means that all of 
its unstable mode e cont

re a
s ar rollable  

 

bsv(A,C) and ctrb(A,B) 
an

 the control area is 
ca

 for a linear system with quadratic 
pe

3) The system are detectable having all its unstable 
modes observable 

To check whether the system is controllable and 
observable, we use the functions o

d find this to be true. 
LQR design is a part of what in
lled optimal control. This regulator provides an 

optimal control law
rformance index yielding a cost function on the form 

[10]  

T        T

0
= dJ x t t t t t Qx u Ru        (13) 

where T=Q Q  and T=R R  are weighting parameters 
that penalize the states and the control effort, respec- 
tively. These matrices are therefore controller tuning 
parame



ters. 
nce to

se of certain
e the st

It is cru  must be chosen in 
accorda  the  want 
respon r word; 

i

cial that 
 emphasize we
 states, or in

Q

 othe
to give the 
how we will 

penaliz ates. Likewise, the chosen value(s) of R  
will penalize the control effort u . Hence, in an optimal 
control problem the control system seeks to maximize 
the return from the system with m nimum cost. In a LQR 
design, because of the quadratic performance index of 
the cost function, the system has a mathematical solution 
that yields an optimal control law  

   =t x tu K               (14) 

where u  is the control input and K  is the gain given 
as 1= T SK R B . It can be shown (see [10]) that S  can  
 

   

 

Figure 2. Schematic representation of state space control 
using a LQR controller. 
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be found by solving the algebraic Riccati Equation  

     (15) 

The process of minimizing the cost function therefore 
involves to solve this equation, which will be done with 
the use of MATLAB function lqr. In this project the 
parameters in  was initially chosen according to




    

1 = 0T T  SA A S Q PBR B S  

Q  
Bryson’s Rule (see [11] for details) to be  

100 0 0 0

0 1 0 0


 

=
0 0 32.65 0




Q

0 0 0 1
 
 

and the control weight of the performance index R was 
set to 1. 

Here we can see that the chosen values in Q  result in 
a relatively large penalty in the states 

      (16) 

1x  and 3x . This 
means that if 1x  or 3x  

e effect 
is large, th e 

will amplify of
e larg values in Q  

th  1x  and 3x  in the opti- 
n problem are to mization proble . he izat

minimize J, the optim  cont m
m  Since t

al
optim
rol 

io
ust forcu  e the states 

1x  and 3x  to be small (which make s ysically sen e ph  
since 1x  and 3x  represent the position of the robot and 
the angle of the pendulum

ha

, ectively). Th a resp is v lues 
must be modified during subsequent iterations to achieve 
as good response as possible (refer to th ext section for 
results). On the other nd, the small 

e n
R  relative to t  

max values in Q  involves v y low enalty on the 
control effort u  in the minimization of 

he
er  p

J , and the 
optimal control u  can then be rge. For this small R, 

e gain K can then be large resulting in a faster response. 
In the physical world this might involve instability 
problems, especially in systems with saturation [8]. 

After having specified the initial weighting factors, 
one important task is then to simulate to check if the 
results correspond with the specified d ign goals given 
in the introduction  If not, an adjustment of the weighting 
factors to get a controller more in line with t e specified 
design goals must be performed. However, difficulty in 
finding the right weighting factors limits the application 
of the LQR based controller synthesis [?]. By an iterative 
study when changing Q  values and running the 

la
th  

 

es
.

h

com- 
mand K = lqr(A,B,Q,R)  

 10.0000 12.6123 25.8648 6.7915    K . 
The simulation of time response with this controller 

will be shown in the next section. 
 
State Estimation 

As mentioned for the case of the LQR controller, all 
sensors for measuring the different states are assumed to 
be available. This is not  valid assumption in practice. A 

are not immediately avai

 a
void of sensors means that all states (full-order state 
observers), or some of the states (reduced order observer), 

lable for use in any control 
schemes beyond just stabilization. Thus, an observer is 
re

e schematics of the 
stem with the observer is shown in Figure 3 below. 

 from Figure 3, the observer state 
eq

lied upon to supply accurate estimations of the states at 
all robot-pendulum positions. Th
sy

As can be seen
uations are given by  

 ˆ ˆ ˆ=x Ax Bu L y Cx              (17) 

ˆ ˆ=y Cx                    (18) 

where x̂  is the estimate of the actual state x . Further- 
more, Equations (17) and (18) can be re-written to 
become  

 ˆ ˆ=x A LC x Bu Ly            (19) 

This, in turn, is the governing equations for a full 
order observer, having two inputs u  and y  and one 
output, x̂ . Since we already know  and servers 
of this ki  is simple in design a
estimation of all the states around t
From  3 we can se

difference between the mea
estima uts and correct the m de
Th

A, B
nd 

o

u, ob
nd

Figure

ted outp

provides accurate 
he linearized point. 

e that the observer is im- 
plemented by using a duplicate of the linearized system 
dynamics and adding in a correction term that is simply a 
gain on the error in the estimates. Thus, we will feed 
back the sured and the 

l continuously. 
e proportional observer gain matrix, L , can be found 

by pole placement method by use of e place command 
in MATLAB. The poles were determined to be ten times 
faster than the system poles. These were found to be  

   T* = 18.0542, 5.4482, 3.4398, 2.4187eig     A B K , 
which yields the gain matrix 

34.4 0.2

91.0 1.1
=

30.4 52.5

1103.6 726.4

th  

 
 
 
 
 
 

L             (20) 

When combining the control-law design with the esti- 
mator design we can get the compensator (see Section 6 
for results). 
 
4. Kalman Filter Desig
 

n 

In the previous design of the state observer, the mea- 
surements =y Cx  
is not usually the case in 

were assumed to be 
practical li

inputs yielding the state equations to be on the general 
stochastic state space form  

noise free. This 
fe. Other unknown 

=

=

x Ax Bu Gd

y Cx Hd n

 
 


             (21) 

where the matrices can be set to an identity matrix, G  
H  can be set to ro,  is stationary, zero mean   ze d
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Figure 3. Schematic of state space control using a observer 
where L is the observer gain and K is the LQR gain matrix. 
 
Gaussian white process noise, and is sensor noise of 
the same kind. 

In this section we will show how the Kalman filter can 
be applied to estimate the state vector, 

n  

x̂  
u

and the output 
vector by using the known inputs and the mea- 
sureme . Block schematics of a Kalman filter 
connected to the plant is depicted in Figure 4. 

It can be shown that this will result in an optimal state 
estimation. The Kalman filter is essentially a set of 

inimizes the estimated error covariance when some 
. 

 is given by  

ŷ  
nts 

 
y

mathematical equations that implement a predictor-cor- 
rector type estimator that is optimal in the sense that it 
m
presumed conditions are met [12] The mean square 
estimation error

        ˆ ˆ=
T J E x t x t x t x t    

      (22) 

where 

T       ˆ = 0E x t x t y t  
         (23) 

The optimal Kalman gain is given by  

    1= T
eL t S t C R             (24) 

where  eS t  is the same as J  given in (22). Further- 
more, when inft  , the alge

T

braic Riccati equation can 
be written   

1
e      (25) 

 and  are the process and measurement 
noise c n pectively. Tuning 

red if these are not known. Note that when 
co er will be used 
for m e  the position. Since this device does 
not involv  an can in the fo

mal Kalman gain for 

as   = 0eS t

0 = T
e e n e nS A AS Q S C R CS    

where nQ
ovaria

filter are requi

easurem
e

Finally, the sub-opti

 nR
ces, res

nt of
y noise, we 

of the Kalman 

ntrolling the robot, a quadrature encod

llowing set = 0nR .  
a steady state 

Kalman filter can be expressed as 1= T
eL S C R . 

 
5. LQG Controller 
 
The LQG controller is simply the combi

ar feed

ot system. The sche- 
atics a LQG is in essence similar to that depicted in 

nce, the observer gain matrix 
in this figure can now be defined as the Kalman gain. 

nation of a 
Kalman filter with a regular LQR controller. The se- 
paration principle guarantees that these can be designed 
and computed independently [13]. LQG controllers can 
be used both in linear time-invariant systems as well as 
in linear time-variant systems. The application to linear 
time-variant systems enables the design of line - 
back controllers for non-linear uncertain systems, which 
is the case for the pendulum-rob
m
Figure 3 in Section 3.1. He
L  
However, we also assume disturbances in form of noise, 
such that the system in compressed form can be 
described as in Figure 5. 

From the system given by (21), the feedback control 
law given by (14), and the full state observer equation 
given by (19) defined previously, we can by combing 
these have the following output-feedback controller to be  

 ˆ ˆ=

ˆ=

x A LC BK x Ly

u Kx

  




         (26) 

which is the equations the software is based upon when 
lculating the state estimates. Since the optimal LQR 

controller for this system is already found to have the 
feedback gain matrix  

ca

 10.0000 12.6123K     25.8648 6.7915 
be

 this will 

 

 used directly in the LQG design. The remaining is to 
find the Kalman gain matrix. We first assume the system 
as given in (21). After the measurement and disturbance 
noise covariance matrices are determined, the MATLAB  

 

Figure 4. Kalman filter used as an optimal observer. 
 

 

Figure 5. LQG regulator. 
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function kalman was used to find the optimal Kalman 
gain L and the covariance matrix P. Measurement noise 
covariance matrix is determined out from an expected 
noise on each channel. The Kalman gain was found as  

         (27

 
6. Simulations 
 
Figure 6 gives the time response of the system with a 
step input simulated by use of lsim function in 
MATLAB.  

Note that a steady state error was reduced by a scalin

The reason for the difference between the plots is due 
to the different simulation methods. When simulating the 
LQG, we made it be that only the 
subjected to a impulse force. This resulted in the Figure 
8. 

We actually see here that the LQR gave better results. 

 

4.9544 5.0879

0.7797 0.8612
=

25.9957 27.8975

L

 
   
 

 

5.0879 5.4689
 

) 

g 
factor N after t was calculated 
by a rscale function. Figure 7 is the response when using 
a observer to estimate the states. Note that the simulation 
in this case was done in the Simulink environment with a 
impulse function as input. 

he reference. This factor 

pendulum was 

 
. Conclusions 7

 
This report has shown that by manipulating the state/ 
control weightings and noise covariance matrices pro- 
perly, both LQR and LQG will give satisfactory result. 
Although the results has been somewhat limited, it has 
provided us with some useful knowledge concerning 

 

 

Figure 6. Time response of the system using a LQR con-
troller. 

 

Figure 7. Time response of the system with LQR and ob-
server. 
 

 

Figure 8. Time response of the system with LQG and im-
ulse force on pendulum. 

 
differences between LQR and LQG control. It could 
have been interesting to see how other cost functions 
would have affected the results, and how the system 
would have reacted if some of the input values had been 
changed. 
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